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Abstract: In this paper, I present a multidisciplinary approach to establishing the maximum loaded cross-

section of the elastic element of the bionic displacement system (whose conception must base on the 

principle of biomimicry), as well as the evaluation of the state of stresses and strains respectively of the 

accumulated potential deformation energy. This study involves modeling the structure using the finite 

element method for efforts evaluation (axial force N, shear force T, and bending moment Mi), the use of 

analytical models for calculating mechanical stresses and potential deformation energy, and the use of 

electrical strain-gages method to experimental evaluation of strains. The evaluation of strains (a total of 

2,979 processed data) is performed in two working scenarios: for the case where there is bipedal support 

(S1) and for the case of unipedal support, for uniform rectilinear movement (S2). In both scenarios, the 

relative deviations (concerning the potential deformation energy) between the analytically and 

experimentally obtained results are below 11 percent. This study has relevance, especially from the 

perspective of the possibility of optimally dimensioning the elastic element so that the bionic displacement 

system has its mass as small as possible. 

Keywords: potential deformation energy, bionic displacement system, reactions, internal forces, finite 

element method, mechanical stresses, strain, strain gauges 

 
1. INTRODUCTION  
   

Potential deformation energy or elastic energy 
is the energy stored in a mechanically stressed 
body in the field of elastic deformations. Nature 
is an inexhaustible source of ideas applicable in 
various branches of technology and has allowed 
the development of new technologies, and the 
creation of structures, materials, or devices. 
   One of the aspects studied from the point of 
view of bionics and which led to the finding of 
many solutions, both technical and medical, is 
the human and animal movement [1-4]. There 
are a variety of biological entities that move in 
different forms, depending on the structure of 
the body or limbs [5-7]. For example, fleas can 
jump up to 18 cm vertically and 33 cm 
horizontally, being among the best jumpers 
among animals in terms of weight. This fast and 
energetic movement of the hind legs is achieved 
using an elastic protein called resilin, which 
before the jump can be tensed like a spring, thus 

storing potential deformation energy [8]. A large 
animal that jumps as a mode of locomotion is the 
kangaroo. It weighs about 90 kg and can reach 
1.8 m when standing upright. Kangaroos use the 
potential deformation energy at each jump, thus 
lowering the strain on the muscles and causing 
more efficient oxygen burning than in other 
mammals of similar size. The key element in the 
movement of the kangaroo is the tendon in the 
lower limbs, which is the structure through 
which the force of the muscles is transmitted to 
the skeleton [9 - 12]. 
   The paper entitled "Evaluation of the potential 
deformation energy of the elastic element of a 
bionic displacement system" is an approach to 
establishing the maximum loaded cross-section 
of the elastic element of the bionic displacement 
system, represented in Figure 1 [13], (whose 
conception must base on the principle of 
biomimicry) as well as the evaluation of the state 
of stresses and deformations respectively of the 
accumulated potential deformation energy. 
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Fig. 1. Bionic displacement system: left - real model, 

right – in plane modeling, performed in the finite element 
analysis program RDM 6.19 [13]. 

The elastic element is made of a homogeneous 
and anisotropic composite material (glass E - 
73.3% by volume - in epoxy - parallel load with 
continuous fibers - for which the longitudinal 
modulus of elasticity or Young’s modulus is E = 
0.56E5 MPa, the transverse contraction 
coefficient or Poisson’s ratio μ = 0.26 [14, 15] 
and the breaking limit (ultimate stress) σr = 500 
MPa [16, 17]) for which the anisotropic linear-
elastic model is applied, where Robert Hooke's 
law represents a simplifying hypothesis [18, 19].  

This study involves modeling the structure 
using the finite element method for internal 
forces evaluation (axial force N, shear force T, 
and bending moment Mi), the use of analytical 
models for calculating mechanical stresses and 
potential deformation energy, and the use of the 
electrical strain-gages method to experimental 
evaluation. 

The external forces applied to the bionic 
displacement system are in static equilibrium (q 
= 2,616 N/mm - unipedal position), R4 = 52.1 N, 
R7 having the components Rx = 52.1 N and Ry 
= 781.6 N) and the internal loads (normal force 
N, the shear force T and the bending moment 
Mi) are distributed according to Figure 2 (Nmax 
= Nmax = 589.54 N, Tymax = Tmax = 666.41 N, 
Mzmax = Mimax = 85,308.24 N∙mm) [13]. 
Qualitative and quantitative evaluation of the 
reaction vectors as well as of the internal forces 
was performed through the finite element 
analysis program RDM 7.04 [13]. 

