

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering Vol. 65, Issue Special IV, December, 2022

CHI-IRON CARBIDE, AN EMERGING MATERIAL

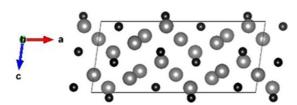
Elisabeth BAUER GROSSE

Abstract: The tremendous development of technologies as well as the relentless demand for the performance of materials and devices have resulted in new ways of using certain compounds. In this paper, χ -Fe₅C₂, originally known in the fields of metallurgy and catalysis, is offered as an example. It is shown, thanks to recent data from the literature, this carbide is the subject of intense research extending to other fields to meet new challenges in particular as nanoparticles. Illustrations of the past decade inform about the role of this carbide in clean energy, health and environment. They testify to a capacity for innovation that makes this carbide an emerging material.

Key words: : χ -Fe₅C₂, Materials synthesis, Properties, Nanoparticles, Nanostructure, Applications.

1. INTRODUCTION

This paper deals with chi-iron carbide, also called Hägg carbide, χ-Fe₅C₂ or simply Fe₅C₂. It is a broadly studied member of iron carbides (ICs). Originally chi-iron carbide was detected for almost a century now, as a transient iron carbide during the tempering of steels or as a by-product of the transformation of iron used as a catalyst in Fisher-Tropsch synthesis (FTS) for hydrocarbon production. The first powder diffraction data was reported by Hägg in 1934 [1]. Until now, chi-iron carbide has never been found on earth but it was recently identified in meteorites under the mineral name edscottite [2].


Here, the paper is presented in six sections. The first one concerns the main features of this carbide in terms of atomic structure, principal properties and synthesis. The second one deals with its role in the field of clean energy. The third one focusses on its role in the field of medicine and the field of environment. The last ones draw the conclusion and gives the references.

2. MAIN FEATURES OF FE₅C₂

They concern its atomic structure with main resulting properties and its synthesis.

2.1 Atomic structure and main properties

Its unit cell, first established in 1962 [3], is monoclinic with the C2/c space group. It contains twenty atoms of iron and eight atoms of carbon (see Fig. 1.) leading to the Fe₅C₂ formula. Although sometimes subject to discussion [4], it is the atomic structure used by most authors. The lattice parameters are around a=1.1563 nm, b=0.4573 nm, c=0.5058 nm and β =97.75°.

Fig. 1. Fe₅C₂ unit cell modelled through the VESTA software [5]. Large grey balls for Fe atoms and small black for C carbon atoms. Crystallographic data of [3].

From the nature of the atoms, their binding and their arrangement, derive two main properties that are the magnetic and the catalytic properties. There will be exploited, individually or together, for their excellence in chi-iron carbide most often used in the form of nanoparticles (NPs). Indeed, it is true that chi-iron carbide belongs to the class of ICs recognized in 2019 as 'Magic materials with magnetic and catalytic properties' [6].

2.2 Synthesis

There is always a strong demand to use Fe₅C₂ as a pure phase. Different means can synthesize it as NPs. Table 1 gives a chronological list of the processes developed to obtain a pure chi-iron carbide phase for different scientific fields.

About the processes:

- Solid-gas reactions include reactions of Fe(CO)₅ iron carbonyl with a CO/H₂ mixture [7], of α-Fe₂O₃/Fe₃O₄ iron oxides mixture with CO [8] and of β-Fe₂O₃ with CO [9].
- Solid-solid reactions concern reaction of α-Fe with g-Fe₃N₄ [10]
- Solid-liquid reactions include reaction of amorphous Fe NPs in oleylamine (OAm) [11] and mechanosynthesis of α-iron in a medium of liquid hydrocarbons [12].
- Wet chemical synthesis [13-15] deal with reactions of Fe(CO)₅ iron carbonyl with octadecylamine in the presence of surfactants.

