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Abstract: Various algorithms used nowadays in artificial intelligence need big data to train and test the 

models such that to ensure high accuracy and generality of the model and avoid the so-called underfitting 

problem. However, not all practical applications have sufficient data in their sets to train and test such 

models. This is a major challenge for the adoption of traditional machine learning or deep learning 

algorithms in areas where the processes are not suitable to collect big data. There are also cases no big 

data is needed, but small data are of interest. In such cases, novel algorithms of artificial intelligence are 

required to design models that can provide customized solutions based on small datasets. This paper 

highlights how TRIZ can be used to formulate some inventive strategies to handle these two categories of 

problems.  
Key words: TRIZ, small data, artificial intelligence, inventive problem solving, . 

 
1. INTRODUCTION 
  

Artificial Intelligence (AI) refers to the field 
of imbuing machines with human-like 
intelligence, allowing them to solve problems as 
effectively as humans [1]. The ability to learn, 
understand, and imagine are natural qualities of 
humans, which is not the case with machines. An 
artificially intelligent system refers to a man-
made system that possesses similar or superior 
levels of these qualities [2]. The ultimate goal of 
AI is to create systems that can match or exceed 
human intelligence. Examples of AI today 
include Data Science, Knowledge 
Representation, Machine Learning, and Deep 
Learning [3].  

Artificial intelligence algorithms today 
primarily seek to identify patterns and forecast 
future trends in analyzed systems using data 
collected from those systems, typically input, 
and output data [4]. Despite recent 
advancements, AI is still limited in its ability to 
provide explanations. The current state of AI is 
often referred to as "narrow-AI" or "weak-AI", 
as it is designed to perform specific tasks that are 
narrowly defined and structured. Artificial 
Narrow Intelligence (ANI) refers to any AI 

algorithm that can outperform humans in these 
limited tasks, such as handwriting recognition or 
facial detection, but it is not capable of broader 
intelligence [5].  

AI remains untrustworthy for decision-
making in sensitive and high-risk areas, such as 
finance, healthcare, and energy, where even 
slight inaccuracies of 0.01% could have serious 
consequences. The term AI may eventually be 
replaced with "pseudo-AI" once it is widely 
recognized that AI still falls short of true 
intelligence. Additionally, experts often play a 
significant role in operating AI systems, acting 
as a "person-in-the-loop". Therefore, a more 
accurate and transparent term for AI is 
"computational intelligence" [6].  
 
2. THE PROBLEM 
 

Machine Learning (ML) and Deep Learning 
(DL) have become increasingly popular areas in 
the field of artificial intelligence due to their 
practical applications. ML employs algorithms 
to analyze data, learn from it, and make 
predictions or determinations about the subject 
matter. By learning from vast amounts of data, 
ML enables computers to perform complex tasks 
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that were previously impossible for humans. 
This is achieved by "training" the computer with 
data and algorithms that allow it to learn how to 
execute the task [7].  

DL is a specific subset of ML that uses a 
category of algorithms known as neuronal 
networks (NN) to perform tasks. Different 
models of NN have been developed for various 
types of problems, and they all require a large 
amount of data to be trained effectively [8]. The 
success of a model in ML or DL depends on how 
well it generalizes new input data from the 
problem domain. This is crucial to making 
accurate predictions or analyses on future input 
data that the model has never seen before. 
Algorithms that overfit or underfit in relation to 
the training dataset are considered to have poor 
performance [9]. An algorithm is said to be 
underfitting when it cannot capture the 
underlying trend of the data, which leads to 
inaccurate results. This condition results in high 
bias and low variance in technical terms [10].  