The elastic element (as a component element 
of the bionic displacement system) represents a 
curved bar which, as in the case of straight bars 
loaded for bending, is the maximum stress in the 
section where the bending moment (in this case 

Mz) has a maximum value. Thus, the maximum 
bending moment is recorded at an angle of 37 
degrees concerning the bounded segment using 
nodes 6 - 11. In this cross-section the axial force 
N = -467.1 N, the shear force T = -7.3 N and the 
Mimax = 85,308.24 N∙mm. The semicircular 
elastic element has a variable cross-section, 
according to Figure 3, presenting a complex 
geometry for which the characteristic 
dimensions are highlighted in Figure 4. 

  
(a) (b) 

 
(c) 

Fig. 2. Variation diagrams of efforts in the bionic 
displacement system [13]. (a) normal force (N); (b) 

shear force (T); (c) bending moment (Mi). 
 

 
Fig. 3. Highlighting the variable cross-section of the 

elastic element. 
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Fig. 4. Cross-section with the complex geometry of the 

semicircular element. 
 

For the cross-section with the complex 
geometry of the semicircular element, defined in 
Figure 4, the geometric characteristics are the 
following:  
-the perimeter of the considered surface: p = 
101.77 mm;  
-the area of the considered surface: A = 512 mm;  
-position of the center of gravity in relation to 
the xy reference axis system expressed by the 
relations: 

 �� � ∑ ��∙��	�
�∑ ��	�
�
                                  1� 

�� � ∑ �� ∙ ������∑ ������
                            2� 

xc=22 mm, yc=1.1589 mm;  
-central or equatorial moments of inertia 
(defined by the Steiner - Huygens relations): 

�� � � ��� � ��� ∙ ����
���                      3� 

�� � � ���� � ��� ∙ ����
���                     4� 

��� � � ������ � ��� ∙ ��� ∙ ����
���              5� 

Ix=7,251.08 mm4, Iy=61,260.67 mm4, Ixy=0. The 
centrifugal moment of inertia Ixy is zero because 
the y-axis is the axis of symmetry for the 
considered surface. Thus, the main directions 
coincide with the central reference axes. 
-section modules in relation to the central 
reference axes: 

!� � ���"#�                                    6� 

!� � ���"#�                                   7� 

Wx=1,012.88 mm3, Wy=2,784.58 mm3;  
-the static moments of the two sections 
concerning the central axis x:  
For the section below the x-axis: &� � �� ∙ ��                                 8� 
where Ai is the area of the cross-sectional area 
located at the bottom of the central axis x and yi 

represents the distance from the center of gravity 
of this surface to the central axis x. 
Ai=254.74 mm2, yi=3.2106 mm, Sx=817.868 
mm3; 
For the section above the x-axis: &� � �( ∙ �(                             9� 
where As is the area of the cross-sectional area 
located at the top of the central axis x and ys 
represent the distance from the center of gravity 
of this surface to the central axis x. 
As=257.26 mm2, ys=3.179 mm, Sx=817.829 
mm3. 
   In the case of curved bars, the state of stresses 
(with reference here to normal stresses σ) is 
determined using Winkler's formula which can 
be expressed for the following two distinct 
situations: 
a) if it is considered that the bending moment has 
a maximum influence (simple bending load) 
Winkler's formula is as follows: 

* � +�, ∙ � ∙ �
- . �                         10� 

   To explain the terms in relation (10), 
approximate the cross section with a rectangle, 
according to Figure 5. 

 
Fig. 5. The cross-section with complex geometry is 

approximated as a rectangle to explain Winkler's 
formula. 