Table 1
Synthesis methods for pure chi-iron carbide phase

Synthesis methods for pure chi-iron carbide phase.			
Process	Scientific fields	Year	Ref
Solgas reaction	Magnetism	1971	[7]
Solgas reaction	Magnetism	1990	[8]
Wet chem. synthesis	Catalysis FTS	2012	[13]
Solsol. reaction	FTS Catalysis	2015	[10]
Solliq. reaction	Magnetism	2015	[12]
Solgas reaction	Electrochem	2017	[9]
Wet chem. synthesis	FTS	2017	[14]
Solliq. reaction	Magnetism	2019	[11]
Wet chem. synthesis	FTS Catalysis	2020	[15]

About the involved scientific fields, magnetism and catalysis dominate in links with previously cited properties. The timeline (column 3) shows, on the one hand, that emphasis has been placed on catalytic applications for the past ten years (especially in FTS, where chi-iron carbide is considered as the most active catalyst).

On the other hand, the interest in magnetic applications seems disappears around 1990 (presumably due to the end of magnetic tapes) to reappear around 2015 (probably due to new medical needs).

Efforts made in synthesis of pure Fe_5C_2 have made it possible to develop new Fe_5C_2 -based materials as magnetic/catalytic nanostructures suitable for diverse applications in emerging fields [16].

3. FE₅C₂ IN CLEAN ENERGY

This section mainly gives information on the different functionalized Fe₅C₂ NPS that can bring progress in the field of clean energy as catalysts and electrodes.

3.1 New catalysts for FTS

FTS has received renewed interest in recent years due to the necessity to decrease global dependency on fossil fuels. As Fe₅C₂ plays an important role in this process [17 and references therein], great effort has been made to develop more efficient Fe₅C₂-based catalysts by tuning its catalytic properties through its design [18].

As illustration, table 2 gives a brief timeline overview of Fe_5C_2 -based catalysts developed these last years in the aim to increase their selectivity toward different products (olefins, gazoline, alcools) or different process temperatures (low temperature or high temperature).

The meaning of catalyst names is as follows: Fe₅C₂@C for carbon encapsulated Fe_5C_2 NPs [19], $Fe_3O_4@Fe_5C_2$ for Fe_5C_2 encapsulated Fe₃O₄ core-shell NPs [20], Fe₅C₂/Co for heterostructured NPs made of Fe₅C₂ and Co [21], $Fe_5C_2@CMK-3$ for ordered mesoporous carbon containing numerous and well-dispersed Fe₅C₂ nanoparticles [22], Cu-0chi-Fe₅C₂ for Cu⁰- χ -Fe₅C₂ binary catalysts [23], O-décor. Fe₅C₂ for Fe₅C₂ decorated with (photothermal catalyst) oxygen Fe₅C₂/NCT for Fe₅C₂ loading on tunable Ndoped carbon (photothermal catalyst) [25], Mn1K-FeC for Mn- and K-modified Fe₅C₂ NPs [26].

Table 2

Ref

[22]

[23]

[24]

[25]

Table 3

Year

2017

2017

2018

2022

name tunings 2015 Pure Fe₅C₂ Olefins [10] Fe₅C₂@C High-temp. 2015 [19] [20] Fe₃O₄@Fe₅C₂ Olefins 2016 Fe₅C₂/Co NPs Low-temp. 2017 [21]

Gasoline

Higher alcools

Lower olefins

Ligh olefins

Fe₅C₂-based FTS catalysts for special tunings.

Special

Catalyst

Fe₅C₂@CMK-

Cu-O-chi-

 Fe_5C_2

O-decor.

Fe₅C₂/NCT

Mn1K-FeC | Higher alcools | 2022 | [26] 3.2 New electrodes and nanomagnets for energy conversion or storage

In energy conversion, fuel cells, metal-air batteries, water splitting using hydrogen evolution reaction (HER) for hydrogen production have been regarded as possible solutions for safe and convenient power generation applications, requiring to develop new materials such as electro-catalysts.

