
7

Received: 30.01.23; Similarities: 16.02.23: Reviewed: 02.03./26.02.23: Accepted:20.03.23.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 66, Issue I, March, 2023

A CRUD IMPLEMENTATION IN JDEVELOPER AND MS ACCESS OF A

FLAT DATABASE FOR STORING ROBOT PROGRAMS

Tiberiu Alexandru ANTAL

Abstract: The paper aims to give a detailed description of how to implement a Java graphical interface for

the development of an application that uses a single table for storing robot programs. The research uses

the JDeveloper IDE and the MS Access relational database management system, presenting the

particularities of an implementation that must ensure basic management, in the sense of CRUD (Create

Read, Update, Delete), of data from the application.

Key words: CRUD, database, GUI, Java, robot.

1. INTRODUCTION

1.1 The concept of flat database and CRUD

The term database revolves around the

concept of data. Data is a measurement of some

parameters of a process. Most real life processes

are complex and require some model based

approach to be computable. The concept of data

model is related to information algebra where

subject is defined as a mathematical formalism

for defining the data structures and the operators

to validate and manipulate the data. The term of

database refers to an organized collection (based

on some data model) of structured data that is

accessible using a software called database

management system. At a database level the

model is a specification describing how a

database is structured and used. The flat

database model sometimes called the table

model consists of a single table also called as a

two-dimensional array of data elements, where

all data of a column are assumed to have the

same type, and all rows are assumed to be related

to one another [1]. The concept of type is defined

as a classification of data based on predefined

categories described by: domain, operators,

axioms and preconditions (some type examples

would be - integer, real or string).

The database management system used in this

implementation is a Microsoft product called

MS Access and the integrated development

environment (IDE) used to develop the Java

application is JDeveloper, a product of Oracle.

While the MS Access database management

system is easy to use in the context of Microsoft

development environments, JDeveloper is easy

to use in the context of database management

systems approved by Oracle. The JDeveloper is

designed to connect and work with Oracle

databases and a number of non-Oracle databases

(DB2, MySQL, SQL Server, etc.) at IDE level

but it will not connect to MS Access. However,

in the context of creating small or medium-sized

databases that are not used by many users, MS

Access remains a cheap, secure, robust, easy-to-

learn and very efficient database management

system thanks to the simple manipulation

interfaces it provides to the user. MS Access is a

database management system based on the

relational data model [6] (Relational database

Management System or RDBMS) invented by

the English computer scientist named Edgar

Frank Codd in 1970. According to this data

model the data structure used to save the data is

the table and the operators use to manipulate and

validate the data are part of relational algebra

(projection, join, composition, restriction). Each

table must have a name and all columns in a

8

table must have unique names and associated

types (like real, integer or string). In [6], E. F.

Codd, introduced the concept of normalization

in order to minimize redundancy from tables.

Normalization is obtained by decomposing a

table in two tables with lover redundancy while

keeping some common values (in columns

called keys) that allow the recomposing the

original table. There are various levels of

normalization; some of them are called as

follows [1], [8]:

1. First Normal Form (1NF)

2. Second Normal Form (2NF)

3. Third Normal Form (3NF) etc

In flat databases the number of tables is

restricted to one and that structure of the table

must obey the First Normal Form, that is, the

table must have a primary key and any

composite or multi-valued data in cells (row-

column intersection) must be eliminated by

adding new rows in the table. A primary key is

the minimal set columns that can uniquely

identify a row in the table. In order to

demonstrate the presented concepts, consider the

data from Table 1 where a set of statements are

presented grouped in order to associate them to

a certain program.
Table 1

A presentation table for the program-statement

association stored as “text processor document”.

program1

statement11

statement12

statement13

program2

statement21

statement22

program3

statement31

statement32

statement33

statement34

Although visually speaking a table is observed,

this has nothing to do with the table concept used

in the relational data model. Reorganizing it

according to the requirements of the relational

data model will lead, step by step, to a new table

where:

• at the intersection of a row and a column

the multi-valued data in cells must be

eliminated by providing individual rows

and columns for each piece of data (see

Table 2 and Table 3);

• the columns must have a name and type

(see Table 4);

• a primary key must be provided for the

rows in the table (see Table 5);

• the table must have a name (see Table 5).