   From Figure 5 the following terms can be 
highlighted:  
- a-a is the axis of curvature of the semicircular 
bar;  
-R1 is the inner radius of the semicircular bar;  
-R2 represents the outer radius of the 
semicircular bar;  
-Rm is the mean radius expressed by the 
following relation (Rm = 556 mm): 

01 � 01 � 02
2                           11� 

- n-n represents the neutral axis (layer or fiber of 
material in which the normal stress σ is zero - in 
case of simple bending load the neutral axis 
coincides with the central axis x); 
- r is the radius of curvature of the neutral axis, 
for the rectangular section expressed by the 
following relation: 
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- � ℎ
34 0201

≅ 01
1 � 13 ∙ 6 ℎ2 ∙ 0178               12� 

- e represents the distance from the neutral axis 
n -n to the central axis x and can be determined 
with the help of the following relation: 

, � 01 . - ≅ ℎ8
12 ∙ 01                      13� 

- dimension y specifies the position of the 
material fiber about the central axis x in which 
the evaluation of the normal stress σ is pursued. 
b) if we consider the influence of normal effort 
N, Winkler's formula is: 

* � 9
� � +�, ∙ � ∙ �

- . �                    14� 

   Since the ratio between the mean radius Rm 
and the total height of section is greater than 10, 
the circular bar is considered to have a large 
radius of curvature in which case the normal 
stress σ can be determined with satisfactory 
results by Navier's formula, as follows [16, 20-
22]: 

* � +:
!� � +:

�� ∙ �                       15� 

   If we consider, the effect of the axial force N 
(we will speak here of compound stress of type 
σ + σ) the relation (15) will be of the form: 

* � 9
� � +:

!� � 9
� � +:

�� ∙ �           16� 

   In this case the position of the neutral axis is: 

, � � � . 9
+: ∙ ���                17� 

   The shear stress T generates in the same cross-
section the tangential stress τ which can be 
evaluated using of the Juravschi relation, having 
the following form: 

; � < ∙ &�= ∙ ��                       18� 

where b represents the width of the cross-section 
corresponding to the center of gravity. 
   The relation (18) can be customized for the 
geometry of the cross-section of the semicircular 
bar considered in this study as follows 
(according to Figure 6). 

&� � > � ∙ ?�
@8

�
� > � ∙ = ∙ ?� �

@8
�

 

� =
2 ∙ Aℎ8

4 . �8B                    19� 

�� � = ∙ ℎC
12                             20� 

   By replacing relations (19) and (20) in relation 
(18) it results: 

; � 6 ∙ <
= ∙ ℎC ∙ Aℎ8

4 . �8B               21� 

   The tangential stresses τ produce a 
longitudinal slip effect of the material layers, 
especially those near the center of gravity of the 
cross-section. 
   From the analysis of the relations that express 
the variation of the normal stress σ and the shear 
stress τ it can be noticed that the normal stresses 
have maximum values at the level of extreme 
material fibers (inner fiber and outer fiber) and 
the shear stresses are maximum in the center of 
gravity of the cross-section, according to Figure 
7. 

 
Fig. 6. Customization of Juravschi's formula for the 

rectangular cross section. 

 
Fig. 7. Distribution of normal σ and shear stresses τ in 
the cross-section of the semicircular elastic element. 

   The potential deformation energy that is stored 
in the composite material of the elastic element, 
because of the elastic deformation produced by 
the action of external loads, can also be 
expressed mathematically using normal stresses 
σ and shear stresses τ. 
   Thus, the normal stress σ produced by the axial 
force N generates potential deformation energy 
expressed by the relation: 

DE� � > *8
2 ∙ F ∙ ?G

H
� 1

2 ∙ * ∙ I        22� 

   At the bending load, where the shear force T 
produces the shear stress τ and the bending 
moment Mi produces the normal stress σ, the 
potential deformation energy is expressed by the 
relation: 
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DE8 � > ;8
2 ∙ J ∙ ?G

H
� > *8

2 ∙ F ∙ ?G �
H

 

� 1
2 ∙ ; ∙ K � 1

2 ∙ * ∙ I               23� 

where: ε represents the specific linear 
deformation (strain), γ is the specific slip 
(angular strain) and G represents the transverse 
modulus of elasticity. 
   The transverse modulus of elasticity G can be 
expressed by means of the longitudinal modulus 
of elasticity (Young's modulus) E as follows: 

J � F
2 ∙ 1 � L�                     24� 

   Considering that at the same time, for the 
entire duration of the load, there is a compound 
load (axial stress in tandem with the simple 
bending stress) the potential total deformation 
energy is: DE � DE� � DE8                    25� 
   The specific linear deformation ε is a 
parameter that can be evaluated experimentally 
through various investigation methods: digital 
image correlation method, interferometric 
methods, electrical strain-gages method, etc. 
   With this consideration as a starting point, the 
method of electrical strain-gages method will be 
applied in the future for the experimental 
evaluation of the potential deformation energy. 
 
