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THE KINEMATIC MODEL OF 3R ROBOT BASED ON  

FUNCTION EXPONENTIALS 
 

Ionela SOMEȘAN, Iuliu NEGREAN, Marinel Ionel RUS 
 

Abstract: The purpose of this paper is to establish the equations of kinematic model for an articulated 

industrial robot, by symbolic calculus.The geometry and direct kinematics on the RRR-robot (with three 

degrees of freedom of rotation), in the nominal configuration was calculated in a previous paper. To ensure 

the operation of the robot, mathematical modeling is required. The exponential matrix appears in solving 

linear systems of differential equations. For this purpose, the matrix localization algorithm was applied to 

determine the direct geometry equations. To calculate the velocities and accelerations relative to the fixed 

system {0}, the transfer matrix algorithm was used. The results are useful to establish the equations of 

motion trajectory. 
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1. INTRODUCTION  
  

A robot's arms are described by degrees of 
freedom. The degrees of freedom (DoF) refer to 
the number of basic modes in which a rigid 
object can move through 3D space. In this case, 
it is about three degrees that correspond to the 
rotational movement around the x, y and z axes. 
  To calculate the kinematics equations, the 
mechanical structure of a robot with n degrees of 
freedom is subjected to analysis.   
  The kinematic elements of the robot are linked 
by means of driving joints. The robot elements 
are treated as rigid bodies and the driving joints 
are considered mechanically perfect. In this case 
the static hypothesis is removed, and the column 
vectors of the generalized and operational 
coordinates become function of time. The 
challenge is to find a system notation as 
convenient as possible. In the scientific literature 
can be found a multitude of options to select 
from.  
  Modern vector algebra allows to describe a 
manipulator’s kinematics by using an intrinsic 
formulation independent of the reference frames 
choice [1]. Most papers in the field approach this 
problem by first affixing coordinate frames to 
each of the links, then defining the way these 
frames relate to each other as one proceeds along 

the arm, and finally concatenating these link 
transforms to determine the global 
transformation from the base of the robot to the 
end-effector. In applications, the frames can be 
established by following the rules suggested by 
Denavit and Hartenberg [2], but the variant 
proposed by Craig [3] and Wolovich [4] seems 
to be very popular as well. Denavit-Hartenberg 
frame convention is not very useful when 
studying the positional accuracy of arms having 
nominally parallel joint axes [5,6].  

In this case, the Denavit-Hartenberg 
convention has been adopted, and therefore each 
link transformation consists of a pair of 
consecutive screw transformations.  

To represent these link transformations the 
well-known (4x4) homogenous transformation 
matrices [3,4,7,8], can be applied, although 
other variants are also viable.  

The dual-number quaternions can be applied. 
These can serve as screw operators and are 
usually applied to the study of four-link 
mechanisms [8-10]. 

This study implies the kinematic analysis of a 
three degrees of freedom robot structure. The 
input data in the algorithm of kinematic 
modeling of the mechanical structure can be 
visualized in Table 1.  
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1. GENERAL ASPECTS REGARDING 

MATRIX EXPONENTIALS ALGORITHM 
 

When considering the mechanical structure 
of a robot (MSR) consisting of rotation (R) 
and/or translation (T) joints, the transfer matrix 
equations can also be expressed by using of 
matrix exponentials (ME). In this part are 
presented the algorithms that can be used for 
determining the forward geometry and 
kinematics equations based on matrix 
exponentials in functional analysis, according to 
[11-17] and [18].  

These algorithms are essential in establishing 
the homogeneous transformations in DGM, and 
of the Jacobian matrix, and direct kinematics 
equations, based on function exponentials. 
  
2.1 The Algorithm of Matrix Exponentials in 

the Direct Geometry 

 

The matrix exponentials and their associated 
transformations are included in the algorithm of 
matrix exponentials from the direct geometric 
modeling, according to [11].  

In the following, a brief presentation of the 
main steps that are followed in applying the 
algorithm of matrix exponentials, is performed. 