When a small dataset is used to build a model, 
or when a linear model is built with insufficient 
non-linear data, the resulting model may make 
inaccurate predictions or analyses [11]. On the 
other hand, overfitting occurs when an ML (DL) 
model is trained with excessive amounts of data, 
leading the model to learn from noise and 
inaccurate data entries in the dataset. Too much 
detail and noise can hinder the model's ability to 
generalize a problem [12]. 
 In the field of artificial intelligence, the true 
challenge lies not in having too much data, as 
established procedures exist to reduce data sets 
to manageable sizes. Instead, the real obstacle is 
presented by situations where data is scarce, yet 
an AI model designed for big data is required. In 
some cases, acquiring large amounts of data is 
simply not feasible, necessitating the 
development of AI algorithms tailored for 
smaller datasets. Humans often rely on small 
amounts of data to make decisions and seek 
personalized solutions that fit their individual 
characteristics, rather than approximations. 
Personalized medicine, which provides unique 
treatments tailored to an individual's genetic 
makeup, and shoes that fit perfectly to the unique 
pattern of one's feet, are examples of this 
personalized approach. Therefore, AI algorithms 
should be approached from another perspective, 

one that recognizes the importance of 
identifying small yet logical relationships within 
data that can be understood within the context of 
a specific problem. Though big data can also be 
adapted to personalized problems, small data 
presents a unique set of advantages and must not 
be overlooked in the development of AI 
algorithms.  
 Thus, in the field of artificial intelligence, one 
major challenge is the lack of sufficient data in 
certain use cases to properly train machine 
learning algorithms or neural network models. 
Another challenge is creating AI models based 
on small datasets. Addressing these challenges 
requires a creative engineering process and the 
exploration of inventive problem-solving 
techniques. One effective tool in this group is the 
TRIZ method, which offers a system of concepts 
and tools for approaching barriers or conflicting 
problems in a creative way [13]. In the following 
sections, we will explore the potential of TRIZ 
to address these two types of AI-related 
challenges. The paper will conclude with key 
findings, limitations, and insights for future 
research on this topic. 
 
3. OVERCOMING UNDERFITTING IN AI  
 

Figure 1 portrays underfitting in several 
machine learning and deep learning cases. 
 

 
Fig. 1. Appropriateness of models in artificial 

intelligence 
 
Figure 1 illustrates the wrong models used for 

a set of data (left, right columns), and the good 
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one (middle). To apply TRIZ to address 
underfitting, the first crucial step is to transform 
the specific problem into a general one. 
Therefore, it is essential to clearly define the 
problem. However, a problem arises when we 
encounter the scenario depicted in Figure 2, 
where we only have access to a portion of the 
complete dataset. In this situation, even if the 
model accurately describes the small dataset, it 
is inappropriate for the entire system, which is 
defined by the complete dataset.  
 

 
Fig. 2. The problem with access to few data 

 
Data from Figure 2 is extracted from a bigger 

data set, shown in Figure 3. Graphs in Figure 2 
and Figure 3 are created with Matplotlib / 
Python. In Figure 3, we have introduced a 
function y=cos(1.5⋅πX) (see the cyan curve). 
Around this function we have created 
deviations, generating the dataset represented by 
the blue dots. Using ML algorithms (here 

polynomial regression), we have created a 
representation model with polynomials.  

The left graph in Figure 3 illustrates a model 
represented by a first-degree polynomial. We see 
that the model is wrong because it underfits the 
dataset. In the second graph from the middle, we 
modelled the dataset with a degree 4 polynomial, 
which describes quite accurately the dataset. The 
third graph from the right side uses a degree 15 
polynomial to describe the data set. It overfits 
the dataset. In Figure 3, "MSE" stands for "mean 
square error". 

Assuming that only a subset of the complete 
dataset was collected in our experiments (as 
shown in subsets A and B of Figure 2), we can 
use a machine learning algorithm to generate a 
linear model for case A and a second-degree 
polynomial model for case B. Although both 
models appear to be accurate, they only provide 
a partial representation of the complete data set 
due to missing data resulting from poor 
experimentation or time constraints. Moreover, 
the linear model in subset A is not the same as 
the one depicted in the left graph of Figure 3. In 
a new scenario illustrated in Figure 2, subset C, 
where it was not possible to collect a large data 
set, but the available data covers the margins of 
the complete dataset, there is a zone in the 
dataset with missing information.  