2. MATERIALS AND METHODS 
 
   To establish the optimal mounting variant of 
strain gauges (TTR) in the Wheatstone 
resistance bridge (according to Figure 8) the four 
curves of variation of the output voltage Vo are 
analyzed comparatively depending on the 
modification of the resistance/resistances that 
configure the Wheatstone bridge (Figure 9) [21-
30]. 
   Thus, Curve 1 shows the variation of the output 
voltage Vo depending on the variation of the 
electrical resistance R1 (Figure 9). The law of 
variation is not linear, giving satisfactory results 
for small changes in electrical resistance.  
   Curve 2 highlights the variation of the output 
voltage Vo as a function of the change of the 
opposite resistors R1 and R4 (Figure 9) with the 
same value. And in this case, the voltage 
variation diagram is nonlinear, the output 
voltage Vo being twice higher than in the 
previous case. 

 
Fig. 8. Wheatstone bridge. 

 
Fig. 9. Modification of the Vo output voltage from the 

Wheatstone bridge and depending on the variation of the 
electrical resistance. 

   Curve 3 represents the variation of the output 
voltage Vo as a function of the inverse change of 
the adjacent resistors R1 and R3 (Figure 9). In 
this case, the diagram looks closer to the linear 
function. 
   Curve 4 expresses the variation of the output 
voltage Vo as a function of the modification of 
the four electrical resistances that make up the 
Wheatstone bridge (Figure 9). Thus, the two 
opposite sets of electrical resistors (R1 R4 and 
R2 R3) change their value in inverse form. In 
this case, the shape of the variation curve is 
approximately linear. 
   In a median approach, the semi-bridge (half-
bridge) mounting (mounting characteristic of 
curves 2 and 3 in Figure 9) is chosen, 
considering that the TTR mounting in the semi-
bridge can be done adjacent (R1R2 or R3R4) - 
Figure 10 - or in opposition (R1R3 or R2R4) 
according to Figure 12. 
   In the case of half-bridge mounting of adjacent 
TTRs, their mounting by soldering (according to 
Figure 10 and Figure 11) is done so that one 
transducer will measure the strain extension ε 
(+) and the other transducer will measure the 
strain compression ε (-). 
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Fig. 10. TTR mounted in the half-bridge, adjacent. 

 
Fig. 11. TTR mounted in the half bridge, adjacent. 

   Thus, from the relation 

GM � G� ∙ N ∙ I
4                    26� 

result: 

GM � G�4 ∙ N ∙ I� . I8�            27� 

where:  
- k represents the constant of the TTR. For each 
batch of transducers, the value of this constant is 
determined experimentally. In general, for the 
usual TTRs, the constant of the transducer varies 
in a range of values between 1.9 and 2.3. 
- Vi is the input voltage and Vo is the output 
voltage of the circuit that forms the Wheatstone 
resistor bridge. 
Because I� � .I8 � I 
the relation (27) becomes: 

GM � G�4 ∙ N ∙ 2 ∙ I � G�2 ∙ N ∙ I            28� 

   The relation (28) represents the calculation 
relation of the output voltage from the 
Wheatstone bridge as a function of the 
modification of the specific linear deformation ε 
recorded by TTR for the installation in semi-
bridge. 
   In the case of adjacent semi-bridge mounting 
of TTR, for k = 2 and ε = 1,000 μm/m, according 
to relation (28), the sensitivity of the circuit will 
be: 

GMG� � N ∙ I
2 � 2 ∙ 1.000 ∙ 10PQ

2 � 1 1G
G          

   In the case of semi-bridge mounting of TTR, 
in opposition, their gluing (according to Figure 
12 and Figure 13) is done so that both 
transducers will measure the specific linear 
deformation ε (+) or the specific linear 
compression deformation ε (-). 
 Thus, from relation (26) it results: 

GM � G�4 ∙ N ∙ I� � IC�             29� 

Because I� � IC � I 
the relation (29) becomes: 

GM � G�4 ∙ N ∙ 2 ∙ I � G�2 ∙ N ∙ I      30� 

   Relation (30), identical to relation (28), 
represents the calculation relation of the output 
voltage from the Wheatstone bridge depending 
on the modification of the specific linear 
deformation ε recorded by TTR for the 
installation in the half-bridge. 