First, the mechanical robot structure that is to 
be analyzed is defined by means of a matrix 
called the matrix of nominal geometry. The 

matrix of nominal geometry ( )0
vnM , defining the 

initial configuration ( )0θ  of the robot and is known: 
 

( )
( )

( ) ( ){ }
T

0 T 0 T0
vn i i

n 1 6
M Matrix p k , i 1 n 1

+ ×  

 = = → +
 

, (1) 

 
This matrix is completed with the screw 

parameters ( ) ( ){ }0 0
i ik ; v , also named the 

homogenous coordinates. According to [11], ik  
and iv  are the screw parameters or homogenous 
coordinates of the driving axis which by 
generalization is equivalent to:  
 

{ } { } ( )i i i i i i i i i ik x ;y ; z , v p k 1 k= = × ⋅ ⋅∆ + − ∆ ⋅ , (2) 

 

The differential matrix iA  has the same 

expression for both configurations ( )0θ and θ .  
Considering [2] and [4], this matrix is defined: 
 

( ){ } ( )0 0
i i i

i

k v
A

0 0 0 0

 × ∆
 =
 
 

,                   (3) 

 

where,  ( ) ( ){ } ( ) ( ) ( )0 0 00
i i i i i iv p k 1 k= × ⋅ ⋅∆ + − ∆ ⋅ . (4) 

 
The column vector ib  is determined with this 
expression: 
 

( ){ } ( )
( ){ } ( ) ( )

0
i 3 i i i i

2
0 0

i i i i i

b I q k c q

k q s q v

= ⋅ − × ⋅ ⋅∆ +

+ × ⋅ − ⋅∆ ⋅  

        (5) 

 
Another matrix exponential, having a high 
importance for homogenous transformation, is: 
 

( ){ } ( )

{ }{ }

0 0
i i iA qi i

i

(0)
i i i i

k v
e exp q

0 0 0 0

exp k q b

0 0 0 0

⋅
  × ∆
  = ⋅ =
   
  

 × ⋅∆
 =
 
 

    (6) 

 

and,  
{ } { }i

j j
j 0

exp R exp p
exp A q

0 0 0 1=

    =   
      
 .     (7) 

 
Where the terms { }exp R and { }exp p have the 

following value:  
 

{ } ( )( ){ }
j

0
i j j

j o

exp R exp k q
=

= × ⋅∆∏ ,       (8) 

 

{ } ( )( ){ }ii
0

j 1k k k
j 0 k o

exp p exp k q b +
= =

 = × ⋅ ⋅∆ + 
 

 ∏ . (9) 

 
In direct geometry, the matrix exponentials 

algorithm contains in an external loop of 
iterations from (i 1 n)= → . Considering the 
initial conditions is established x0T , according to 
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mechanical structure. The obtained results are 
included in the resulting of rotating matrix of 
frame {n} beside {0} frame.  

The exponentials expressions for the locating 
matrices, which define the position and 
orientation of the { }n and{ }n 1+ relative to fixed 

frame {0}, are characterized by: 
 

{ }
x

x0
x0 ii 1

i 1

R p
T T , x n;n 1

0 0 0 1−
=

 
= = = + 

 
∏ .  (10) 

 
The expression above can also be written in an 
exponential form, such as follows: 
 

( ) ( ) ( )n nA q 0 0ii
x0 x0 i i x0

i 1i 1

T e T exp A q T
⋅

==

 = ⋅ = ⋅ ⋅ 
 
∏ , (11) 

 

where, ( ){ }{ } ( )n 0 0
x0 i i i x0

i 1
R exp k q R

=
= × ⋅ ⋅ ∆ ⋅ ,  (12) 

 

( ){ }
( ){ }{ } ( )

n i 1 0
i j j i

j 0i 1

n 0 0
i i i x

i 1

p exp k q b

exp k q p

−

==

=

  = × ⋅ ⋅ ∆ ⋅ +  
  

+ ⋅ × ⋅ ⋅ ∆ ⋅ ⋅δ


    (13) 

 

The terms x0R  and p  are the components of the 

location matrix (homogeneous transformation) 
between the systems in the kinematic chain of 
the mechanical robot structure. 

x0R  is the rotation matrix and p  is the position 

vector of characteristic point, and xδ  is a matrix 

operator, defined as { } { }{ }x 0; x n ; 1; x n 1δ = = = + . 

