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Abstract: Recent research has examined how expanding corners can help to reduce the size, and 
thereby the cost, of wind and water tunnels. Expanding corners can be constructed using curved 
diffusers or expansion vanes. This paper examines traditional ways of defining the shape of curved 
diffusers. It is argued that these methods have shortcomings, such as non-continuity in channel 
curvature or changing rates of expansion. An iterative algorithm is presented to overcome these issues 
by defining diffuser shapes using logarithmic spirals. This approach enables precise control over 
diffuser expansion angle, turning angle as well as curvature. Furthermore, it is shown how the 
geometry of a logarithmic diffuser can be adapted and integrated into an expansion vane cascade. 
Keywords: Curved diffusers, expansion vanes, logarithmic spiral, compact wind tunnels. 

  

1. INTRODUCTION 

 

Despite the rise of computational fluid 

dynamics, real-world testing has retained its 

importance in fluid experiments. These are 

predominantly carried out in wind and water 

tunnels, which usually, have significant space 

requirements and construction costs. Drela et al. 

[1] show that the footprint of these facilities can 

significantly be reduced through the use of 

expanding corners. These corners can either be 

fitted with curved diffusers or expansion turning 

vanes. Two different types of curved diffuser 

geometry are commonly mentioned in literature. 

The first is discussed in depth by Fox and Kline 

[2] and involves a centre-line arc with protruding 

spines to create the walls. The second method is 

described by Chong et al. [3] and is based on an 

inner and a central arc, which define the outer 

wall. Both geometries are discussed herein, and 

their flaws are highlighted. In an attempt to 

overcome their shortcomings, an iterative way 

of defining curved diffusers is created. Using 

logarithmic spirals as a basis, the designer gains 

precise control over the expansion angle, the 

turning angle and the curvature distribution of 

the diffuser. 

2. ARC-BASED DIFFUSERS 

 

The seemingly most common way to 

construct a curved diffuser uses a circular arc as 

the centreline. Straight lines protrude 

perpendicularly from the said arc at regular 

intervals. The length of these lines increases at a 

constant rate along the length of the curve. 

Essentially, a regular straight-walled diffuser is 

mapped onto an arc. This method of constructing 

curved diffusers focuses on creating a constant 

expansion. For clarity, Fig. 1 shows a diffuser 

with 10 construction lines, resulting in clearly 

segmented walls. Smooth walls can be obtained 

using splines and an increased number of 

construction lines.  

The turning angle (�) governs the extent of 

the curvature, while the growth of the 

construction lines determines the effective 

expansion angle (2����) of the diffuser. This 

notation might seem strange but is based on 

straight-walled diffuser geometry. In a straight 

diffuser, � is often used to represent the 

expansion angle from the centreline to the side, 

thus 2� is the total angle from side to side.  It 

should be noted that 2���� used here is merely 

an approximation of this expansion angle [2]. 

The expansion ratio (��) is calculated using Eq. 
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(1) while the effective expansion angle (2����) 

is found using Eq. (2). 
 

�� � �	
�


 (1) 

2���� � tan�
 ���	 � �
�
��	

� 
(2) 

 
 

Here �	 is the centreline radius, �
 is the 

width of the inlet and �	 is the width of the 

outlet. By using the effective expansion angle, 

some findings of straight diffusers can be 

transferred to their curved counterparts. A 

detailed comparison of straight and curved 

diffusers is provided by Fox et al. [2]. 
 

 
 

Fig. 1.  Construction of a centreline-arc diffuser using a 

central arc (blue) and spines (green) to draw the outer 

walls (black). 

 

The second type of diffuser is constructed 

using two ¼ arcs of different radii, as shown in  

Fig. 2. The purple inner arc is extended, as 

shown by the orange line. This ensures that it 

matches the length of the blue central arc. The 

green circles are drawn with their centre 

coincident with the central arc and the sides 

tangential to the inner arc. A spline is then 

constructed to be coincident and tangent with the 

circles to form the outer wall [3]. The expansion 

ratio equation is the same as previously. The 

radius of the central arc (�	), the length of the 

extension (��) and the new effective expansion 

angle (2����) can be calculated using Eq. (3), 

Eq. (4) and Eq. (5) respectively. 
 

�	 � �	
2 � �
 (3) 

�� � �	 � �

2  (4) 

2���� � tan�
 �2��	 � �
�
��	

� (5) 

 

In the experience of the author, neither of 

these approaches is particularly simple. 

Especially the double-arc diffuser, with its 

growing circles and spline curves, take some 

time to be integrated into engineering design 

programs. 

 

 
 

Fig. 2.  Construction of a double-arc diffuser using an 

internal (purple), a central arc (blue) and circles (green) 

to construct an outer wall (black). 