 

 
Fig. 12. Half-bridge TTR mounting, opposite. 

 
Fig. 13. Half-bridge TTR mounting, opposite. 

   R. Hooke's law allows the evaluation of the 
normal stress σ as a function of the longitudinal 
modulus of elasticity (Young's modulus) E and 
the specific linear deformation ε according to the 
relation: * � F ∙ I                                 31� 
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   In this experiment, I chose to mount the TTRs 
in the half-adjacent bridge (Figure 14) and the 
TTRs used are type EA-06-250BG-120 
produced by Measurement Group, INC., Micro-
Measurements Division, with electrical 
resistance R = 120.0 ± 0.15% Ω and the constant 
of the transducer is k = 2.075 ± 0.5%. 

(a) 

(b) 
Fig. 14. TTR mounted in the half-bridge, adjacent. 

(a) inner fiber; (b) outer fiber. 

   The Spider 8-30 data acquisition system is 
used, and its configuration was done using the 
CatmanEasy V3.3.5 interface, according to 
Figure 15 and Figure 16, specifying that the 
Sample rate group selects a frequency of 25 Hz 
and Automatic zero balancing. 

 
Fig. 15. The experimental stand. 

   To perform the experimental tests, two types 
of tests were performed for which the following 
work scenarios were defined: 

S1 - From the sitting position (Figure 17a) we 
move to bipedal support (Figure 17b) followed 
by the return to the initial position (Figure 17c); 

 
Fig. 16. CatmanEasy V3.3.5 software interface. 

 
Fig. 17. Graphic representation of the working scenario 

S1. 

S2 - From the bipedal support position (Figure 
18a) a uniform rectilinear movement is 
performed (Figure 18b and Figure 18c) which 
involves the realization of an alternative 
unipedal support both at the level of the left 
lower limb (LF) and at the level of the right 
lower limb (RF), after which it passes to a final 
position corresponding to the bipedal support 
(Figure 18d). 

 
Fig. 18. Graphic representation of the working scenario 

S2. 

   For each type of test (S1 and S2) three sets of 
measurements were performed (Set1, Set2, and 
Set3), thus obtaining three sets of data. In the 
case of bipedal support (S1) 467, 429, and 409 
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data were obtained, resulting in several 1,305 
data. For the case of bipedal displacement (S2) 
546, 643, and 494 data were obtained, resulting 
in several 1,674 data. The cumulation of data 
results in a total of 2,979 processed data. All 
these data allow, in the next paragraph, to plot 
the variation diagrams of the specific linear 
deformation ε as a function of time for the two 
proposed working scenarios. 
 
3. RESULTS 
   
   In the case of the first working scenario (S1), 
the sitting position is switched to bipedal support 
followed by the return to the initial position. 
Thus, Figure 19 shows the variation diagrams of 
the specific linear deformation (ε) as a function 
of time for the three data sets recorded by the 
strain gauges mounted on the bionic 
displacement system that equips the lower left 
limb (LF). Generation of these diagrams was 
possible with the help of the Origin v6.0 
program. The mean linear specific strain is 
plotted (blue line) using the Average Multiple 
Curves function (from the Analysis module). 

 
Fig. 19. Variation of linear specific deformation (ε) as a 

function of time, working scenario 1, left limb (LF). 

   Figure 20 shows the variation diagrams of the 
specific linear deformation (ε) as a function of 
time for the three data sets recorded by the strain 
gauges mounted on the bionic displacement 
system that equips the right lower limb (RF). 
Also, the variation diagram of the specific linear 
average specific deformation (blue line) is 
drawn. 
 

 

 
Fig. 20. Variation of linear specific deformation (ε) as a 
function of time, working scenario 1, right limb (RF). 

   Figure 21 shows the variation diagrams of the 
average linear specific deformations 
(highlighted in Figures 19 and 20) as a function 
of time. This graphical representation highlights 
the fact that the static equilibrium position, 
corresponding to the bipedal support, is reached, 
now when the two diagrams reach a point of 
convergence on an approximately constant level. 
The convergence zone, as shown in Figure 21, is 
marked by the circular surface A, for which the 
specific linear deformation has the value εmed = 
1,421.7 μm/m. 

 
Fig. 21. Variation of mean linear specific deformation 

(εmed) as a function of time, working scenario 1, left limb 
(LF), and right limb (RF). 