In keeping with this, the matrix, 
corresponding to initial conditions, can be 
determined without establishing moving frame.  

The Matrix Exponentials Algorithm, due to 
computational advantages and independent of 
the reference can be applied for any robot.  As a 
conclusion, an important advantage of using of 
matrix exponential is the lack of reference 
frames, thus improving the accuracy of calculus.  
 
2.2 The Algorithm of Matrix Exponentials in 

the Direct Kinematics 

 

 Considering the Matrix Exponentials in the 
Direct Geometry, in this section is presented  a 
new method of determining the Jacobian matrix, 
also named the transfer matrix of  velocities, as 
well as  of its first order time derivative with 
respect time.  According to scientific literature [12-
18], the Jacobian matrix consists of two main 

components: ( )θV

0
J  and ( )θΩJ

0 .  
 The first one is the linear transfer matrix of 
velocities and the last one represents the angular 
transfer matrix of velocities. The matrix transfer 
equations, characterizing a certain kinematic 
chain with rotational and translational driving 
joints can be expressed by means of matrix 
exponential functions.  

In this purpose, the results obtained by 
applying the Matrix Exponentials Algorithm in 
the Direct Geometry are used.  

Also, the exponential functions from direct 
kinematics [12,] are called. It notices that for 
obtaining the Jacobian Matrix based on matrix 
exponentials, three calculus variants can be 
approached. In the following are presented the 
main steps in applying the Algorithm of Matrix 
Exponentials in the Direct Kinematics (MEK).  

When applying the first calculus variant, the 
matrix exponentials appled directly, resulting the 
expression for the Jacobian matrix: 
 

( ) ( ) ( ) { }{ }TT0 0 0
iv iJ J J , i 1 nΩ θ = θ θ = →  , (14) 

where 

( ) ( ){ }
( ){ } ( ){ }

{ }

( ){ } ( )

i 1
00

iv j j ij
j 0

i 1
0 0

i j jj i
j 0

n k 1
(0)
m m m k

k i m i 1

n
0 0

k k nk
k i

J exp k q v

exp k q k

exp k q b

exp k q p

−

=

−

=

−

= = −

=

  θ = × ⋅ ∆ ⋅ + 
  

  +∆ ⋅ × ⋅ ⋅∆ ⋅ × ⋅ 
  

   ⋅ × ⋅ ⋅δ ⋅ +    
   

 + × ⋅ ⋅ ∆ ⋅ 
 





 



       (15) 

and  

( ) ( ){ } ( )i 1 0 00
i j j ij i

j 0
J exp k q k

−

Ω
=

 θ = × ⋅ ∆ ⋅ ⋅ ∆ 
 

. (16) 

 
For the second and the third variant calculating 
the Jacobian matrix, the expressions are applied: 
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( )
( ) ( ){ }i 1 0

i1 j jj
3 3 j 0

ME V exp k q
−

× =

 = × ⋅ ∆ 
 

,      (17) 

( )
( ) ( ){ }0

i2 3 i i
3 6

ME V I k
×

 = ∆ ⋅ ×  
,       (18) 

 

( )
( ){ }

[ ] [ ]
[ ]

3
i3

1 26x 9 3 n i

I 0 0
ME V

0 A A+ ⋅ −  

 
=  
 

,             (19) 

 

where,  

( ){ }{ }k 1 0
m m m m

m i 11

exp k q
A

unde k i n

−

= −

 × ⋅δ ⋅∆ =
 

= →  

, (20) 

( ){ }{ }n 0
2 k kk

k i
A exp k q

=
= × ⋅∆ , 

 

{ } { }{ }m 0; m i 1 ; 1; m iδ = = − ≥ .     (21) 
 