Table 2

Column two reorganized in individual rows.

program1

statement11

statement12

statement13

program2

statement21

statement22

program3

statement31

statement32

statement33

statement34

Table 3

Column one data reorganized in rows to match the

rows in column two.
program1 statement11

program1 statement12

program1 statement13

program2 statement21

program2 statement22

program3 statement31

program3 statement32

program3 statement33

program3 statement34

Table 4

Columns received name and type.
Program

(type string)

Statement

(type string)

program1 statement11

program1 statement12

program1 statement13

program2 statement21

program2 statement22

program3 statement31

program3 statement32

program3 statement33

program3 statement34

Table 5

The table receives the Programs name and a new

column with the name ID and integer type for the

primary key values.
ID Program Statement

9

(type integer,

PK)

(type

string)

(type

string)

1 program1 statement11

2 program1 statement12

3 program1 statement13

4 program2 statement21

5 program2 statement22

6 program3 statement31

7 program3 statement32

8 program3 statement33

9 program3 statement34

1.2 JDBC design and architecture

 In 1996, Sun released the first version of Java

Database Connectivity (or JDBC) as a vendor

independent Application Programming Interface

(or API) for connecting programs written in Java

to relational databases using the Structured

Query Language (or SQL). As Java was

designed to be platform independent, using the

vendor independent JDBC, the same Java

program could run on different processors and

operating systems without being rewritten.

Compared to the database applications written in

a proprietary database language, using a

database management system available only

from a single vendor and on a single platform,

this approach was a huge breakthrough. JDBC

has been updated several times but still has no

visual database development tools. Up to this

point JDBC 4.3 released in 2017, under JDK SE

9, is the latest stable version.

Fig. 1. - JDBC to database communication architecture.

In Figure 1 we can also see the ODBC

abbreviation which stands for Open Database

Connectivity that was originally a proprietary

Sybase Open Client API which MS SQL Server

inherited when Microsoft bought the Sybase

source code and the rights to produce their own

Windows based RDBMS from that codebase

from Sybase Corp. As the first Microsoft’s

ODBC API was released in 1992 - a C

programming language interface for database

interaction - this was already available on the

database market before de first JDBC API [2]

was released. JDBC designers tried to adapt this

new architecture to deal with the database

vendors that already provided ODBC drivers for

they databases. To access ODBC databases

using the JDBC interfaces a JDBC/ODBC

bridge program must be used. Both JDBC and

ODBC are based on the same idea: applications

are using the API to talk to the driver manager,

which, in turn, use the driver to talk to the

database. This means that most of the

programmers will only use the API to work with

the database. The JDBC driver is a software

component that enables java application to

interact with the database. There are 4 types of

JDBC drivers [7]:

1. translates JDBC to ODBC and relies on

the ODBC driver to communicate with

the database; the JDK only contains the

JDBC/ODBC bridge which requires the

correctly configured ODBC driver;

2. native-API driver: partially java driver

and partially native code; it

communicates with the client API of the

database and needs some platform

specific code in addition to the Java

library;

3. network protocol driver (middleware

driver): a pure Java client library that

uses a database independent protocol to

communicate database request to a

server component which translates the

request to database specific protocol;

4. thin driver (pure Java driver): a pure Java

library that translates JDBC calls directly

to database specific protocol.

The JDBC/ODBC bridge driver that was part of

Java 5, 6, and 7 has no longer support in Java 8.

This means that after upgrading to Java 8 and try

to connect to a MS Access database (or other

10

databases that require an ODBC driver instead

of a JDBC driver) you will get the error:

'java.lang.ClassNotFoundException:

sun.jdbc.odbc.JdbcOdbcDriver'. One of the free

solutions available as an open-source Java JDBC

driver (type 4) implementation that allows Java

developers and JDBC client programs to

read/write Microsoft Access databases is named

UcanAccess and can be found at [5].

1.3 CURD in SQL for JDBC

The term CRUD is an acronym of four

fundamental operations to obtain persistent

database applications:

• Create - create data;

• Read - read data;

• Update - update data;

• Delete - erase data.