   In the second working scenario (S2) when 
from the bipedal support position, a uniform 
rectilinear movement is performed which 
implies the realization of an alternative unipedal 
support both at the level of the left lower limb 
(LF) and at the level of the right lower limb (RF), 
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after which it passes to a final position 
corresponding to the bipedal support. Figure 22 
shows this working scenario for the first data set, 
drawing the variation diagrams of the specific 
linear deformation ε as a function of time. 

 
Fig. 22. Variation of specific linear deformation (ε) as a 

function of time, working scenario 2, for data set 1. 

   Figure 23 shows the variation diagrams of the 
specific linear deformation (ε) as a function of 
time for the three data sets recorded by the strain 
gauges mounted on the bionic displacement 
system that equips the left lower limb (LF). The 
variation diagram of the specific linear average 
deformation (olive line) is also drawn.  

 
Fig. 23. Variation of linear specific deformation (ε) as a 

function of time, working scenario 2, left limb (LF). 

   Figure 24 shows the variation diagrams of the 
specific linear deformation (ε) as a function of 
time for the three data sets recorded by the strain 
gauges mounted on the bionic displacement 

system that equips the right lower limb (RF). 
Also, the variation diagram of the specific linear 
average specific deformation (orange line) is 
drawn. 

 
Fig. 24. Variation of specific linear deformation (ε) as a 
function of time, working scenario 2, right limb (RF). 

   Figure 25 shows the variation diagrams of the 

average linear specific deformations (highlighted in 

Figures 23 and 24) as a function of time.  

 
Fig. 25. Variation of mean linear specific deformation 

(εmed) as a function of time, working scenario 2, left limb 
(LF), and right limb (RF). 

   This graphical representation confirms, first, 
the difficulty of moving with the help of such a 
bionic system for a person who is experiencing 
such a device for the first time. Some 
accommodation with the system can be noticed 
in the time interval between seconds 7 and 12 (is 
marked by the circular surface B), the interval 
for which the present study is relevant. During 
this time the move was made without the need 
for additional support. Thus, TTR mounted on 
the bionic displacement system equipping the 
lower left limb (LF) indicates a mean linear 
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specific strain εmed = 2,720.78 μm/m and TTR 
mounted on the bionic displacement system 
equipping the right lower limb (RF) indicates a 
mean linear specific deformation εmed = 
2,684.325 μm/m. 
   Table 1 and Table 2 summarize the results 
obtained analytically and experimentally. 
Relative deviations (rel. dev.) are calculated 
using the following relation: 

0,3. ?,R. � 1S�. RS3. .1:4. RS3.
1S�. RS3. ∙ 100T%V  32� 

 

Table 1 

Experimentally determined normal stresses [σ – S1, σ 

– S2 (LF), σ – S2 (RF)] and analytical [σ – S1+ rel(14), 

σ – S2 (LF) + rel(14), σ – S2 (RF) + rel(14)]. 

 

σ [MPa] – S1 σ [MPa] – S2 

(LF) 

σ [MPa]  – S2 

(RF) 

39.807 76.181 75.161 
σ [MPa] – S1 

+rel(14) 

σ [MPa] – S2 

(LF) +rel(14) 

σ [MPa] – S2 

(RF) +rel(14) 

35.794 71.588 71.588 

Rel.dev. [%] Rel.dev. [%] Rel.dev. [%] 

10.081 6.029 4.753 

 
Table 2 

Experimentally determined potential deformation 

energy [Ud – S1, Ud – S2 (LF), Ud – S2 (RF)] and 

analytical [Ud – S1+ rel(14), Ud – S2 (LF) + rel(14), 

Ud – S2 (RF) + rel(14)]. 
 

Ud [J] – S1 

(∙10-2) 

Ud [J] – S2 

(LF) (∙10-2) 

Ud [J] – S2 

(RF) (∙10-2) 

1.414 5.181 5.043 
Ud [J] – S1 

+rel(14) (∙10-

2) 

Ud [J] – S2 

(LF) +rel(14) 

(∙10-2) 

Ud [J] – S2 

(RF) +rel(14) 

(∙10-2) 

1.272 4.869 4.804 

Rel.dev. [%] Rel.dev. [%] Rel.dev. [%] 