 

 
Fig. 3. The problem with over and underfitting 

We are able to find the right model for the 
system even with a limited amount of data 
(Figure 2, C), without knowing the values of the 
missing data set from the complete set, which is 
shown in Figure 3. The polynomial of degree 4 

from the middle graph in Figure 4 provides the 
proper model, highlighting the possibility of 
adopting strategies to generate adequate models 
even with small datasets. In this case, the 
strategy involves operating the system at its 
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limits and collecting data from the margins and 
center of the system's outputs. Despite the small 
dataset (only 20% of the whole set), an ML 
algorithm (polynomial regression) can generate 
the correct model. It's worth noting that 

overfitted models are not valid with small 
datasets (compare the third graph from the left in 
Figure 4 with the right graph in Figure 4). 
Graphs in Figure 4 are visualized with 
Matplotlib / Python. 

 

 
 

Fig. 4. Finding the appropriate model for a system using a small dataset 
 

To ensure an ML model can properly 
generalize any new input data in the problem 
domain, we need to understand two crucial 
indicators: bias and variance (see Fig. 5).  
 

 
Fig. 5. Bias and variance in ML 

 
Bias refers to the assumptions made by a 

model to facilitate learning, while variance 
measures the error in training models. In case the 
model is trained on training data and obtains a 
low error, but after changing the data and 
training the same model, we experience a high 
error; the deviation between the two cases 
reflects the variance. In underfitting problems, 

the bias is high, and the variance is low, while 
the opposite is true for overfitting problems, 
where the bias is low, and variance is high. The 
mathematical formulas for bias and variance are: 
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where N is the number of testing data, B is the 
number of training set sampled from the whole 
training data, yi is the value of the target output 
(target property), f(xi;Dk) is the output predicted 
by the model using the training set Dk, �(̅xi) is the 
average of predicted output for the sample i. 
 
4. TRIZ TO TACKLE UNDERFITTING 
 

In this section, we introduce the application 
of TRIZ to formulate strategies that can handle 
the underfitting problem when dealing with 
small datasets. Although it is not the aim of this 
paper to cover all possible strategies, we 
demonstrate that it is feasible to find solutions to 
this problem using structured innovation tools 
such as TRIZ. 
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The problem we face is achieving a "high 
accuracy model (low variance, low bias)" 
without requiring a large dataset. In TRIZ 
terminology, this problem can be expressed as 
follows: 
• Reduce the "quantity of data (principle 26 

[14])" without compromising the "accuracy 
of measuring system's performance 
(principle 28)." 

• Reduce the "complexity of the system, 
method, or tool (principle 36)" without 
affecting the "accuracy of measuring 
system's performance (principle 28)." 

Applying the matrix of contradiction from the 
TRIZ toolbox [14], we can derive the following 
generic recommendations, as described in the 
following paragraph: 
• Inversion or reversion 

• Instead of taking an action that is dictated 
by the specifications of the problem, 
implement an opposite action. 

• Make a mobile (movable) part of the 
system (or the outside environment) 
immobile and vice versa. 

• Turn the system "upside-down".  
• Extract, retrieve or remove some elements 

from the system. 
• Extract, remove or separate a "disturbing" 

element (unit) or property from the 
system. 

• Extract only the necessary element, 
component, or property from the system. 

• Replacement of a traditional system  
• Replacement of a traditional system by a 

softer system. 
• Copying 

• Use simple and inexpensive copies 
instead of a system that is complex, 
expensive, or inconvenient to operate.  

• Replace a "hard" system by its "soft" 
copies.  

• Prior action 
• Carry out in advance the required actions 

or changes (completely or partially) to the 
system. 

• Arrange/place parts of the system in 
advance in a way they can go immediately 
into action when required and they do this 
from the most convenient position. 

• Rejecting and regenerating parts  
• After an element of the system has 

completed its function or becomes 
useless, it should be rejected or modified 
during the work process. 

The set of generic indications is further used 
to formulate some smart strategies to deal with 
an underfitting problem in the case where only 
small datasets are available. 
 