In this context, table 3 presents new Fe₅C₂-based materials developed these four last years. The first example concerns a soft magnetic N-doped carbon encapsulated (Fe₅C₂-Fe₃C@CN) showing an efficient HER catalytic activity to replace Pt electrode [27].

Fe₅C₂-based materials for energy conversion/storage.

conversion/storage.					
Name	Device	Year	Ref		
			•		
Fe ₅ C ₂ -Fe ₃ C@CN	HER/water	2019	[27]		
	splitting				
Fe/Fe ₅ C ₂ @N-C	ORR/ Zinc-	2019	[28]		
	air battery				
Fe ₂ O ₃ /Fe ₅ C ₂ /Fe-N-	ORR/ Zinc-	2022	[29]		
C	air battery				
3DM Fe/Fe ₅ C ₂ @NC	LIB/PIB	2020	[30]		
BaFe ₁₂ O ₁₉ /Fe ₅ C ₂	nanomagnet	2019	[31]		

Two other examples are given for their high performances and superior stability than that of Pt/C in zinc-air batteries. The first one is an oxygen reduction reaction (ORR) electrocatalyst made of Fe/Fe₅C₂ species enveloped in N-doped carbon called Fe/Fe₅C₂@N-C [28].

The second one concerns the fabrication of new $Fe_2O_3/Fe_5C_2/Fe-N-C$ composites composed of Fe_2O_3/Fe_5C_2 NPs and Fe,N-doped carbon species [29].

In energy storage, the demands for portable electronic devices and electric vehicles are constantly increasing. To address this, great efforts are focused on the development of high energy density and long-life renewable energy batteries.

Efficient lithium/potassium-ion batteries (LIBs/PIBs) require high-capacity anode materials whose synthesis remains a big challenge.

On the one hand, It has been shown that Fe/Fe_5C_2 NPs coupled with nitrogen-doped porous carbon, called 3DM Fe/Fe_5C_2 @NC own outstanding lithium/potassium storage properties. It can thus serve as an anode material [30].

On the other hand, to replace the NdFeBand SmCo-based magnets, it is extremely essential to develop exchange-coupled nanomagnets with rare-earth free hard/soft magnetic phases to apply energy-related devices. It is a heavy task but a conclusive test was obtained with BaFe₁₂O₁₉/Fe₅C₂ composites fabricated through cryogenic ball milling [31].

4. FE₅C₂ IN MEDICINE AND IN ENVIRONMENT

4.1 In medicine

Due mainly to their high magnetism, Fe_5C_2 nanoparticles play an important role among the iron carbide NPs used for biomedical applications [32], tending to replace iron oxyde NPs dominantly used. In a very recent review [33], iron carbide nanostructures of which Fe_5C_2 is a part are described as an 'emerging material for tumor theranostics', involved in both diagnosis and therapy.

Among the diagnostic means, magnetic resonance imaging (MRI) is one of the most widely used methods for detecting tumors. To detect them as early as possible, MRI requires increasingly effective contrast agents, including Fe_5C_2 NPs for their high contrast and their ability to target tumors. Table 4

summarizes Fe₅C₂-based nanostructures as contrast agent to diagnose different tumor thanks to surface modifications.

Table 4

Contrast agent	Tumor	Year	Ref
Fe ₅ C ₂ NPs	U87MG	2014	[34]
Fe ₅ C ₂ -Z _{HER2:342} NPs	SK-OV-3	2014	[35]
Casein-coated	Of liver	2015	[36]
Fe_5C_2			
Fe ₅ C ₂ -	U14	2018	[37]
$GOD@MnO_2$			
Fe ₅ C ₂ @Fe ₃ O ₄ NPs	4T1	2019	[38]

Concerning the different names of the contrast agents, Fe_5C_2 -ZHER2:342 NPs means that Fe_5C_2 NPs are new proteins coated; Fe_5C_2 -GOD@MnO₂ indicates a core-shell nanostructure with a glucose oxidase (GOD)-loaded Fe_5C_2 core and a manganese dioxide (MnO₂) shell; Fe_5C_2 @Fe₃O₄ is for Fe_5C_2 core with a magnetite shell.

