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Abstract: The purpose of this paper is to determine and analyze the coefficient of restitution in the 

case of some considered mechanical systems. The paper analyzes three cases of determining the 

coefficient of restitution, namely: the case of the elastic ball that is allowed to drop freely on a 

horizontal surface from a considered height, the case of the mathematical pendulum that collides 

with a vertical obstacle and the case of the physical pendulum consisting of a homogeneous bar and 

a mass that also collides with a vertical surface.   
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1. INTRODUCTION  
 

 The coefficient of restitution (denoted in the 

paper with k) is defined as the ratio between the 

speed after impact (final speed) and the speed 

before impact (initial speed) between two 

colliding bodies in specialized literature [5], [7], 

[8], [10], [12]. This coefficient of restitution is 

used in many collision models, especially in 

frictionless cases, and can take values in the 

range [0,1]. If the coefficient of restitution has 

the value 0, it is considered that the collision 

between the two bodies would be perfectly 

plastic, if it takes the value 1, the collision is 

perfectly elastic. If the restitution coefficient 

takes values from the mentioned range, the 

kinetic energy is dissipated or eliminated [4], 

[5], [8], [10], [12]. 

 This paper analyses three cases of 

determining the coefficient of restitution. In the 

first case is considered an elastic ball that is 

allowed to drop freely from a initial height. The 

coefficient of restitution is calculated in three 

situations:  

a. The pre-collision and post-collision 

heights are known; 

b. The initial height of drop and the total 

time for dropping and rebounding the 

body are measured; 

c. The initial height of drop and the total 

time of the several jumps are measured. 

In the second case is considered a 

mathematical pendulum that collides with a 

vertical surface, and in the third case is 

considered a physical pendulum that also 

collides with a vertical obstacle.  
 

2. THEORETICAL CONSIDERATIONS 

AND RESULTS 
 

The first case 

a) In the first case, an elastic ball of mass m is 

analysed. It is allowed to drop freely from an 

initial height h1, after which it collides a 

horizontal rigid plate (Figure 1).  

After the impact, the ball rebounds, making a 

vertical movement, reaching a height h2, (h2<h1). 

In this case, the two heights are known, the one 

from which the drop starts and the one to which 

the ball reaches after the impact. 
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Fig.1. The mechanical system analysed in the first case 

 

 According to the definition, the coefficient of 

restitution, k, [3], [5], [6], [9], [11], is calculated 

considering the ratio of the two speeds, 

obtaining the relation: 
 

� = ��
�� = ���

��                          (1) 

 

b) In this case, we know the initial height h1 

from which the body drop and the time interval 

of dropping and rebounding the body, ttot, so it 

can be written: ttot = tdrop + trebound. The bouncing 

is a uniformly accelerated motion with zero 

initial velocity, so displacement is calculated 

with the formula: ℎ	 = 
��
���
� . The dropping time 

results is: ����� = ��ℎ�

 . The velocity before the 

impact is: �	 = �2�ℎ	 and it will depend on the 

coefficient of restitution k after the impact. The 

velocity u1 becomes: �	 = ��	 = ��2�ℎ	. 

 After the impact, the material point performs 

a uniformly decelerated movement, its speed 

becomes zero at the highest point, so �� = 0 =
�	 − ���������, and the rebound time result    

�������� = ��

 =  ��
ℎ�


 = ���ℎ�

 . The sum of the 

two times is as follows:  
 

����!" = ��ℎ�

 + ���ℎ�


  = ��ℎ�

 (1 + �)        (2) 

 

The expression of the restitution coefficient 

depends on the initial height, h1, and the total 

time, ttot. In this case, the formula of the 

coefficient of restitution is:     
    

              � = ����!"� 

�ℎ� − 1                (3)  

                                                

c) In this situation, the height from which the 

body drops, and the total time taken by the few 

jumps on the horizontal plane until the final stop 

are considering. 