 

3. LOGARITHMIC SPIRALS 

 

Instead of using arcs and splines, logarithmic 

spiral equations can be used to define the side 

walls of a diffuser. In addition to a guaranteed 

constant rate of expansion, this approach also 

allows for more precise control of the curvature. 

The flow devices defined by such spirals will 
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henceforth be referred to as logarithmic diffusers 

and logarithmic vanes. As is often the case in 

engineering, the inspiration for a diffuser based 

on a logarithmic spiral came from nature. Fig. 3 

shows that various natural systems form 

logarithmic spirals. 

 

 
Fig. 3. Logarithmic spirals found in nature. Clockwise 

from top-left: A nautilus shell, [4] a low-pressure system 

over Iceland, [5] and a section of the Mandelbrot Set [6] 

 

There are three main reasons why this type of 

spiral lends itself particularly well to defining 

the shape of curved diffusers: 

• Logarithmic spiral functions can be tweaked 

to yield any desired rate of expansion 

• Logarithmic spirals offer a curvature-

continuous transition in channel width 

• Logarithmic spirals always have a constant 

expansion angle �, also known as the polar 
tangential angle, as shown in Fig. 4 

This last factor is particularly important as it 

ensures that the magnitude of rotation along the 

spiral is equivalent to the change in its slope. In 

other words, a 90° rotation along the spiral 

equates to a 90° change in slope. 

 

 
Fig. 4. Logarithmic spiral, highlighting a constant polar 

tangential angle (�) 

 

Any logarithmic spiral can be created using 

Eq. (6), where � is simply a variable and � is the 

distance from the origin. The constant � is 

essentially the expansion factor of the spiral, 

while � is a scaling factor.  

 

� � ���  (6) 

 

Rewriting this polar equation in cartesian 

form results in Eq. (7) and Eq. (8): 

 

! � � cos��� � ��� cos��� (7) 

% � � cos��� � ��� sin �t� (8) 

 

Note that the aforementioned polar tangential 

angle is usually denoted with the letter alpha ((). 

A deliberate choice was made to use � instead, 

as to avoid confusion with the scaling factor (�). 

 

4. LOGARITHMIC DIFFUSERS 

 

The logarithmic spiral equations can be 

manipulated to define the side walls of a curved 

diffuser. Merely the coordinates and curve 

angles at the diffuser’s inlet and outlet need to 

be specified. Assuming a 90° turning angle, a 

range of spirals is graphed in Fig. 5. Here the 

inlet and outlet are at respective distances of ) 

and * from the origin. The stretch of the spiral 

can be defined as the ratio of */). A stretch of 

one creates a curve equivalent to a circular arc, 

where the rate of turning is constant. A lower 

stretch has a higher rate of turning towards the 

inlet, while a larger stretch results in a higher 

rate of turning near the outlet.  
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Fig. 5. Range of logarithmic spirals, ranging from a 

stretch of 0.2 (blue) to 1.0 (red) 

 

This method of defining curved diffusers 

enables precise control over the turning angle, 

rate of expansion and curvature. As such, 

logarithmic diffusers are more versatile than 

either centreline-arc or double arc diffusers. 

Manipulating the spiral equations in the 

desired manner can be achieved computationally 

through the use of an algorithm outlined herein. 

The generalised geometry shown in Fig. 6 is the 

basis of this methodology.  

 

 
 

Fig. 6. The geometry used in the construction of a 

logarithmic diffuser. Also displayed is an example of 

how to measure a 4-quadrant angle (bottom left). 

The various steps of the iterative algorithm are 

shown below: 
A. Define the program parameters (the accuracy 

and the maximum permissible iterative steps) 
B. Define the inlet diffuser angle (cyan arrow), 

the x- and y-coordinate at the starting point , 
C. Define the outlet diffuser angle (magenta 

arrow), the x- and y-coordinate at the end 
point - 

D. Calculate the 4-quadrant angle and length of 

vector ,-.....⃗  (shown in red) 
E. Find point 0, which lies at the intersection of 

extended lines 1,.....⃗  and 2-.....⃗  (in Fig. 6, these 
lines are shown in blue and are clearly an 
extension of the start and end slopes) 

F. Calculate the lengths of vectors ,0.....⃗  and -0.....⃗ , 

as well as angle ,0-3 (blue) 

G. Determine if the spiral is contracting (,0.....⃗ 4
-0.....⃗ ), or expanding (,0.....⃗ 5 -0.....⃗ ), as is the case 
in the example 

H. Check that the basic geometric requirements 
are met (see Fig. 8) 

I. Calculate the diffuser’s turning angle � (the 
difference between the start and end angle) 

 

As aforementioned, any line connecting a 

logarithmic spiral to its origin (Point �), always 

has the same angle of incidence with said spiral 

(see Fig. 4). Therefore, angle �,03  is the 

equivalent to angle �-23  (labelled �). There is 

still an infinite number of points which satisfy 

this criterion. However, there is only one unique 

point of origin for a logarithmic spiral that will 

satisfy the other geometric requirements 

(coordinates, start and end angles, etc.). By 

inspection, the initial limits of � are easily 

determined. The origin cannot be within the 

triangle ,0-, thus � 4 -,03  and � 5 �-23 . 