Among tumor therapy means, table 5 summarizes Fe₅C₂-based nanodrugs able to kill specific tumor cells with low cytotoxicity in photothermal therapy (PTT), chemotherapy (chemo), chemodynamic therapy (CDT) and photodynamic therapy (PDT). Some Fe₅C₂-based materials developed for tumor diagnosis in MRI (see Table 4) serve as nanodrugs.

It is then possible to ablate tumors under guidance by MRI and PTT without noticeable side effects. Others Fe₅C₂-based materials are developed with new surface modifications for the needs of therapy. These are Fe₅C₂-BSA-DOX NPs and Fe₅C₂-BSA-AIPH/PCM NPs with BSA for bovin serum albumin, DOX for doxorubicin drug, ALPH for a polymerization initiator loaded on the surface of Fe₅C₂-BSA NPs and PCM for a higher drug load and controlled heat-stimulated drug release.

Table 5

Fe ₅ C ₂ -based materials for tumor therapy.			
Nanodrug	Tumor	Therap	Year/Re
		y	f
Fe ₅ C ₂ -ZH _{ER2:342}	SK-OV-	PTT	2014
NPs	3		[35]
Fe ₅ C ₂ -BSA-	SK-OV-	PTT	2016
DOX NPs	3	Chemo	[39]

Fe ₅ C ₂ -	U14	CDT	2018
GOD@MnO ₂			[37]
Fe ₅ C ₂ -BSA-	U14	PTT &	2018
AIPH/PCM		PDT	[40]
NPs			
$Fe_5C_2@Fe_3O_4$	4TI	CDT	2019
			[38]

4.2 In environment

Chi-iron carbide acts in environment remediation. Table 6 illustrates this. It was shown in 2015 that Fe₅C₂ NPs with a thin carbon shell coating have a photothermal effect and possess reusable antibacterial properties [41] useful for disinfection of *E. coli* and *S. aureus* in water.

In the case of drug detection, it was proven high-purity chi-carbide 2017 that in nanoparticles can serve as promising electrocatalyst for voltametric detection of the antibiotic metronidazole [9]. In the case of waste treatment to remove pollutants as heavy metals in water, novel and high efficient magnetic alginate beads containing Fe₅C₂@SiO₂ core-shell (NPs) were synthesized and applied to remove Cu (II) ions from water [42] in 2018. Finally, in the case of mitigation of electro-magnetic pollution (EM), magnetic-dielectric Fe/Fe₅C₂@NC composite as an efficient microwave absorbent [43] was very recently developed in the field of electromagnetic wave adsorption.

Table 6
Fe₅C₂-based materials for environment

remediation.			
Name	Action	Year	Ref.
Fe ₅ C ₂ @C NPs	Antibacterial	2015	
	disinfection		[41]
Fe ₅ C ₂ NPs	Antibiotic	2017	[9]
	detection		
$Fe_5C_2@SiO_2$	Heavy metals	2018	[42]
NPs	removal		
Fe/Fe ₅ C ₂ @NC	Microwave	2022	[43]
composite	absorbent		

5. CONCLUSION

This article traces the path of a compound discovered fortuitously almost a century ago.

It is shown that many Fe₅C₂-based materials have been developed as NPs over the past ten

years in connection with societal issues such as clean energy, health and environment. These materials have made it possible to improve applications and devices. Highlights are following:

In the field of clean energy, new Fe₅C₂-based catalysts in the aim to increase their selectivity toward different products, new Pt-free electrodes and new rare-earth free nanomagnets with a performance gain and a lower cost;

In the field of health and medicine, its recent role as contrast agent for tumor diagnosis and as nanodrug for tumor therapy to replace iron oxides NPS more efficiently;

In the field of environment, its recent role in antibacterial disinfection, antibiotic detection, heavy metals removal and in mitigation of electromagnetic pollution.