The total time measured is the sum of the 

times it takes to drop, then rebound, drop again, 

etc. until these movements stop. It is observed 

that the rebound time in a certain stage is equal 

to the drop time in the next stage, 
 ����!" = �����_	 + ��������_	 + �����_�()))))*)))))+

�ℎ� �-.�/ !�� �0�!"
+

��������_� + �����_1()))))*)))))+
�ℎ� �-.�/ !�� �0�!"

+ ��������_1 + �����_2()))))*)))))+
�ℎ� �-.�/ !�� �0�!"

+ ⋯(4) 

 

It was previously shown that in the case of a 

drop of the body followed by a rebound, the total 

time is calculated with the expression: 
 

����!" = ����� + �������� = ����

 + �����


      (5) 
 

so, the rebound time is obtained by multiplying 

the drop time by the restitution coefficient, 

consequently it can be written: 
 

����!" = ����

 + 4�����


 + �����

 5 + 4������


 +
������


 5 + 4�1����

 + �1����


 5 +. . ..   (6) 

or 

����!" = ��ℎ�

 (1 + 2� + 2�� + 2�1 + ⋯ ) (7) 

 

The relation (7) can be written in the form: 
 

����!" = ��ℎ�

 72(1 + � + ��+. . . . ) − 18       (8) 

 

In the general case it can be written 
 

!9:	
!:	 = ;�:	 + ;�:�+. . . +;1 + ;� + ; + 1    (9) 

 

In the case when a is small (a<<1) it is 

obvious that the relationship is valid 
 

<=>�→∞
!9:	
!:	 = − 	

!:	 = 	
	:!                   (10) 

 

The restitution coefficient, k, is always less 

than 1, so the total time expression can be 

written in the form:  
 

����!" = ����

 @ �

	: − 1A => ����!" = ����



	C 
	:    (11) 

 

From the relation (11) results the formula for 

calculating the restitution coefficient depending 

on the height from which the body is allowed to 

drop freely and the total duration of the jumps, 
 

� = ����:�D�DEF√

����C�D�DEF√
                         (12) 
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Examining the relation (11), between √ℎ and 

����!" there is a linear dependence, which can be 

represented by a straight line passing through the 

origin of the coordinate system, 
 

          ����!" = ��



	C 
	: √ℎ                (13)        

     

 The figure 2 shows several such lines, 

corresponding to restitution coefficients with 

values between 0.50 and 0.90. 
 

 
Fig.2. The linear dependence between h and ttotal 

  

The second case. A situation like the first 

example also occurs in the case of the impact of 

an elastic ball with a vertical obstacle (Fig. 3). 

The ball is fixed of a bar of length L (the 

mathematical pendulum). 
 

 
Fig.3. The mathematical pendulum colliding with a 

vertical obstacle 
 

The determination of the speed v1 (before the 

collision) of the pendulum is done using the 

kinetic energy theorem in finite form. The initial 

position of the pendulum is determined by the 

angle α 
 

HI	 − HIJ = KJ:	 => 
.���

� = 2>�K L=M� N
� (14) 

 

hence the speed before impact is: 
 

   �	 = 2��K L=M N
�                     (15) 

 

The determination of the speed u1 (after 

collision) of the mathematical pendulum, so that 

it reaches the position determined by the angle 

β, is done using the same theorem: 
 

HI� − HI	 = K	:� => 
.���

� = 2>�K L=M� O
�  (16)   

 

The velocity after impact becomes: 
 

  �	 = 2��K L=M O
�                          (17) 

 

The collision is central and right, so the 

coefficient of restitution is calculated with the 

known formula  � = �	/�	.  In this case we have: 
 

                           � = ��
�� = /-�Q

�
/-�R

�
                     (18)                              

 

The third case. Consider the physical pendulum 

consisting of a homogeneous bar of length L and 

the mass m1 on which the mass m2 is fixed. 