5. EXEMPLIFICATION 
 

Applications of artificial intelligence cover a 
wide area. A good strategy also imposes to 
consider the context where it is applied. 
Therefore, the next proposals must be seen in the 
context, and not universally applicable.  
 

5.1 Exemplification in material science  
 
To illustrate the application of TRIZ in 

addressing the underfitting problem with small 
datasets, we provide an example from the field 
of material science. Compared to other fields, 
datasets in materials science tend to be smaller 
and more diverse. 

In this context, the "degree-of-freedom" of 
the machine learning (ML) model can help 
address the issue of small data. However, the 
presence of the "accuracy-degree of freedom" 
association can result in underfitting and a large 
prediction bias, thereby reducing accurate 
predictions in unknown fields. 

One approach to improving accuracy is by 
manipulating the training data, such as by adding 
more examples to the training set (see formulas 
(1) and (2)). However, expanding the dataset 
leads to a highly complex ML model, and the 
physics incorporated in it can be difficult to 
interpret. Additionally, increasing the amount of 
experimental data can also result in higher costs. 

Empirical studies in material science have 
shown that doubling the size of the data can 
decrease the error by approximately 23%. 
However, this approach also exponentially 
increases the cost of conducting additional 
experiments, which poses practical challenges to 
improving accuracy by adding new materials 
data. 
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For this case, we consider from the above list 
of TRIZ inventive principles the one referring to 
“instead of taking an action that is dictated by 
the specifications of the problem, implement an 
opposite action” in combination with “extract 
only the necessary element, component, or 
property from the system”.  

This leads to the following particular strategy: 
the ML model can be constructed by restricting 
the configurational space of materials, such as 
predicting the band gaps of selected families of 
materials with fixed composition or crystalline 
structure instead of modeling combinations 
covering a wide compound space. The 
constructed ML model gains more accuracy but 
sacrifices generality when it is applied outside of 
the restricted field. Considering the less 
flexibility of training data, the strategy imposes 
to design appropriate feature space in the ML 
model. This means, besides the data used in the 
ML model to make predictions, some external 
metric is considered to assist this prediction (to 
introduce an offset to the expected low accuracy 
result from the ML model). This external 
indicator can be generated from simulations.  
 
5.2 Exemplification on chatbot design 

 
Another example that demonstrates the 

application of TRIZ to tackle the underfitting 
problem involves chatbots used by public 
administration for citizen interaction. To enable 
a more natural and profound interaction between 
humans and virtual assistants, natural language 
processing (NLP) algorithms are used to train 
the machine learning (ML) model. However, in 
many cases, there may not be sufficient data to 
properly train the chatbot, especially in the early 
stages of deployment. 

To address this issue, we can apply the TRIZ 
inventive principle of arranging or placing parts 
of the system in advance so that they can 
immediately go into action from the most 
convenient position. This principle can be 
combined with the inventive principle of 
rejecting and regenerating parts of the system 
that have completed their function or become 
useless during the work process. 

The combination of these principles leads to 
the solution of "learning transfer," which 
involves extracting knowledge from ML models 

trained on one class of problems to solve another 
class of problems with less data. Of course, as 
more data is accumulated over time, the ML 
model will continue to improve. 

In summary, the application of TRIZ can 
provide structured and innovative solutions to 
address the underfitting problem in various 
domains, such as material science and chatbot 
development. By leveraging TRIZ inventive 
principles, we can find solutions that may not be 
immediately apparent, enabling us to overcome 
the limitations of small datasets and improve 
accuracy in machine learning models. 
 

5.3 Exemplification on image handling 
 
Another example that illustrates the 

application of TRIZ to overcome the 
underfitting problem involves the use of 
automatic vision systems for quality assurance 
tasks in manufacturing processes. These systems 
are designed to detect defects, such as scratches, 
in the product. However, the database with 
images containing shapes of scratches is often 
limited, which can pose a challenge for training 
a highly accurate machine learning model. 