JDBC communicates with the database using the

SQL language. It is not the purpose of this work

to give a description of the SQL language;

however a brief SQL introduction is going to be

performed using the table from Figure 1 in order

to perform CURD operations on the table. It

should be noted that the ID column (field) in

Table1 is PK and it has the AutoNumber type. In

MS Access this type is automatically

incremented and is used to create an identity

column which uniquely identifies each record.

Fig. 2. - MS Access table structure used in the flat

database.

In CRUD operations the 'C' is an acronym for

create, which means to add or insert data into the

SQL table. At SQL language level the INSERT

INTO command is used to insert rows in a table.

A typical insertion in Table1 would look like

this:

INSERT INTO Table1([program],

[instructiune],[parametri],[data],[real])

VALUES ('program4','grip','open',#2022-12-28

21:25:22#,0.0)

The 'R' in CRUD operations stands for read,

which means retrieving or fetching the data from

a table. For this the SELECT SQL command is

used on Table1. To retrieve all the records from

the table an asterisk (*) is used in the SELECT.

There is also an option of retrieving only those

records which satisfy a particular condition by

using the WHERE clause and to sort the records

ascending using the ORDE BY clause in

SELECT.

SELECT * FROM Table1

SELECT * FROM Table1 ORDER BY program

SELECT * FROM Table1 WHERE program =

'program1'

In CRUD operations the 'U' is an acronym for

update, which means making changes to the

records already present in the table. The SQL

command for this is UPDATE and it will modify

the data present in Table1. The modification of

a row from Table 1 using the WHERE clause

that is uniquely identified by the value in the ID

column is written as follows:

UPDATE Table1 SET [program]='program4',

[instructiune]='grip',[parametri]='close',[data

]=#2022-12-28 21:25:22# WHERE [ID] = 39

The 'D' in CRUD is the acronym for delete,

which means removing records from a table. We

can delete all the rows from tables using the SQL

DELETE command. There is also an option to

remove only specific records that satisfy a

particular condition by using the WHERE clause

in a DELETE query as shown in the following

example:

DELETE * FROM Table1 WHERE [ID]=39

11

2. JDBC PROGRAMMING CONCEPTS

2.1 UcanAccess driver installation in

JDeveloper

The communication between the Java

application and the desktop RDMS MS Access

is based on the third party type 4 JDBC driver

called UcanAccess. When downloaded from [5]

the “UCanAccess-5.0.1.bin.zip” archive will

contain all the necessary files for the installation.

As type 4 drivers are written in Java and stored

in jar files, the term of installation is only about

configuring the Integrated Development

Environment (or IDE), in this case JDeveloper,

to work with the classes provided as JDBC

drivers. The safest way to work with the diver is

to unzip it to a directory, keeping the default

directory name [UCanAccess-5.0.1.bin], into the

application project directory created by

JDeveloper. The following step is to add to the

Project Properties at Libraries and Classpath

the jar files shown in Figure 3:

Fig. 3. - The five jar files added to the JDeveloper

Libraries and Classpath to work with UcanAccess JDBC

driver.

2.2 JDBC programming basics

The classes used to program JDBC are

contained in the java.sql and javax.sql packages

[3], [4]. Programming consists of building

objects based on these classes to achieve the

required actions at database level. Normally the

first step is about specifying the data source

which would identify the database by describing

the location of the data using syntax similar to a

Uniform Resource Locator (or URL). The

second step is about using a registered driver to

create a connection to the database. The driver

registration is made using the static class

Class.forName(String name) and the typical

code for a MS Access database is:

Class.forName("net.ucanaccess.jdbc.Ucana

ccessDriver"); /* often not required for Java 6

and later (JDBC 4.x) */

In the case on MS Access the registration is

not required starting from Java 6, so only the

connection object must be instantiated to start a

session with the database by using:

Connection

conn=DriverManager.getConnection("jdbc:uc

anaccess:// d:\Work\Database\PrDb\test.mdb);

To execute a SQL command a Statement object

must be created as follows:

Statement stat = conn.createStatement();

Then, an SQL SELECT command stored as a

string must be created and the executeQuery()

method of the Statement must be called as:

String sql = "SELECT * FROM Table1 ORDER

BY program;

ResultSet rs = stat.executeQuery(sql);

However, if the SQL command to be executed

is: INSERT, UPDATE or DELETE the

executeUpdate() method must be called.