Considering [11] the relations can be written: 
 

{ }
{ } [ ]

[ ] { }
i1

i1
(6 6) i1

ME V 0
ME J

0 ME V×

 
 =
 
 

,        (22) 

 

{ }
{ } [ ]

[ ]
i2

i2
(6 9) 3

ME V 0
ME J

0 I×

 
 =
 
 

,              (23) 

 

{ }
[ ]{ }

{ } [ ]
[ ]

i3

i3
39 12 3 (n i)

ME V 0
ME J

0 I× + ⋅ −

 
 =
 
 

.           (24) 

 

The three matrices presented above are included 
in another matrix of the following form: 
 

{ }
[ ]{ }

{ } { } { }0
i i1 i2 i3

6 12 3 (n i)

ME J ME J ME J ME J
× + ⋅ −

= ⋅ ⋅ . 

(25) 
 

The column vector is expressed in an 
exponential form according to: 
 

( ){ }
( ) ( ) ( )

iv
12 3 n i 1

TT0 T 0 T0 T
k n ii i

M

v b , k i n p k

ω
+ ⋅ − ×  

=

  = = → ∆ ⋅   

 (26) 

 

Finally, the Jacobian matrix written in an 
exponential form, for the first and second 
calculus variants, is obtained: 
 

( )
( ) ( )

( ) { }0 0 0
i i iv

6 16 n

J J , i 1 n ME J M ω
××

 
θ = = → = ⋅ 

  
, (27) 

 

( )
( )

{ } [ ]
[ ] { }

{ } { } [ ]
[ ]

0

6 n

i1 i2 i3
iv

i1 3

J

ME V 0 ME V ME V 0
M

0 ME V 0 I

×

ω

θ =

   ⋅
⋅ ⋅  

   

 

 

The angular velocities and accelerations, in 
exponential form can be defined as follows: 
 ��� � =�∑ ��	
 �∑ ��� �
�� ×� ���������� ������ ���
�������� (29) 

 

�̄�� = � 0���0 � ; �̄�� = � ��� � !
������−��� !#$
���% ; 
�̄'� = � ��� � !
��� + ��' � !
��� !#$
������ � !
���� + ��� !#$
���� − ��' !#$
�����' � !
��� � !
��� − ��� !#$
��� % 
�̄)� = ���� � !
��� + ��' � !
��� !#$
������ − ��' !#$
�����' � !
��� � !
��� − ��� !#$
���% 

 

Also, the linear velocities and accelerations can 
be expressed in exponential form according to: 
 *�� � = ∑ + �	
,-��. ⋅ + �	
,-��. ⋅ + �	
,-�'. ⋅���� +�0 ⋅ ���, (30) 
For the 3R robot, the linear velocities are: 

*̄�� = �000� ; *̄�� = � ���−1���� !#$
���−1���� � !
���% ; 
*̄'' =

� � !
�'� 
��� + 1���� !#$
���� − 1���� !#$
��� !#$
�'�− !#$
�'� 
��� + 1���� !#$
���� − 1���� � !
�'� !#$
���1���� − 1���� � !
��� % 

(31) 
 *̄))

=
⎝
⎜⎛

!#$
�'� 5� + 1'
��� � !
�'� + ��� � !
��� !#$
�'��+1���� � !
�'� !#$
���� !
�'� 5� − 1'
��� !#$
�'� − ��� � !
��� � !
�'��−1���� !#$
��� !#$
�'�1���� − 1���� � !
��� ⎠
⎟⎞ 
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9' = :+ �	
,-���. ⋅ + �	
,-��. ⋅ + �	
,-�'.+ �	
,-��. ⋅ + �	
,-��. ⋅ + �	
,-��'.+ �	
,-��. ⋅ + �	
,-��. ⋅ + �	
,-�'.;.  (32) 

 

The matrix exponential algorithm (MEG and 
MEK) presents several advantages given the 
compact form, the simple geometric 
visualization of the exponential functions and 
the fact that their determination does not depend 
on the reference systems of each kinetic element. 
Although their application is difficult, matrix 
exponentials have an essential role, due to the 
advantages mentioned above, in the analysis of 
geometry and direct kinematics, geometric, 
kinematic and dynamic control functions, as 
well as kinematic and dynamic precision.  
 The formalism based on matrix 
exponentials leads to the evaluation of the 
performance for the robot mechanical structure 
under study, regardless of its complexity level. 
 