To address this problem, we can apply the 
TRIZ inventive principle of copying, which 
involves using simple and inexpensive copies 
instead of a complex, expensive, or inconvenient 
system. This principle can be implemented by 
creating artificial images with scratches using 
generative art algorithms through 
randomization, deep learning with GAN 
algorithms (generative adversarial network), 
variational autoencoders, or image 
augmentation. These approaches can 
superimpose various shapes of defects over a 
proper image, providing a diverse dataset for 
training the machine learning model. 

By using these TRIZ-based strategies, we can 
train highly accurate machine learning models 
for quality assurance tasks in manufacturing 
processes, even when the available dataset is 
limited. This demonstrates the power of 
structured innovation tools like TRIZ in finding 
effective and unconventional solutions to 
challenging problems. 
 

5.4 Exemplification from robotics 
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This example concerns social robotics, where 
we aim to create a robot capable of interacting 
with children and drawing together. As this is a 
new task, there is a lack of data available, which 
presents a challenge for training an accurate 
machine learning model. To address this issue, 
we can use the TRIZ inventive principle of 
"carrying out in advance the required actions or 
changes (completely or partially) to the system," 
combined with the principle of "inversion." 

One potential solution that follows this 
approach is "self-supervised learning." To 
implement this, we could take various images of 
pre-existing drawings, break them into puzzles, 
and ask the system to reconstruct the original 
image. By asking the model to solve this "fake" 
problem, it will gain domain knowledge that can 
be used as a starting point for the new task, 
which has limited available data. By leveraging 
TRIZ-based techniques, we can overcome 
challenges in developing new and innovative 
solutions in the field of robotics, such as 
developing a robot that can interact with children 
and draw together. These methods help us to 
develop unconventional solutions that are 
effective in solving complex problems. 
 

5.5 Exemplification on security 
 
In the security field, an example where TRIZ 

can be applied is the installation of a new ATM 
system, where a vision system is needed to 
monitor potentially malicious activities. 
However, the problem arises from the lack of 
sufficient data, as there are not enough videos or 
images of bad behaviors available for training 
the machine learning model. To address this 
issue, we can apply the TRIZ inventive principle 
of "turning the system upside-down".  

This involves training the model with only 
proper behaviors instead of searching for 
problematic ones. By doing so, the machine 
learning algorithm can learn to recognize and 
signal any activity that deviates significantly 
from the norm, alerting security as a potential 
threat.  

Applying TRIZ in this manner can help us 
overcome the challenge of limited data in the 
safety field, enabling us to create effective 

solutions for ensuring the safety of individuals 
and systems. 

 

5.6 Exemplification in quality assurance 
 
This example concerns quality assurance in 

small series or customized production. Unlike in 
mass production, where large data sets can be 
collected and statistical analysis used for quality 
assurance, small series production often lacks 
such large data sets, making manual inspection 
by operators the norm. However, manual 
inspection can be prone to errors, and in the case 
of premium products, such errors are 
unacceptable. Therefore, we propose using 
automatic systems to perform inspection, and to 
achieve this, we suggest applying the TRIZ 
inventive principle of "replace a 'hard' system 
with its 'soft' copies." 

To put this principle into practice, we can 
train the machine learning model in hundreds, 
and over time, thousands of easy inspection 
tasks, each with a very small number of samples. 
By doing so, the ML model learns to identify the 
most relevant patterns of defects, as each test has 
very few data points. Once we have trained the 
model in this way, we can expose it to more 
complex inspections with very few samples. 
Because the system is now trained to analyze 
situations with small data sets, it is better able to 
handle the demands of small series or 
customized production. 
 

5.7 Exemplification on no-data cases 
 
In some situations, it may not be possible to 

collect previous data about a system, yet 
automatic recommendations are still desirable. 
Machine learning models heavily rely on data, 
so what can we do when there is no data 
available? In this case, the TRIZ inventive 
principle "replacement of a traditional system by 
a softer system" can be applied. Combining this 
principle with "carry out in advance the required 
actions or changes (completely or partially) to 
the system" leads to the idea of encoding human 
knowledge. This can be accomplished by 
leveraging the knowledge of people involved in 
the current process and experts in the field to 
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engineer an ML system that incorporates human 
expertise. 