The use of Fe₅C₂ as NPs globally leads to progress in many applications and devices. This makes it possible to demonstrate that this carbide is becoming an emergent material.

6. REFERENCES

- [1] Hägg, G. Pulverphotogramme eines neuen Eisencarbides, Z. Kristallogr., 89, 92-4, ISSN 2194-4946, Germany, 1934.
- [2] Ma, C., Rubin, A. E. Edscottite, Fe₅C₂, a new iron carbide mineral from the Ni-rich Wedderburn IAB iron meteorite, Mineralogical Soc Amer, eISSN 1945-3027, Chantilly, VA, US, 2019.
- [3] Senateur, J.P., Fruchart, R. Formule et structure cristalline du carbure de Hägg-Relation de structure avec la cementite Fe₃C, Elsevier, ISSN 0037-8968, Paris, France, 1962.
- [4] Du Plessis, H.E., De Villiers, J. P. R., Kruger, G. J. Re-determination of the crystal structure of χ-Fe₅C₂ Hägg carbide, De Gruyter, ISSN 0044-2968, Berlin, Germany, 2007.
- [5] Momma, K., Izumi, F. VESTA 3 for threedimensional visualization of crystal,

- *volumetric and morphology data*, Int Union Crystallography, ISSN 0021-8898, Chester, England, 2011.
- [6] Wang, X.B., Zhu, K., Ju, Y.M., Li, Y.N., Li, W., Xu, J.J., Hou, Y.L. Iron carbides: Magic materials with magnetic and catalytic properties, Elsevier, ISSN 0304-8853, Amsterdam, NL, 2019.
- [7] Rogers, D. B. *Ultrafine, nonpyrophoric Chi-iron carbide having high coercivity,* http://www.patentimages.storage.googleap is.com/0e/99/1d/89e2359fb2c782/US3572 993.pdf.
- [8] Hirano, S.L., Tajima, S. Synthesis and magnetic properties of Fe₅C₂ by reaction of iron oxide and carbon monoxide, Springer, ISSN 0022-2461, NY, US, 1990.
- [9] Malina O., Jakubec P., Kaslik J., Zboril R. A simple high-yield synthesis of high-purity Hägg carbide (χ-Fe₅C₂) nanoparticles with extraordinary electrochemical properties, Royal Society of Chemistry, ISSN 2040-3364, Cambridge, England, 2017.
- [10] Park, H., Youn, D.H., Kim, J.Y., Kim, W.Y., Choi, Y.H., Lee, Y.H., Choi, S. H., Lee, J. S. Selective formation of Hägg iron carbide with g-C₃N₄ as a sacrificial support for highly active Fischer-Tropsch synthesis, Wiley, ISSN1867-3880, Weinheim, Germany, 2015.
- [11] Ge, W.Y., Gao, W.X., Zhu, J.F., Li, Y.X. In situ synthesis of Hägg iron carbide (Fe₅C₂) nanoparticles with a high coercivity and saturation magnetization, Elsevier, ISSN 0925-8388, Lausanne, Switzerland 2019.
- [12] Barinov, V.A., Protasov, A.V., Surikov, V.T. *Studying mechanosynthesized Hägg carbide* (χ-Fe₅C₂), Springer, ISSN 0031-918X, NY, US, 2015.
- [13] Yang, C., Zhao, H.B., Hou, Y. L., Ma, D. Fe₅C₂ Nanoparticles: A Facile Bromide-Induced Synthesis and as an Active Phase for Fischer-Tropsch Synthesis, Amer Chemical Soc, ISSN 0002-7863, Washington, US, 2012.
- [14] Yao, S.Y., Yang, C., Zhao, H.B., Li, S.W., Lin, L.L., Wen, W., Liu, J. X., Hu, G., Li, W. X., Hou, Y.L., Ma, D. Reconstruction of the wet chemical