 

3. THE MODELING OF A 3R ROBOT 

USING MATRIX EXPONENTIALS 
 
3.1 The Equations of Direct Geometry of a 3R 

Robot using Matrix Exponentials 

 
In this section, the Algorithm of Matrix 
Exponentials in direct geometry and kinematics 
will be applied. First, the robot mechanical 
structure that is to be analyzed is defined by 
means of the matrix of nominal geometry which 
is filled up with the screw parameters, as shown 
in Table 1. 
 

Table 1 

The matrix of nominal geometry 

i { }R;T ( )0 T
ik  

( )0 T
ip  

T
iv  

1 R 0 1 0 0 0 0l  0l−  0 0 

2 R 1 0 0 1l  0 0l  0 0l  0 

3 R 0 0 1 l� 2l  0l  2l  1l−  0 

4 - 1 0 0 l� 2l  2 0l l+ - - - 

 

 In the first step, corresponding to the first 
kinetic link of the robot, the following 
expressions for the matrices and matrix 
exponential functions are determined: 
 

( ){ } ( )
0

0 0
1 1

1

0 0 1 l

k v 0 0 0 0
A

1 0 0 00 0 0 0
0 0 0 0

− 
  ×   = =
 − 

   
 

, (33) 

 

 

 

( )0 1 1k q11

1 1

cosq 0 sinq

e 0 1 0

sinq 0 cosq

 × 
 

 
 =  
 − 

,

0 1

1

0 1 0

l sinq

b 0

l cosq l

− ⋅ 
 =  
 − ⋅ + 

, (28) 

 

 

( ){ }{ }0
1 1 11A q1 1

1 1 0 1

1 1 0 1 0

exp k q b
e

0 0 0 1

cos q 0 sq l sin q

0 1 0 0

sin q 0 cq l cos q l

0 0 0 1

 × ⋅ ∆
 = =
 
 

− ⋅ 
 
 =
 − − ⋅ +
 
  

       (29) 

 

For the second kinetic link the matrix 
exponential functions are also calculated.  
 
 
 

( ){ } ( )0 0
2 2 0

2

0 0 0 0

k v 0 0 1 l
A

0 1 0 00 0 0 0
0 0 0 0

 
  × −  = =
  

   
 

, (30) 

 
 

( )0
k q22

2 2

2 2

1 0 0

e 0 cosq sinq

0 sinq cosq

 × 
 

 
 = − 
  

,  

2 0 2

0 0 2

0

b l sq

l l cq

 
 = ⋅ 
 − ⋅ 

, (31) 
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( ){ }{ }0
A q 2 2 222 2

2 2 0 2

2 2 0 0 2

exp k q b
e

0 0 0 1

1 0 0 0

0 cos q sin q l sin q

0 sin q cos q l l cos q

0 0 0 1

 × ⋅ ∆
 = =
 
 

 
 − ⋅ =
 − ⋅
 
  

      (32) 

 

The third driving joint is also analyzed using 
matrix exponentials. The results for 3R robot 
are: 
 

( ){ } ( )
2

0 0
3 3 1

3

0 1 0 l

k v 1 0 0 l
A

0 0 0 00 0 0 0
0 0 0 0

− 
  × −  = =
  

   
 

,  (33) 

 

( )0 3 3k q33

3 3

cosq sinq 0

e sinq cosq 0

0 0 1

 × 
 

− 
 =  
  

,               (34) 

 

( )
( )

2 3 1 3

3 1 3 2 3

l sin q l 1 cosq

b l sin q l 1 cosq

0

 ⋅ + ⋅ −
 = − ⋅ + ⋅ − 
  

.        (35) 