String sql = "DELETE * FROM Table1 WHERE

[ID]=39";

stat.executeUpdate(sql);

The executeUpdate() method returns the number

of rows affected by the SQL command, while the

executeQuery() returns an object set of the

ResultSet type. Initially, the ResultSet object is

positioned before the first row in the result. The

next() method returns true if there is a next row

in the result otherwise returns false. After

executing the next() method, the ResultSet object

updates the internal pointer to the current row.

12

The basic loop for traversing the result set look

like this:

while (rs.next())

{

 do something with the current row

}

When positioned on a row from the record set

object in order to inspect the values of a filed

several accessor methods are available

depending on the type conversions to be made,

for example getDouble() or getString(). Each

accessor has two forms, one that takes a numeric

argument (the column number) and one that

takes a string (the column name) in order to

access a certain field from the current row as

shown in the example:

String program = rs.getString(2);

double x = rs.getDouble("real");

3. JDEVELOPER IMPLEMENTATION OF

THE FLAT DATABASE

The structure of the application is presented

in Figure 4, where FrDatabase, FrInsert and

FrUpdate are JFrames created in JDeveloper

based on [9] - [11].

Fig. 4. - The three JFrames that implement the CRUD

operation on Table1 table from test.mdb MS Access

database.

The read part form the CRUD suite of

operations is visible on the main frame in Figure

5. The rows from Table1 are read into a JTable

object and can be sorted (using checkboxes) or

filtered (using the listbox) based on the program

names in the [program] field.

Fig. 5. - The main window of the Java application for

storing robot programs in the MS Access database.

The create action from CRUD is implemented

at basic level in Figure 6, where a dedicate

JFrame named FrInsert is collecting the specific

data for the new row. Form the main window the

Insert button must be clicked for this. The code

behind the button is:

fi = new FrInsert();

fi.setVisible(true);

fi.setThis(this); //stored in parent field of fi

The setThis() method transfers a reference from

the FrDatabase main window (which stays

opened) to the FrInsert window which stores it

in the parent field.

Fig. 6. - The insert JFrame to comply the create part from

CRUD.

The code on the Add button is:

String sqlins = "INSERT INTO Table1" +

"([program],[instructiune],[parametri],[data],

[real]) VALUES("+

 "'"+jTextField1.getText()+"',"+

13

 "'"+jTextField2.getText()+"',"+

 "'"+jTextField3.getText()+"',"+

 "#"+jTextField4.getText()+"#,0.0)";

parent.runSQL(sqlins);

this.dispose();

The code assembles an SQL string based on the

input values and runs the runSQL() method from

the main window based on the reference passed

to the FrInsert JFrame. Please keep in mind that

the presented sequence does not check the right

matching or the correctness of the values to be

inserted just for the sake of simplicity and clarity

of the code. The runSQL() method’s code is

given bellow:

public void runSQL(String sql) {

 Connection con;

 Statement st;

 try {

 String url =

UcanaccessDriver.URL_PREFIX + filename +

";newDatabaseVersion=V2003";

 con = DriverManager.getConnection(url,

"", "");

 st = con.createStatement();

 st.executeUpdate(sql);

 fillTable("SELECT * FROM Table1;");

 fillListBox("SELECT DISTINCT program

FROM Table1;");

 } catch (SQLException e) {

 System.out.println("Exception in runSQL: "

+ e);

 }

}

This runs the SQL command then updates the

contents of the JTable as well as the contents of

the ListBox (which will extend automatically if

a new program name is added to the database).

Increasing the productivity of code insertion can

be improved by two buttons, the Copy button,

which inserts the current row from the table, and

the Load button, which loads a program from a

text file on the disk into the database. If a

statement is just copied them it can be modified

easily using the Update button. If a sequence of

statements is stored in a text file this can be

uploaded to the database using the

JFileChooser() from Figure 7. After the upload

the name of the file is going to be the name of

the program as shown in Figure 8 (the inserted

rows are shown selected).

Fig. 7. - The JFileChooser() object used to select a

program file.

Fig. 8. - The main window contents after loading a file to

the database.