To put this strategy into action, we can 
translate human knowledge into numerical 
values and model the correlations and 
relationships between various inputs and 
outputs. We can then validate the model's 
accuracy using a limited set of data. Once the 
system is calibrated, it can be used to predict 
outputs at a given moment in the future based on 
specific values of the inputs collected in the 
present. This approach can be called "human-
coded knowledge," and it offers a way to 
develop an ML system that does not require 
previous data, yet still delivers automatic 
recommendations. 
 

5.8 Exemplification on poor-data cases 
 
In some cases, designing a good model from 

the beginning can be difficult because the 
available data cannot be augmented or 
transformed to generate a larger dataset for 
training the model. In such situations, we can 
apply the TRIZ inventive principle of "making 
an immovable part movable" or, if that's not 
possible, "acting upon the external environment 
and turning it from immovable into movable." 

This strategy suggests building the ML model 
with the available data while accepting that the 
model may be weak and prone to errors in 
predictions or classifications. However, the 
system should be designed with the possibility 
of a human expert being in the loop to make 
corrections to the results. The deviation between 
the predicted and actual results can be used as a 
lesson for the system to adjust its predictions, 
thereby improving its accuracy over time. This 
approach is known as "human-in-the-loop 
learning." 
 
5.9 Exemplification on limited-data cases 

 
When faced with limited data but a clear idea 

of the data boundaries, the TRIZ inventive 
principle "use simple and inexpensive copies 
instead of a system that is complex, expensive, 
or inconvenient to operate" can be applied. To 
generate more data, we can create simulated 
environments that mimic the real world and use 
the data collected from these simulations to train 

the ML model. With the ability to easily reset 
and run many simulations, we can improve the 
accuracy of the model. In addition, techniques 
such as Monte Carlo simulation can also be 
employed to generate more data. Synthetic data, 
which mimics the schema and statistical 
properties of real data, can also be created to 
supplement the limited data.  
 
5.10 Exemplification on object recognition 

 
In certain applications, such as object 

recognition in a scene, obtaining a small dataset 
can be a challenge. To overcome this, we can 
apply the TRIZ inventive principles "reject or 
modify an element of the system after it has 
completed its function or becomes useless" and 
"arrange/place parts of the system in advance in 
a way they can go immediately into action when 
required and they do this from the most 
convenient position". This can be achieved by 
augmenting the small dataset through techniques 
such as rotation, decolorization, scaling, and 
zooming of images, among others. These 
techniques enhance the dataset and improve the 
training of the ML model to avoid underfitting 
problems. 

It is worth noting that there are several 
strategies to tackle this problem, and each one 
suits a particular case. Therefore, customized 
strategies must be designed after careful analysis 
of the particular problem. Using structured 
methodologies such as TRIZ can assist in this 
process, as it offers a wide range of tools beyond 
the contradiction matrix, which was explored in 
this paper. These additional methods are likely 
to have even greater potential to aid model 
design in artificial intelligence. 

 
6. TRIZ FOR SMALL DATA BASED AI 
 

In this section, we explore another 
perspective of artificial intelligence that utilizes 
small data. These are models that differ from 
traditional ones in the field of machine learning 
or deep learning, as they don't require massive 
amounts of data for training. Small data refers to 
information that can be observed and processed 
without special algorithms, such as data about an 
individual student in a class. In contrast, big data 
is collected from many sources and requires 
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advanced algorithms to process. Numerous 
opinions suggest that over 65% of the greatest 
inventions in the world are based on small data, 
indicating that AI driven by small data may be 
the future instead of traditional approaches that 
rely on big data. However, the value of AI driven 
by big data remains and will continue to be 
useful. Nevertheless, the power and intelligence 
of AI will improve further when AI algorithms 
can effectively train with small data. 