The rotation of a rigid solid around a fixed 

axis is studied [8], [10], [12]. The differential 

equation of the rotational motion, the 

expressions of the mechanical moments of 

inertia in relation to the axis of rotation of the 

pendulum, of the bar and of the ball are written: 
 

    ST	 = .�U�
1 , ST� = >�K�                (19)    

                              

The differential equation of the oscillatory 

movements in the case of the physical pendulum 

is:  
 

@.�
1 K� + >�K�A WX = − @	

� >	K + >�KA � L=M W  (20) 
 

 After calculations, equation (20) becomes: 
 

  WX + 1(.�C�.�)

�(.�C1.�)U L=M W = 0          (21) 

 

and in the case of small oscillations L=M W ≈ W is 

approximated and obtained:      
  

WX + 1(.�C�.�)

�(.�C1.�)U W = 0                 (22) 

 

Since the differential equation (22) 

corresponds to a harmonic motion, the 

expression of the pulsation and the period can be 

written: 

Z� = 1(.�C�.�)

�(.�C1.�)U  

[ = �\
] = 2^��(.�C1.�)U

1(.�C�.�)
                  (23) 

 

The distance from the rotation axis to the 

collision center is denoted by y. It is known that 
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this distance is equal to the length of the 

mathematical pendulum synchronous with that 

of the physical pendulum, 
 

    WX + 

_ W = 0      [J = 2^�_


            (24)                                      

 

the value of y results, depending on the values of 

the two masses and the length L of the 

homogeneous bar: 
 

         ` = �(.�C1.�)
1(.�C�.�) K                      (25) 

 

The notation a = >�/>	  is made and then the 

ratio y/L can be expressed in the form: 
 

                          
_
U = �(	C1�)

1(	C��)                   (26) 
 

From the graphic representation (Fig. 4) of 

the function corresponding to relation (26) the 

collision center moves towards the end of the bar 

when the ratio m2/m1 increases but will not 

coincide with the fixing point of the mass m2 at 

the end of the bar. Consequently, since the 

collision does not occur in the collision center 

and percussions will also occur in the bearings 

fixing the pendulum, this case cannot be 

assimilated to that of the mathematical 

pendulum when the calculation relation of the 

coefficient of restitution (18) is rigorously exact. 
 

   
Fig.4. The graphical representation of the function y/L 

   

In this case, the definition of the restitution 

coefficient as a ratio of two percussions is not 

correct. 

 If the distance ℓ at which the mass m2 is 

placed on the homogeneous bar of length L and 

the mass m1 is known (Fig.5), the differential 

equation of the rotational motion of the physical 

pendulum is as follows: 
 

    WX + 1(.�UC�.�ℓ)

�(.�U�C1.�ℓ�) L=M W = 0      (27) 

 

and in the case of a mathematical pendulum with 

length y the equation of motion is: WX + 

_ W = 0.  

 

 
Fig.5. The physical pendulum 

 

After identifying the two equations, we can 

write: 
 

` = �(.�U�C1.�ℓ�)
1(.�UC�.�ℓ)  => 

_
U = �@	C1�ℓbA

1@	C��ℓbA      (28)                         

 

 
Fig.6. The graphical representation of the function y/L 

when the length ℓ is known 
 

The y/L function (Fig.6) is represented 

graphically for various values of the ℓ/L ratio 

(0.75, 0.80, 0.85 and 0.90) for values of the 

parameter r = m2/m1 between 0 and 1.25. 

The problem is to determine if, in the case of 

the respective curves, there are values of the 

ratios r for which the collision center coincides 

with the point where the mass m2 is fixed, when 

y = ℓ. 

The condition is imposed:   
ℓ

U = �@	C1�ℓbA
1@	C��ℓbA and 

results in a relationship between ℓ/K and a in 

which r is expressed as a function of ℓ/K: 
 

a = 1ℓb:�
cℓb@	:ℓbA                           (29) 
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if the fixing point of the mass m2 on the 

homogeneous bar is at a distance ℓ from the axis 

of rotation (the ratio ℓ/L has a known value) then 

the ratio r will have a specified value so that the 

collision center is at the point of fixing the mass 

m2, as a result. 

 The graphic representation of the function r = 

r(ℓ/K) is given in figure 7. 
 