- synthesis process: the case of Fe₅C₂, Amer Chemical Soc, ISSN 1932-7447, Washington, US, 2017.
- [15] Zhao, H.B., Liu, J.X., Yang, C, Yao, S.Y., Su, H.Y., Gao, Z.R., Dong, M., Wang, J.H., Rykov, A.I., Wang, J.G., Hou, Y.L., Li, W.X., Ma, D. Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer–Tropsch Synthesis, Chinese chemical soc, eISSN: 2096-5745, Beijing, China, 2020.
- [16] Wang, S., Xu, J., Li, W., Sun, S., Gao, S., Hou, Y. Magnetic Nanostructures: Rational Design and Fabrication, Amer Chemical Soc, ISSN 0009-2665, Washington, US, 2022.
- [17] Otun, K.O., Yao, Y., Liu, X., Hildebrandt, D. Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: A critical review, Elsevier, ISSN 0016-2361, Oxford, England, 2021.
- [18] Zhao, H.B., Ma, D. Chi-Fe₅C₂: structure, synthesis and tuning of catalytic properties, Peking Univ Press, ISSN1000-6818, Beijing, China, 2020.
- [19] Hong, S.H., Chun, D.H., Yang, J.I., Jung, H., Lee, H.T., Hong, S., Jang, S., Lim, J.T., Kim, C.S., Park, J.C. A new synthesis of carbon encapsulated Fe₅C₂ nanoparticles for high-temperature Fischer-Tropsch synthesis, Royal Soc Chemistry, ISSN 2040-3372, Cambridge, England, 2015.
- [20] An, B., Cheng, K., Wang, C., Wang, Y., Lin, W. Pyrolysis of Metal-Organic Frameworks to Fe₃O₄@Fe₅C₂ Core-Shell Nanoparticles for Fischer-Tropsch Synthesis, Amer Chemical Soc, ISSN 2155-5435, Washington, US, 2016.
- [21] Yang C., Zhao, B., Gao, R., Yao, S., Zhai P., Li, S., Yu, J., Hou, Y., Ma, D. Construction of Synergistic Fe₅C₂/Co Heterostructured Nanoparticles as an Enhanced Low *Temperature* Fischer-**Tropsch** Synthesis Catalyst, Amer Chemical Soc, **ISSN** 2155-5435, Washington, US, 2017.
- [22] Kang, S.W., Kim, K., Chun, D.Y., Yang, J.I., Lee, H.T., Yung, H., Lim, J., Jang, S., Kim, C.S., Lee, C.W., Joo, S.H., Han, J.W., Park, J.C. *High-performance*

- Fe₅C₂@CMK-3 nanocatalyst for selective and high-yield production of gasolinerange hydrocarbons, Elsevier, ISSN 0021-9517, San Diego, CA, US, 2017.
- [23] Lu, Y., Zhang, R.G., Cao, B.B., Ge, B.H., Tao, F.F., Shan, J.J., Nguyen, L., Bao, Z.H., Wu, T.P., Pote, J.W., Wang, B.J., Yu, F. Elucidating the Copper-Hägg Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols, Amer Chemical Soc, ISSN 2155-5435, Washington, US, 2017.
- [24] Gao, W., Gao, R., Zhao, Y., Peng, M., Song, C., Li, M., Li, S., Liu, J., Li, W., Deng, Y., Zhang, M., Xie, J., Hu, G., Zhang, Z., Long, R., Wen, D., Ma, D. *Photo-Driven Syngas Conversion to Lower Olefins over Oxygen-Decorated Fe₅C₂ Catalyst*, Cell Press, ISSN 2451-9294, Cambridge, MA, 2018.
- [25] Li, R.Z., Li, Y., Li, Z.H., Wei, W.Q., Hao, Q.G., Shi, Y.Q., Ouyang, S.X., Yuan, H., Zhang, T.R. Electronically Activated Fe₅C₂ via N-Doped Carbon to Enhance Photothermal Syngas Conversion to Light Olefins, Amer chemical soc, ISSN 3255-5435, Washington, US, 2022.
- [26] Huang, J.M., Zhang, G.H., Zhu, J., Wang, M.R., Ding, F.S., Song, C.S., Guo, X.W. Boosting the Production of Higher Alcohols from CO₂ and H₂ over Mn-and K-Modified Iron Carbide, Amer Chemical soc, ISSN 0888-5885, Washington, US, 2022.
- [27] Ye, Z., Qie, Y., Fan, Z., Liu, Y., Shi, Z., Yang, H. Soft magnetic Fe₅C₂-Fe₃C@C as an electrocatalyst for the hydrogen evolution reaction, Royal Soc Chemistry, ISSN 1477-9226, Cambridge, England, 2019.
- [28] Song, L., Wang, T., Li, L., Wu, C., He, J. Zn₃[Fe(CN)₆]₂ derived Fe/Fe₅C₂@ N-doped carbon as a highly effective oxygen reduction reaction catalyst for zinc-air battery, Elsevier, ISSN 0926-3373, Amsterdam, NL, 2019.
- [29] Gua, X.M., Liu, S., Wan, X.H., Zhang, J.H., Liu, Y.J., Zheng, X.J., Kong, Q.H., Jin, Z. Controllable Solid-Phase Fabrication of an Fe₂O₃/Fe₅C₂/Fe-N-C Electrocatalyst toward Optimizing the Oxygen Reduction Reaction in Zinc-Air