Complex systems exhibit a behavioral 
characteristic where the agents within the system 
tend to follow a collective pattern of behavior 
over time. This phenomenon is prevalent in the 
scientific community as well. When a certain 
field or approach gains popularity in publishing 
scientific papers, many researchers succumb to 
the temptation to imitate. Similarly, in the field 
of AI, the prevailing trend is to use deep learning 
models in cited publications. However, in many 
cases, complex machine learning models or deep 
learning with neural networks are unnecessary to 
create powerful AI models. Moreover, big data 
is often seen as a panacea for AI models, but the 
institutional movement to adopt AI models 
based solely on big data is not always well-
founded. In reality, many problems cannot be 
solved with big data, and instead, small data are 
required to derive meaningful conclusions. 

For instance, when a manager seeks to 
understand each employee's profile, they require 
small data and intelligent algorithms that can 
translate it into the individual profile of a 

particular employee. Thus, we need AI 
algorithms that can derive meaning from unique, 
individual data. If we want to create customized 
production instead of mass production, we must 
handle small data and design a distinctive value 
proposition for each customer. Personalized 
medicine cannot rely on big data. Big data can 
sometimes support AI algorithms that work with 
small data to generate optimized solutions, such 
as personalized medical treatments. Since the 
human DNA sequence (genes) is unique to each 
individual, medical treatment is optimized when 
it incorporates the patient's unique pattern. 
Combining AI models that integrate big and 
small data is expected to provide significant 
value-added to our current knowledge. In fact, 
AI is about handling knowledge, not just 
processing data. 

In this section, we will illustrate how TRIZ 
can be applied to create a strategy for a small 
data-driven AI model. To demonstrate this, let's 
consider a fashion business that specializes in 
designing and manufacturing shirts for men. 
Currently, the company uses big data to tailor 
shirts, which results in a limited number of sizes, 
ranging from XXXS to XXXL, based on the 
chest and neck circumference. For instance, an 
XL size is tailored to fit chests between 106 and 
111 cm in circumference, and necks between 44 
and 45.5 cm in circumference, using the average 
data from a large number of men. The pattern for 
the standard shirts in XL size is shown in Figure 
6, A. 

 

 
Fig. 6. The standard pattern for tailoring XL size men shirts 

 
The mass customization business model aims 

to create individualized products, which requires 

a solution to produce cost-effective shirts for 
each customer. Personal data such as neck, 
length, chest, stomach, hip, and sleeve  
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measurements can be collected to automatically 
create a personalized pattern for each piece of 
the shirt. 

Using robotic systems, these pieces can be 
automatically cut according to the pattern 
indicated by the computer and sent to the maker-
shop for final assembly. However, the challenge 
is to create personalized patterns for each piece 
of the shirt using only a set of five data points, 
specific to each customer and not just average 
values derived from big data. 

This problem is characterized by the 
conflicting parameters of "highly accurate 
patterns" vs. "the use of many measurements," 
which can be translated into TRIZ language as 
("Accuracy of measurement") vs. ("Amount of 
substance"). To address this, we can use a set of 
TRIZ inventive principles. They are: 
• Extraction: extract, remove or separate the 

disturbing parts or properties from an object 
or single out the only necessary part or 
property. 

• Universality: if the object can perform 
multiple functions, there is no need for 
other/additional objects. 

• Changing color: a) change the color of an 
object or its external environment; b) change 
the degree of transparency of an object or its 
external environment; c) use colored 
additives to observe an object or process 
which is difficult to see; d) if such additives 
are already being used, add luminescent 
traces or tracer elements. 

To enable a mass customization business 
model, a cost-effective solution is required to 
produce personalized products. This can be 
achieved by collecting specific data points such 
as neck, length, chest, stomach, hip, and sleeve 
measurements from the customer. These data 
points are used to create a personalized pattern 
for each garment using an AI algorithm, which 
then instructs robotic systems to cut the fabric 
pieces accordingly. These pieces are then sent to 
the maker-shop where they are sewn into the 
final garment. 

