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Abstract: In this paper, the kinematic equations for tow robots working in cooperative movements are 

presented. To establish the equations of direct kinematics, the algorithm of exponential matrices in 

kinematics will be applique. The goal of the algorithm is to determine the Jacobian matrix, together with 

its first-order derivative with respect to time. These robots, working in cooperative movements, can be 

used to make complex parts.  
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1. INTRODUCTION 
 

In general, cooperation robots correspond to 
redundant frames, in which the effective 
degrees of freedom are higher than the exact 
ones required to achieve a given processing. 

This capacity growth the handiness of the 
mechanism and can be used to eschew the 
restriction of joints, singularity, and barrier of 
the workspace, as well as to diminish energy 
consumption or to improving their 
performance.  

In kinematics, the main objective is the 
study of the mechanical movement of the 
material frame, without considering the mass 
and the force acting on them, the geometric 
aspect of the movement is pursued. [1] 

In the geometric modelling, there are 
significant drawback like as: nonlinearity of 
the equations that imposes restrictions for the 
robot to be reversional, absence of control over 
speed and acceleration on the trajectory of 
motion. These snags are removed by using 
kinematic modelling to the robot control. The 
static hypothesis is removed, the column 
vectors of the operational and operational 
coordinates become a function of time. 

In this paper, we will apply the matrix 
exponential algorithm. The algorithm of 
exponential matrices owed to its computational 

benefit and independency from reference 
frame, can be use to any robot structure [1]. 

 
2. KINEMATICS MODELING 
 

To establish the direct kinematic model 
equations, the algorithm of matrices is use. 
According to this algorithm [1], the kinematic 
scheme is first presented in the zero 

configuration, ( )0θ  (see Fig. 1).  
Conformable to the matrix exponential 

algorithm in kinematic modeling, iterations are 
applied in order to get the kinematic 
parameters. Using the symbolic computation in 
MATLAB, the absolute linear velocities and 
angular velocities of the reference frames are 
get, located in each driving kinematic joints, 
expressed in the mobile frames and in the fixed 
frame: 
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The linear velocity of the origin of the 
frame { }T  in report to the fixed frame { }0 , 

expressed in the mobile frame { }T  and in the 

fixed frame { }0 , is equal to the linear velocity 

of the origin of the frame { }4  and is it 

characterized by the expressions: 
 

        

(4) 

.                    (5) 

 
The last expression of the angular velocity 

of rotation of the frame { }T in relation to the 

fixed frame { }0 , expressed in the mobile 

frame { }T  and in the fixed frame { }0  is the 

same as the expression of the angular velocity 
of rotation of the frame { }4  and it is as 

follows: 
 

. 
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Jacobian matrices were also determined, 

expressed in the frames { }0 and { }T : 
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    The expression Jacobian matrix is used to 
define the equations of direct kinematics (linear 
and angular velocities). The direct kinematics 
equations for the 3TR structure, represented by 
the column vector of the generalized velocities, 
expressed in the fixed frame { }0  and in the 

mobile frame { }T , are the following: 

 

 
(10) 

 

. (11) 

 
The equation (11) expresses the movement 

of the tool { }T  in the Cartesian space, it is 

relative to the fixed frame { }0  attached to the 

fixed base of the type 3TR robot. 
The absolute linear accelerations and 

angular accelerations of the reference frame 

{ }i , located in each driving kinematic joint, 

expressed in the mobile frame { }i  and in the 

fixed frame { }0  are obtained from the 

symbolic computation program in MATLAB: 
 

; ; ;

   (12) 
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       ;             ; 

       ;                   ; 

(13) 

        ;            ; 

        ;                  . 

(14) 

 
The linear acceleration of the origin of the 

frame { }T  in relation to the fixed frame { }0 , 

expressed in the mobile frame { }T  and in the 

fixed frame { }0 , is equal to the linear 

acceleration of the origin of the frame { }4  and 

is characterized by the expressions: 
 

(1
5) 

. 
(1
6) 

The final expression of the angular 
acceleration of rotation of the frame { }T  in 

relation to the fixed frame { }0 , expressed in 

the mobile frame { }T  and in the fixed frame 

{ }0  is the same as the expression of the 

angular acceleration of rotation of the frame 

{ }4  and it is as follows: 

. (17) 

. (18) 

The Jacobian matrix derivatives expressed 
in the frames { }0  and { }T  have the following 

form: 
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(19) 

The expression of the time derivative of the 
Jacobian matrix is used to define the equations 
of direct kinematics (linear and angular 
accelerations). The equations of direct 
kinematics, represented by the column vector 
of generalized accelerations, for the structure 
3TR, expressed in the fixed frame { }0  and in 

the mobile frame { }T , are the following: 

 
 

 
                                                            (21). 

 

The expressions (20) and (21) represent the 
column vectors of the operational accelerations 
of the 3TR robot. 
 