- Batteries, Amer chemical Soc, ISSN 1530-6984, Washington, US, 2022.
- [30] Liu, S., Chen, L., Huang, C., Zhu, J., Wang, Y., Feng, J., Fan, Q., Dong, Y., Kuang, Q., Zhao, Y. Nitrogen-doped hierarchically porous carbon architectures coupled with Fe/Fe₅C₂ nanoparticles as anode materials for alkaline-metal-ion batteries, Pergamon-Elsevier, ISSN 0013-4686, Oxford, GB, 2020.
- [31] You, J.H., Meng, Q.Y., Zhou, J.F., Guo, Y.Z. Magnetic properties and air stability of BaFe₁₂O₁₉/Fe₅C₂ composites fabricated through cryogenic ball milling, Elsevier, ISSN 0272-8842, Oxford, England, 2019.
- [32] Yu, J., Chen, F., Gao, W., Ju, Y., Chu, X., Che, S., Sheng, F., Hou, Y. *Iron carbide nanoparticles: an innovative nanoplatform for biomedical applications*, Royal Society of Chemistry, ISSN 2055-6764, Cambridge-England, 2017.
- [33] Wang, J., Hou, Y. *Iron carbide nanostructures: an emerging material for tumor theranostics*, Amer Chemical Soc, eISSN 2643-6728, Washington, US, 2022.
- [34] Tang, W., Zhen, Z. P., Yang C., Wang, L. N., Cowger, T., Chen, H. M., Todd, T., Hekmatyar, K. Fe₅C2 Nanoparticles with High MRI Contrast Enhancement for Tumor Imaging, Wiley, ISSN 1613-6810, Weinheim, Germany, 2014.
- [35] Yu, J., Yang, C., Li, J., Ding, Y., Zhang, L., Yousaf, M. Z., Lin, J., Pang, R., Wei, L., Xu, L., Sheng, F., Li, C.; Li, G., Zhao, L., Hou, Y. Multifunctional Fe₅C₂ Nanoparticles: A Targeted Theranostic Platform for Magnetic Resonance Imaging and Photoacoustic Tomography-Guided Photothermal Therapy, Wiley, ISSN 0935-9648, Weinheim, Germany, 2014.
- [36] Cowger, T. A., Tang, W., Zhen, Z., Hu, K., Rink, D. E., Todd, T. J.; Wang, G. D. Zhang, W., Chen, H., Xie, J. Casein-Coated Fe₅C₂ Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging, Ivyspring, ISSN 1838-7640, Lake Haven, Australia, 2015.
- [37] Feng, L., Xie, R. Wang, C., He, F., Yang, D., Yang, P., Lin, J. Magnetic Targeting, Tumor Microenvironment-Responsive