With these limits in mind, an accurate � can now 

be found iteratively: 

 
J. Make the initial assumption that � is the 

average of angle -,03  and angle �-23  
K. Calculate the location of the spiral origin 

(Point �) based on the initial value of � 
L. Determine the values for � at the start and end 

points (�
 and �	 respectively) 
M. Calculate values for �, �, and �, based on the 

estimated value of �
 
N. Calculate the length of the segment 

connecting the origin and endpoint �	 
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O. Evaluate the following options: 
a. If the length of the segment is within the 

specified tolerance of vector -�......⃗ , the 

solution has been found and the 

calculations have been concluded  

b. Alternatively, if the number of iterations 

equals the iteration limit, a solution has 

not been found and the calculations have 

been concluded 

c. Otherwise, if the segment is larger than 

vector -�......⃗ , the previous estimation for � 

was too low. The new lower limit for � 

should be set to this erroneous 

estimation. The new value for � is the 

average of this new lower limit and the 

previous upper limit. Steps K to O should 

be repeated.  

d. If the segment is smaller than vector -�......⃗ , 

the previous estimation for � was too 

high. The new upper limit for � should 

be set to this erroneous estimation. The 

new value for � is the average of this new 

upper limit and the previous lower limit. 

Steps K to O should be repeated.  
P. Translate the curves and graph the results 

(assuming the spiral parameters have been 
determined successfully). 
 

The methodology outlined above is also 

summarised as a flowchart in Fig. 9. This 

method should be repeated for the inner, central 

and outer curves of the desired diffuser. Fig. 10 

shows the successful execution of a python 

script using this algorithm. 

Granted that a spiral can be fitted to the given 

points and angles, there is one final step before 

it can be graphed. As shown by the dotted lines 

in Fig. 7, the spiral curves need to be rotated and 

translated before they resemble a diffuser. These 

steps are built into the modified parametric 

equations (9) and (10) below, where once again 

� is the polar tangential angle. 
 

! � ��� cos�� � �� � ��� sin��� (9) 

% � ��� cos�� � �� � � sin ��� (10) 

 
Fig. 7. Plots of inner and outer curves, from 0 to π/2, 

before and after transformation.  

 

Beyond merely fitting a logarithmic spiral to 

a set of geometric conditions, the algorithm will 

also detect various invalid initial conditions. A 

logarithmic spiral cannot be created if both the 

start (cyan) and end (magenta) angles are 

directed towards the same side of vector ,-.....⃗ , as 

is the case in part 1 of Fig. 8. Equally, neither 

start nor end angle can be parallel to vector ,-.....⃗ , 

as is the case in parts 2 and 3. A valid orientation 

for the angles is shown in part 4. The initial 

check for valid geometry is represented in the 

box labelled “check if geometric requirements 
met” in the flowchart shown in Fig. 9.  

 

 
Fig. 8. Various invalid (1 to 3) and one valid (4) 

geometric condition for constructing curved diffusers 
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Fig. 9. Flowchart showing the necessary steps to construct an arbitrarily curved diffuser based on a logarithmic spiral. 

This algorithm has been implemented in a Python script, which produced the console readout shown below. 

 

 

 
 

Fig. 10. Graphical results and console readout after running a Python script using the algorithm outlined herein 

Geometric parameters of the logarithmic spiral are shown in the readout.  
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The algorithm outlined herein is capable of 

generating an endless variety of diffuser shapes 

and sizes, but it does have some inherent 

limitations. While it has been sufficient for the 

scope of this project, future endeavours could 

benefit from improvements that overcome some 

of the known limitations. Currently, all initial 

coordinates should be positive. In other words, 

they should be located in the first cartesian 

quadrant. Furthermore, input angles should also 

be positive. Lastly, the inlet should be smaller 

than the outlet, i.e., the geometry should be a 

diffuser rather than a nozzle.  

As with previous diffuser types, to accurately 

classify logarithmic diffusers, the equivalent 

expansion angle should be determined. 

Therefore, the length of the logarithmic 

centreline must be calculated. It is known that 

the arclength (6), between a point of angle ‘�’ 

and the origin of a logarithmic spiral, is 

determined using Eq. (11) [7]. 
 