However, creating highly accurate patterns 
with only a limited number of measurements is 
a challenging problem. To solve this, we can 
apply the TRIZ inventive principles of 

"extraction," "universality," and "changing 
color." The extraction principle involves 
identifying and extracting the "disturbing" parts 
of the garment, such as the stomach and hip, and 
creating predictive fitting metadata around these 
areas. The universality principle suggests 
creating a separate AI model for each customer 
using a parametric model that depends on the 
specific measurements collected from the 
individual. These measurements, which can be 
called "predictive fitting classifiers," are used to 
generate a personalized pattern for each 
garment. 

The third inventive principle, changing color, 
involves expanding the data collection process 
to include more specific measurements from the 
customer, such as the circumferences marked in 
dark blue on Figure 6, A. While 3D scanning 
technology is an option, it may not be cost-
effective. Instead, a mobile app can be used to 
capture a photo of the customer from the front 
and lateral views, which is then converted into a 
2D shape model. The AI algorithm then converts 
this information into a 3D shape and associates 
it with the parametric patterns of the garment 
pieces and the predictive fitting metadata. This 
process creates a customized garment at an 
affordable price point. 

Over time, personalized data can be used to 
improve the predictive fitting metadata, further 
enhancing the accuracy of the personalized 
patterns. Additionally, a 3D model of the 
garment can be created and sent to the customer 
for approval before production begins (Figure 6, 
B). This step increases customer satisfaction and 
loyalty to the brand. 
 
 7. CONCLUSION  
  

In this paper, we investigate the application 
of structured innovation to address challenges in 
designing AI algorithms. Specifically, we focus 
on two cases: the underfitting problem caused by 
insufficient data for a good fit AI model driven 
by big data, and the design of AI frameworks 
when small data are the driving force and big 
data are no longer relevant. Our aim is to provide 
illustrative examples of TRIZ applications that 
inspire developers to create strategies that 
compensate for the lack of data to train the AI 
models.  
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We explore the potential of the TRIZ 

Contradiction Matrix in these examples, but we 
expect that other TRIZ related tools can also 
enhance the space of possibilities and stimulate 
non-conventional thinking in the field of 
artificial intelligence. 

The domain of artificial intelligence is vast 
and presents challenges at every step. 
Combining creative engineering tools with 
traditional AI approaches can facilitate the 
creation of the next generation of AI models and 
algorithms. For models driven by big data, such 
as those used in machine learning and deep 
learning, the main challenge is not the model 
itself, but rather the collection and preparation of 
adequate data to train the model.  

 
Traditional AI models have been formulated 

in many cases several decades ago, and even 
those related to deep learning have been around 
for a few years. However, recent developments 
in neural network algorithms for specific 
problems in deep learning indicate that progress 
is ongoing. The collection of big data requires 
significant investments in a company's IT 
infrastructure and a clear understanding of the 
insights the data can provide. Systematic 
analysis of the space of interest could be another 
area for exploration using structured innovation 
tools.  
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UTILIZAREA TRIZ PENTRU A MANIPULA SETURILE DE DATE MICI ÎN 
INTELIGENTĂ ARTIFICIALĂ 

 
Rezumat: Diferiți algoritmi utilizați în prezent în inteligența artificială au nevoie de date multe pentru 

a antrena și a testa modelele astfel încât să asigure o acuratețe ridicată și generalitate a modelului 
și să evite așa-numita problemă de slabă adecvare. Cu toate acestea, nu toate aplicațiile practice 
au suficiente date în seturile acestora pentru a antrena și testa astfel de modele. Aceasta este o 
provocare majoră pentru adoptarea algoritmilor tradiționali de învățare automată sau de învățare 
profundă în zonele în care procesele nu sunt adecvate pentru a colecta date multe. Există, de 
asemenea, cazuri în care nu sunt necesare date multe, dar datele puține fiind cele de interes. În 
astfel de cazuri, sunt necesari algoritmi noi de inteligență artificială pentru a proiecta modele care 
pot oferi soluții personalizate bazate pe seturi mici de date. Această lucrare evidențiază modul în 
care TRIZ poate fi utilizat pentru a formula unele strategii inventive pentru a gestiona aceste două 
categorii de probleme. 
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