2.1 Direct Kinematics Equations for 2R 
structure 

To determine the equations of direct 
kinematics, the algorithm of exponential 
matrices in kinematics will also be applied. For 
this purpose, the equations of direct geometry 
are used. [2]  

Using the symbolic computation in 
MATLAB, the absolute linear and angular 
velocities of the reference frame { }5 , 

expressed in the mobile frame { }5  and in the 

fixed frame, are obtained: 
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Fig.1 Kinematic scheme for tow robots working in cooperative movements 
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The linear velocity of the origin of the 

frame { }6  in relation to the fixed frame { }0 , 

expressed in the mobile frame { }6  and in the 

fixed frame { }0  is characterized by the 

expressions: 
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The final expression of the angular 

velocity of rotation of the frame { }6  relative 

to the fixed frame { }0 , expressed in the 

mobile frame { }6  and in the fixed frame { }0 , 

is the same as the expression of the angular 
acceleration of rotation of the frame { }G  and 

{ }S  and it is as follows: 
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The linear velocity of the origin of the 

frame { }G  in relation to the fixed frame [0], 

expressed in the mobile frame { }G  and in the 

fixed frame { }0  is characterized by the 

expressions: 

; (26) 
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The linear velocity of the origin of the 

frame { }S  in relation to the fixed frame { }0 , 

expressed in the mobile frame { }S  and in the 

fixed frame { }0  is characterized by the 

expressions: 
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The Jacobian matrices expressed in the 

frame { }0 and { }S  were also determined: 
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.      

(33) 
 
The equation (32) expresses the motion of 

the part { }S  in the Cartesian space, is relative 

to the fixed frame { }0  attached to the fixed 

base of the type 2R robot. 
The absolute linear accelerations and 

angular accelerations of the reference frame 
[S], expressed in the mobile frame { }5 and in 

the fixed frame { }0 , are obtained from the 

symbolic computation in MATLAB: 
 

; ; 

; .    

(34) 

The linear acceleration of the origin of the 
frame { }6  in relation to the fixed frame { }0 , 

expressed in the mobile frame and in the fixed 
frame { }0  is characterized by the 

expressions: 
 

;      .               (35) 

 
The final expression of the angular 

acceleration of rotation of the frame { }6  in 

relation to the fixed frame { }0 , expressed in 

the mobile frame { }6  and in the fixed frame 

[0] is the same as the expression of the 
angular acceleration of rotation of the frames 

{ }G  and { }S  and it is as follows: 

 

.  (36) 
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The linear acceleration of the origin of the 

frame { }G  in relation to the fixed frame { }0 , 

expressed in the mobile frame { }G  and in the 

fixed frame { }0  is: 
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The linear acceleration of the origin of the 
frame { }S  in relation to the fixed frame { }0 , 

expressed in the mobile frame { }S  and in the 

fixed frame { }0  is characterized by the 

expressions: 
 

   

;(40) 
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) 

The Jacobian matrix derivatives expressed 
in frames { }0  and { }S  have the following 

form: 
 

 

 

 

 

(42
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. (43) 
 
The expression of the time derivative of 

the Jacobian matrix is used to define the 
equations of direct kinematics (linear and 
angular accelerations). The equations of direct 
kinematics, represented by the column vector 
of generalized accelerations, for the structure 



528 
 

 

2R, expressed in the mobile frame { }S  and in 

the fixed frame { }0 , are the following: 

 

(44
) 

 

.   
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.             (46) 

 

.    (47) 
 

.          
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Expressions (44), (45), (47), (48) represent 
the column vectors of the operational 

accelerations of the 2R robot expressed in the 
mobile frame { }S  and in the fixed frame { }0 . 

 
2.3 Equations of the direct kinematics of 
the cooperation between structure 3TR 
and structure 2R 

The linear velocity and the angular 
velocity of rotation of the tool in relation to 
the frame of the workpiece are obtained from 
the equations presented in [2].  

To determine the linear velocity of the 
origin of the frame { }T  in relation to { }S , the 

expressions are written: 
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The final expression for the angular 

velocity of the frame { }T  relative to { }S  is: 

 

.        (53) 

 
Equations (51), (53) characterize the linear 
velocity and the angular velocity of rotation 
of the frame attached to the tool,{ }T , relative 

to the frame attached to the part, { }S . 

     To determine the linear velocity of the 
origin of the frame { }S  in relation to { }T , the 

following expressions are written: 
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The linear velocity of the origin of the 

frame { }S  in relation to the frame of the tool 

{ }T  is characterized by the expressions: 

 

     (60) 

. (61) 
 

The final expression of the angular velocity of 
rotation of the workpiece frame { }S  relative 

to the tool frame { }T  is: 

 

.          

(62) 
 

Equation (62) describe the linear velocity 
and the angular velocity of rotation of the 

frame attached to the part, { }S , in relation to 

the frame attached to the tool, { }T . 

 
3. CONCLUSIONS 
 

In this work we obtained: the direct 
kinematics equations for a robot that has four 
degrees of freedom three translations and one 
rotation; the direct kinematics equations for a 
robot that has two degrees of freedom two 
rotations; the direct kinematics equations for 
the cooperative movements between the two 
robots. 
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ECUAȚIILE CINEMATICE A DOI ROBOȚI DE TIPUL 3TR-2R ÎN MIȘCĂRI DE 

COOPERARE 
 

În această lucrare sunt prezentate ecuațiile cinematice pentru doi roboții care lucrează în mișcări de cooperare. 
Pentru a stabili ecuațiile cinematicii directe, se va aplica algoritmul matricelor exponențiale în cinematică. Scopul 
algoritmului este de a determina matricea Jacobiană, împreună cu derivata sa de ordinul întâi în raport cu timpul. Acești 
roboți, care lucrează în mișcări de cooperare, pot fi folosiți pentru a realiza piese complexe. 
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