- Intelligent Nanocatalysts for Enhanced Tumor Ablation, Amer Chemical Soc, ISSN 1936-0851, Washington, US, 2018.
- [38] Yu, J., Zhao, F., Gao, W., Yang, X., Ju, Y., Zhao, L., Guo, W., Xie, J., Liang, X., Tao, X., Li, J., Ying, Y., Li, W., Zheng, J., Qiao, L., Xiong, S., Mou, X., Che, S., Hou, Y. Magnetic Reactive Oxygen Species Nanoreactor for Switchable Magnetic Resonance *Imaging* Guided Cancer pH-Sensitive **Therapy** Based on $Fe_5C_2@Fe_3O_4$ Nanoparticles, Amer Chemical Soc, **ISSN** 1936-0851, Washington, US, 2019.
- [39] Yu, J., Ju, Y., Zhao, L., Chu, X., Yang, W., Tian, Y., Sheng, F., Lin, J., Liu, F., Dong, Y., Hou, Y. *Multistimuli-Regulated Photo-chemothermal Cancer Therapy Remotely Controlled via Fe₅C₂ Nanoparticles, Amer Chemical Soc, ISSN 1936-0851, Washington, US, 2016.*
- [40] Feng, L., Gai, S., Dai, Y., He, F., Sun, C., Yang, P., Lv, R., Niu, N., An, G., Lin, J. Controllable Generation of Free Radicals from Multifunctional Heat-Responsive Nanoplatform for Targeted Cancer Therapy, Amer Chemical Soc, ISSN 0897-4756, Washington, US, 2018.
- [41] Jin, Y., Deng, J., Yu, J., Yang, C., Tong, M., Hou, Y. Fe₅C₂ nanoparticles: a reusable bactericidal material with photothermal effects under near-infrared irradiation, Royal Society of Chemistry, ISSN 2050-750X, Cambridge-England, 2015.
- [42] Ahmadpoor, F., Shojaosadati, S. A., Mousavi, S. Z. Magnetic silica coated iron carbide/alginate beads: Synthesis and application for adsorption of Cu (II) from aqueous solutions, Elsevier, ISSN 0141-8130, Amsterdam, NL, 2018.
- [43] Jiang, B., Yang, H., Wang, C., Xu, C., Li Z., Yan, Lu., Zhang, C., Wu, N., Che, S., Wang, X., Li Y. Facile fabrication of Fe/Fe₅C₂@N-doped porous carbon as an efficient microwave absorbent with strong and broadband absorption properties at an ultralow filler loading, Pergamon-Elsevier, ISSN 0086-6223, Oxford, GB, 2022.

CARBURA DE FIER-HI, UN MATERIAL EMERGENT

Dezvoltarea deosebită a tehnologiilor, precum și cererea continuă de creștere a performanțelor materialelor și dispozitivelor, au determinat apariția unor noi modalități de utilizare a anumitor compuși. În această lucrare, χ -Fe5C2, cunoscut inițial în domeniile metalurgiei și catalizei, este prezentat ca un exemplu de asemenea compus. Pe baza rezultatelor recente prezentate în literatură, se arată că această carbură constituie obiectul unor cercetări care se extind și în alte domenii, pentru a face față noilor provocări, în special a celor referitoare la nanoparticule. Exemplele din ultimul deceniu evidențiază rolul pe care îl poate avea carbura hi pentru asigurarea unei energii curate, pentru sănătate și pentru mediul înconjurător. Ele dovedesc totodată o capacitate de inovare care face din această carbură un material emergent.

Elisabeth BAUER GROSSE, Emeritus Professor, University of Lorraine, Jean Lamour Institute UMR CNRS 7178 - Campus Artem 2, allée André Guinier - BP 50840 F-54011 Nancy Cedex France, elisabeth.bauer-grosse@univ-lorraine.fr, Office Phone:+33 (0)3 72 74 25 86