 
Fig.7. The graphical representation of the function r 

 

In figure 6 (the case when ℓ is unknown), 

some values are specified that meet the above 

conditions: for example, in the case of the third 

curve (numbered from bottom to top) which 

corresponds to the case when the mass is fixed 

at the distance ℓ = 0.85·L results that the ratio r 

= m2/m1 must have the value 0.7190. 

 In this case, in case of collision with an 

obstacle at a distance ℓ=0.85·L from the axis of 

rotation, no impulsive reactions occur in its 

bearings. In this case, the collision of the 

physical pendulum with an obstacle can be 

assimilated with the collision of a mathematical 

pendulum with an obstacle. The problem has a 

solution only if r > 0, so when ℓ/K > 2/3.  
 

Table 1. The numerical values corresponding to the 

figure 7 

No.crt. ℓ/L r =m2/m1 

1 0.700 0.079365 

2 0.725 0.146290 

3 0.750 0.222222 

4 0.775 0.310633 

5 0.800 0.416667 

6 0.825 0.548341 

7 0.850 0.718954 

8 0.875 0.952381 

9 0.900 1.296296 

10 0.925 1.861862 

11 0.950 2.982456 

12 0.975 6.324786 
 

Some numerical values corresponding to the 

points of the graph drawn in figure 7 are given 

in the table 1. 

For the collision center to be close to the end 

of the bar, it is necessary that the ratio r = m2/m1 

be very big, which does not happen in the case 

of the experimental devices. 
 

3. CONCLUSIONS 
  

In this paper is performed a theoretical study 

to determine the coefficient of restitution by 

calculating the velocities before and after the 

impact and taking into account the height from 

which the body drops and rebounds, the time 

interval for a drop and rebound respectively the 

total time of all jumps. The study continues with 

the analysis of the cases of the mathematically 

and physically pendulums which collide with a 

vertical surface.  

The first case (a) represents a typical case of 

calculating the coefficient of restitution 

according to the formula introduced by Newton 

in 1687 [1], [2]. The case b) has a disadvantage, 

namely determining the total time it takes to 

drop and then rebound the ball to the maximum 

height position cannot be done with sufficient 

precision. Another variant, much more accurate 

(the case c), from this point of view of time 

measurement, is the one in which the initial data 

is the height from which the body drops and the 

total time it takes for the few jumps on the 

horizontal plane, up to the final stop. But this 

case also presents two disadvantages: the time 

measurement may not be sufficiently accurate 

and the deduction of the calculation formula for 

the coefficient of restitution, k, was made under 

the assumption that the number of jumps is 

infinite, but after a limited number of jumps the 

movement stops.  

The diagrams shown in figure 2 can be easily 

used to determine the coefficient of restitution. 

In an experiment, a ball is dropped from an 

initial height h and the total time ttotal is 

measured. Place a point within the figure that has 

the coordinates d√ℎ; ��f�;<g and depending on the 

position of the point in relation to the drawn 

lines, you can decide what is the value of the 

restitution coefficient. 
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In the case of the mathematical pendulum 

(the second case) the coefficient of restitution 

was calculated using the ratio between the two 

speeds, before and after hitting the vertical 

surface. The determination of the coefficient of 

restitution, k, depends on the energy losses 

during the collision.  

In the case of a collision of a physical 

pendulum with an obstacle (the third case), the 

determination of the coefficient of restitution is 

possible only in the case of the specified 

conditions, respecting the data corresponding to 

the diagram drawn in figure 7. 

This study can be continued for different 

bodies of various shapes and materials as well as 

for different environments and impact surfaces. 
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Determinarea și analizarea coeficientului de restituire în cazul unor sisteme mecanice  
 

Scopul acestei lucrări este determinarea și analizarea coeficientului de restituire în cazul unor 

sisteme mecanice considerate. Lucrarea analizează trei cazuri de determinare a coeficientului de 

restituire, și anume: cazul bilei elastice care este lăsată să cadă liber pe o suprafață orizontală de la o 

înălțime considerată, cazul pendulului matematic care se ciocnește de un obstacol vertical și cazul 

pendulului fizic format dintr-o bară omogenă și o masă care de asemenea se ciocnește de o suprafață 

verticală.   
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