10.042 6.022 4.739 

 
   From the perspective of the characteristic 
diagram normal stress (σ) - specific linear 
deformation (ε), represented in Figure 26, the 
potential deformation energy (Ud) for working 
scenario 1 (S1) represents the surface bounded 
by points 0ca and for working scenario 2 (S2) 
represents the area bounded by points 0db. 
   Because the composite material used does not 
have a behavior characteristic of ductile 
materials, the ultimate stress (σr) is the reference 
limit. Thus, the load capacity of the elastic 

element in S1 is 8% and in S2 is 15%. It is 
estimated that in dynamic loading mode it can 
reach 50%. It can be concluded that the cross-
section is oversized so that the mass of the bionic 
displacement system is considerably higher. The 
study model presented in this paper can be of 
real use for the optimal sizing of the elastic 
element. 
   Of course, the other components can also be 
reconfigured relatively easily with the help of 
virtual modeling tools (e.g., the SolidWorks 
software), according to Figure 27. 

 
Fig. 26. The characteristic curve σ-ε, in the elastic 

domain, of the composite material for the two working 
scenarios, S1 and S2. 

 
Fig. 27. The bionic displacement system is presented in 

virtual modeling (SolidWorks software). 
 

4. CONCLUSIONS 
 
   In this study, the entire layer (with reference to 
the elastic element) - laminate, made up of 
several sheets -, from a macroscopic perspective, 
is considered homogeneous and anisotropic. 
   Based on the tests performed, within the limits 
described by the two working scenarios (S1 and 
S2) the composite material behaves linear - 
elastic (reversible deformations are recorded) 
and in phase with normal stresses σ. For this 
reason, Hooke's law was adopted as a 
simplifying calculation hypothesis. 
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   The modeling of the bionic structure in the 
RDM 7.04 finite element analysis program 
allowed the evaluation of both the reactions and 
the efforts, thus identifying the maximum loaded 
section. The result obtained is validated by the 
fact that this section is identical to that of the real 
model. The real model has a variable cross 
section with a maximum value of the area in the 
most loaded area. 
   For this type of application, it was decided to 
use the electrical strain-gages method which 
allows the measurement of specific linear 
deformation ε at frequencies up to 600 Hz using 
the Spider 8-30 data acquisition system. In this 
study the selected operating frequency was 25 
Hz and Automatic zero balancing. The strain 
gauge transducers were connected in an adjacent 
half-bridge circuit. 
The evaluation of strains (a total of 2,979 
processed data) is performed in two working 
scenarios: for the case where there is bipedal 
support (S1) and for the case of unipedal 
support, for uniform rectilinear movement (S2). 
In both scenarios, the relative deviations 
(concerning the potential deformation energy) 
between the analytically and experimentally 
obtained results are below 11 percent. This study 
has relevance especially from the perspective of 
the possibility to optimally dimension the elastic 
element so that the bionic displacement system 
has its mass as small as possible.  
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Evaluarea energiei potenţiale de deformare din elementul elastic al unui sistem bionic de 

deplasare 
 

Rezumat. În această lucrare, prezint o abordare multidisciplinară pentru identificarea secțiunii transversale maxim 
solicitată a elementului elastic al sistemului bionic de deplasare (a cărui concepție trebuie să se bazeze pe principiul 
biomimetismului), precum și evaluarea stării de tensiuni și deformaţii, respectiv a energiei potenţiale de deformare 
acumulate. Acest studiu implică modelarea structurii prin intermediul metodei elementelor finite pentru evaluarea 
eforturilor (forța axială N, forța tăietoare T și momentul încovoietor Mi), utilizarea relaţiilor analitice pentru calcularea 
tensiunilor mecanice și a energiei potențiale de deformare precum și metoda tensometriei electrice rezistive pentru 
evaluarea experimentală a deformaţiilor specifice liniare. Evaluarea deformaţiilor (un total de 2.979 de date prelucrate) 
se realizează în doua scenarii de lucru: pentru cazul în care există sprijin bipodal (S1) şi pentru cazul sprijinului unipodal, 
pentru mişcarea rectilinie uniformă (S2). În ambele scenarii, abaterile relative (privind energia potențială de deformare) 
între rezultatele obținute analitic și experimental sunt sub 11%. Acest studiu are relevanță, mai ales din perspectiva 
posibilității dimensionării optime a elementului elastic astfel încât sistemul bionic de deplasare să aibă masă proprie cât 
mai redusă. 
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