The update procedure in CURD is implemented

with the help of a distinct JFrame named

FrUpdate. This will retrieve the data of the

current row and display it in the update form as

shown in Figure 9. The update procedure could

change the entire content of the row but will

always keep the same ID.

Fig. 9. - The update JFrame to comply the update part

from CRUD.

The delete in the CRUD refers the process of

erasing rows in the table. This doesn’t need a

separate window as the row or rows can be

14

selected directly from the main window. The

code form the Delete button is:

DefaultTableModel model =

(DefaultTableModel) jTable1.getModel();

String sql;

int[] selected = jTable1.getSelectedRows();

for (int i = selected.length - 1; i >= 0; --i) {

 String ID = jTable1.getModel().

getValueAt(selected[i], 0).toString();

 model.removeRow(selected[i]);

 sql = "DELETE * FROM Table1 WHERE

[ID]=" + ID;

 runSQL(sql);

}

The selected row or rows ID is returned by the

getSeletedRows() method of the JTable and

stored in the selected integer table. The for loop

will visit and delete one by one each

corresponding row with the same ID in the

database using the DELETE SQL command and

the removeRow() method will update the state of

the rows shown in the main window, as deleted

rows from the table must no longer be visible in

the view presented by the JTable.

4. REFERENCES

[1] ANTAL Tiberiu Alexandru, Microsoft

Access 97 şi 2000 în 14 cursuri, Editura

Todesco, 2000, p. 299, ISBN 973-99779-6-

0.

[2] ANTAL, T. A., ACCESS to an ORACLE

DATABASE using JDBC, Acta Technica

Napocensis, Series: Applied Mathemathics

and Mechanics, Nr. 47, Vol. III, 2004, p.63-

68, ISSN 1221-5872.

[3] ANTAL, T. A., Elemente de Java cu

JDeveloper - îndrumător de laborator,

Editura UTPRES, 2013, p.150, ISBN: 978-

973-662-827-6.

[4] ANTAL, T. A., Java - Iniţiere - îndrumător

de laborator, Editura UTPRES, 2013, p. 246,

ISBN: 978-973-662-832-0.

[5] https://ucanaccess.sourceforge.net/site.html

[6] https://dl.acm.org/doi/pdf/10.1145/362384

.362685

[7] ANTAL, T .A., Using Oracle JDeveloper

10g to build a Microsoft Access database

Java interface, Acta Technica Napocensis,

Series: Applied Mathemathics and

Mechanics, Nr. 50, Vol. VII, 2007, p.33-38,

ISSN 1221-5872.

[8] ANTAL Tiberiu Alexandru, Proiectarea

paginilor Web cu HTML, VBScript şi ASP -

ediţia a II-a, Editura RISOPRINT, 2006,

p.264, ISBN 973-751-349-5.

[9] HORSTMANN, C. S., Core Java SE 9 for

the Impatient - Second Edition, Addison-

Wesley, 2018, p. 538. ISSN 978-0-13-

469472-6.

[10] SCHILD, H. Java: The Complete

Reference, Eleventh Edition, McGraw-Hill

Education, 2019, p. 1208, ISBN: 978-1-260-

44023-2.

[11] HORSTMANN, C. S., CORNELL, Core

Java 2: Volume II – Advances Features,

Seventh Edition, Prentice Hall, 2005,

ISBN13: 9780131118263.

O implementare CRUD în mediul de dezvoltare JDeveloper folosind sistemul de gestionare a

bazelor de date relaţionale MS Access a unei baze de date cu un singur tabel pentru

stocarea programelor robot

Lucrarea îşi propune să dea o descriere detaliată a modului de implementare a unei interfeţe

grafice Java pentru dezvoltarea unei aplicaţii ce foloseşte un singur tabel pentru stocarea de

programe robot. Cercetarea utilizează mediul JDeveloper şi sistemul de gestiune a bazelor de date

MS Access prezentând particularităţile unei implementări care trebuie să asigure gestionarea

elementară, în sensul de CRUD (creare, citire, actualizarea şi ştergere), a datelor din aplicaţie.

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca, Department

of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul Muncii, Nr.

103-105, Cluj-Napoca, ROMANIA.