( ){ }{ }

( )
( )

0
A q 3 3 333 3

3 3 2 3 1 3

3 3 1 3 2 3

exp k q b
e

0 0 0 1

cosq sinq 0 l sinq l 1 cosq

sinq cosq 0 l sinq l 1 cosq

0 0 1 0

0 0 0 1

 × ⋅∆
 = =
 
 

 − ⋅ + ⋅ −
 − ⋅ + ⋅ − =
 
 
  

   (36) 

 
According to [11] the homogenous 
transformation matrix between the mobile 

systems { } { }0 4→ are determined using matrix 
exponentials, as follows: 

[ ] ( ) ( )3
0 0

i i 404
i 1

3 1 2 1 2 3
2 1

1 3 1 3

2 3 2 3 2 4

1 2 3 1 2 3
1 2

1 3 1 3

T exp A q T

cosq sinq sinq sinq sinq sinq
cosq sinq

cosq sinq cosq cosq

cosq cosq cosq sinq sinq p

cosq sinq cosq cosq sinq sinq
cosq cosq

sinq sinq sinq cosq

0 0 0 1

=

  = ⋅ ⋅ = 
  

− − −
 − −

− −
= + − +

+ +



∏




 
 
 
 
 
 
 



, (37) 

where 
1 1 2 1 2 3 1 2

4 2 2 3 2

0 1 1 2 1 2 3 1 2

l cos q l sin q sin q l sin q cos q

p l cos q l sin q

l l sin q l cos q sin q l cosq cos q

+ + 
 = − 
 − + + 

.       (38) 

 
The expressions presented above (42) and (43) 
represent the resultant orientation matrix and the 
position vector, both included in the resultant 
locating matrix. These matrices are esential in 
determining of the column vector of operational 
variables also known as the equations of the 
direct geometry.    
 
3.2 The Equations of Direct Kinematics of a 

3R Robot using Matrix Exponentials 

 
 For the same robot structure, defined in its 
initial configuration by means of the matrix of 
nominal geometry, presented in Table 1, the 
direct kinematics equations are defined. For this, 
the Algorithm of Matrix Exponentials in Direct 
Kinematics is applied. First, the Jacobian matrix 
is defined using the second or the third calculus 
variant [11] and for this, for i 1 3= → , the 
following matrix exponentials are defined:  
 

( )
( ) ( ){ }1 1 0

11 j jj
3 3 j 0

1 0 0

ME V exp k q 0 1 0

0 0 1

−

× =

 
   = × ⋅∆ =       

’ (39) 

 

{ } { } [ ]
[ ] { }

[ ]
[ ]

11 3
11

(6 6) 11 3

ME V 0 I 0
ME J

0 ME V 0 I×

     = =    
        

, (40) 

 

( )
( ) ( ){ }0

12 3 1 1
3 6
ME V I k

1 0 0 0 0 1

0 1 0 0 0 0

0 0 1 1 0 0

×
 = ∆ ⋅ × =
  

 
 =  
 − 

                 (41) 
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{ } [ ]
[ ]

[ ]

[ ]

12

12
(6 9)

3

3

ME V 0
ME J

0 I

1 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 1 0 0

0 I

×

 
 = =
  

 
 
 =
 −
 
  

    (42) 
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( )
( )

[ ] [ ]

[ ]
( ) ( )

13
6x15

9 3 3 33

k 1 30 0
k q k qm m m k km k

m 1 1 k 1
3 3

ME V

I 0 0

0 e e

× ×
−    × ⋅δ ⋅∆ × ⋅∆    

   = − =×

=

 
 
 
 
 

. (43) 

 

where, 
k 1 3= → ,   { } { }{ }m 0; m i 1 ; 1; m iδ = = − ≥  

 