6 � ��� √1 � �	
�  (11) 

  

The length of the central (�9) arc is simply the 

arc length from its end to the origin, minus the 

length from its beginning to the origin: 
 

 

�9 � ��� :√1 � �	
� � ��� ;√1 � �	

�  (12) 

�9 � ��� : � �� ;� ∙ �√1 � �	
�  (13) 

 

If the diffuser in question has a turning angle 

of 90°, the equation can be simplified further: 
 

�9 � =��>/	 � ��?@ ∙ �√1 � �	
�  (14) 

�9 � =��>/	 � 1@ ∙ �√1 � �	
�  (15) 

 

If the inlet width �
, the outlet width �	 and 

the length of the central curve �9 are known, the 

equivalent expansion angle can be determined:  
 

2���� � tan�
 ��	 � �

�9

� (16) 

 

Substituting Eq. (15) for �9 results in the 

following equation: 

 

2���� � tan�
 � �	 � �

��>/	 � 1 ∙ �

�√1 � �	� (17)

 

 

5. LOGARITHMIC EXPANSION VANES 

 

Once a suitable diffuser shape has been 

computed, it can easily be used to create a 

cascade of expansion vanes, as shown in Fig. 11. 

The outer diffuser side (blue) is used to define 

the pressure side of each vane. The inside of the 

diffuser (red) is extended with straight sections 

(green) to form the suction side of each vane. 

The vane thickness should be taken into 

consideration when choosing the inlet and outlet 

width. The thickness is likely to be dictated by 

the material the vanes will be made of. 

 

 
Fig. 11.  Constructing a cascade of logarithmic 

expansion vanes using a logarithmic diffuser as a 

template 

 

6. COMPARING DIFFUSER TYPES 

 

As stated previously, the centreline-arc 

diffuser does not offer a smooth curvature-

continuous transition to the upstream and 

downstream channels, thereby increasing the 

likelihood of flow separation. This is 

unsurprising, as it is based on a straight wall 

diffuser, which presents similar drawbacks. The 
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double-arc diffuser offers smooth transitions but 

lacks a constant rate of expansion. The 

expansion rate in this type of diffuser is low at 

the inlet and increases significantly towards the 

outlet of the diffuser. This too, makes flow 

separation more likely. In comparison, the 

logarithmic diffuser offers a constant rate of 

expansion, smooth transitions and curvature 

control. Its shape is entirely based on equations, 

which allows for easy parameterisation, and 

streamlined optimisation using computational 

fluid dynamics. Some of these findings are 

summarised in the table below: 

 
Table 1. Comparing curved diffuser geometries 

 

Diffuser type 
Smooth 

transition 
Constant 
expansion 

Curvature 
control 

centreline-arc no yes no 

double-arc yes no no 

logarithmic yes yes yes 

 

7. CONCLUSIONS 

 

An iterative method of defining curved 

diffusers has been introduced and its benefits 

were highlighted. In summary: 

• An algorithm to mould logarithmic spirals 

into a diffuser shape has been developed and 

demonstrated to work effectively within the 

limitations stated. 

• The algorithm works to a user-determined 

accuracy and care should be taken as an 

increased accuracy will require a higher 

number of calculation iterations. 

• Equations for calculating equivalent diffuser 

angle and length are presented, to facilitate 

the comparison of future experimental 

results with the scientific literature 

• A simple method of adapting logarithmic 

diffuser shapes into a cascade of expansion 

vanes is introduced. 

• A comparison between different methods 

used to construct diffusers has been made 

and the advantages of logarithmic diffusers 

shown. 
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PARAMETRIZAREA GEOMETRIEI DIFUZOARELOR CURBATE ȘI A PALETELOR 

DE EXPANSIUNE FOLOSIND SPIRALE LOGARITMICE 
Cercetări recente au evidențiat  modul în care colțurile extinse pot ajuta la reducerea dimensiunii și, prin urmare, a 

costurilor tunelurilor de vânt și apă. Colțurile expansive pot fi construite folosind difuzoare curbate sau palete de 
expansiune. Această lucrare examinează modalitățile tradiționale de definire a formei difuzoarelor curbate. Se 
argumentează că aceste metode au deficiențe, cum ar fi discontinuitatea în curbura canalului sau schimbarea ratelor de 
expansiune. Este prezentat un algoritm iterativ pentru a depăși aceste probleme prin definirea formelor difuzorului 
folosind spirale logaritmice. Această abordare permite controlul precis asupra unghiului de expansiune a difuzorului, 
unghiului de rotire, precum și a curburii. În plus, se arată cum geometria unui difuzor logaritmic poate fi adaptată și 
integrată într-o cascadă de palete de expansiune. 
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