( )k 1 0
k qm m mm

m 1 1

1 1 1 1

1 1 1 1

e

1 0 0 cosq 0 sinq cosq 0 sinq

0 1 0 0 1 0 0 1 0

0 0 1 sinq 0 cosq sinq 0 cosq

−  × ⋅δ ⋅∆  
 = − =

 
 =  
 − − 

,   (49)  

and 
( )3 0

k q k kk
k 1

3 1 2 1 3

1 2 3 1 3

2 1

2 3

2 3

2

1 2 3 1 3

1 2 3 1 3

1 2

e

cos q sin q sin q cos q sin q

sin q sin q s in q cos q cos q

cos q sin q

cos q cos q

cos q sin q

sin q

cos q sin q cos q sin q sin q

cos q sin q sin q sin q cos q

cos q cos q

 × ⋅∆  
 = =

− 
 − − 
 
 
 
 = −
 

−
 +
− +

 








, (44) 

( )
{ } { } [ ]

[ ]
13

13
9 18 3

ME V 0
ME J

0 I×

 
=  
  

,               (45) 

 

{ } { } { } { }0
1 11 12 13

(6 18)
ME J ME J ME J ME J

×
= ⋅ ⋅ .    (46) 

 

{ }

( ) ( ) ( )T0 T 0 T 0 T
1v k 11 3 1

18 1
M v b ; k 1 3 p kω

×

  = = → ∆ ⋅   
 

 

 By performing the matrix product between 
the two matrix functions, finally the first column 
of the Jacobian matrix corresponding to the 3R 
robot structure is obtained.  
 

( )
{ }

2 1 2 1 1

0 0 2 1 2 1 1
1 1 1v

6 1

l cosq sinq l sinq
0

l sinq sinq l cosq
J ME J M

0
1
0

ω
×

⋅ ⋅ − ⋅ 
 
 − ⋅ ⋅ − ⋅
 = ⋅ =
 
 
  

, (47) 

Applying the same steps for the rest of the 
driving joints, the following results are obtained: 
 

( )
{ }

[ ]

0 0
2 2 2v

6 1

T
2 2 1 2 2 2 1 2 1 1

J ME J M

l cosq sinq l sinq l cosq cosq cosq 0 sinq

ω
×

= ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ −

,  (48) 

( )
{ }

[ ]

0 0
3 3 3v

6 1

T
1 2 2 1 2

J ME J M

0 0 0 sinq cosq sinq cosq cosq

ω
×

= ⋅ =

⋅ − ⋅

 (49) 

 

  The importance of Jacobian matrix is to 
determine the direct kinematic equations 
(absolute linear and angular velocities).  
 

4. CONCLUSION  
 

The present paper, aims for defining the 
Jacobian matrix corresponding to a three degrees 
of freedom robot structure, by using the matrix 
exponentials. Regarding matrix exponentials 
can be highlighted some important remarks 
regarding the number of mathematical    
operations, which is lower than compared to 
classical algorithms. Another conclusion 
revealed by the present study is that the use of 
screw parameters, defined in the matrix of input 
data, makes from the use of mobile frames a 
nonsense, hence, the geometrical errors 
introduced by the reference systems are highly 
diminished. The use of matrix exponentials 
allows a compact representation of the necessary 
information for defining the direct geometry of 
a mechanical system with an open or close chain. 
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                                Modelarea cinematică a robotului de tip 3R bazată pe funcții exponențiale 
  

  Scopul acestei lucrări este de a dezvolta un studiu asupra robotului 3R, utilizând modelarea cinematică prin aplicarea 
exponențialelor matriceale. Geometria și cinematica directă pe robotul RRR (cu trei grade de libertate de rotație), în 
configurația nominală a fost calculată într-o lucrare anterioară. Pentru a asigura funcționarea robotului, este necesară 
modelarea matematică. Matricea exponenţială apare în rezolvarea sistemelor liniare de ecuaţii diferenţiale. În acest scop, 
a fost aplicat algoritmul de localizare a matricei pentru a determina ecuațiile de geometrie directă. Pentru a calcula vitezele 
și accelerațiile în raport cu sistemul fix {0}, a fost utilizat algoritmul matricei de transfer. Rezultatele sunt utile pentru a 
stabili ecuațiile traiectoriei mișcării. 
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