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Abstract: The purpose of the study presented in this article is to improve the efficiency of estimating the 

effort required to develop a software product by means of k-Nearest Neighbours machine learning method 

(KNN). The data set used for training KNN method is NASA93. The evaluation is related to the parameter 

tuning concept, KNN method being characterized by 2 parameters: the distance used to determine which 

are neighbours with common characteristics and the number of used neighbours for determining the 

prediction. To determine which version of KNN method provides the most accurate values for effort, three 

metrics were calculated: mean absolute error, mean squared error, and median absolute error. 

Implementation was done using Python programming language and Scikit-learn tool.  
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1. INTRODUCTION

To guarantee precise quality, the effort put

into the development and maintenance process 

of a software product must be approximated by 

project managers as accurately as possible. To 

help them, various research had been achieved 

based on methods from the fields of probability, 

artificial intelligence [1], and graph theory [2] in 

order to estimate the effort as precisely as 

possible.  

This paper presents an effort estimation study 

based on KNN method [3], which is an artificial 

intelligence method. With this aim, the paper is 

structured as follows: 

• The second section elaborates on KNN

intelligent method used in this study.

• The third section includes the description of

the data set used for prediction.

• The fourth section presents the design details

for the prediction optimization.

• The fifth section describes the steps required

to train the intelligent KNN model related to

the parameter tuning concept.

• The sixth section evaluates the implemented

model from the perspective of 3 used metrics.

• The last section presents the conclusions of

this study.

2. KNN

Investigating the suitable literature in the

sphere of artificial intelligence [4], two 

directions of machine learning [5] (ML) are 

deduced: unsupervised learning and supervised 

learning. Supervised learning is based on a 

training model that uses a set of labelled data. 

The most known supervised learning methods 

are: KNN [6], decision trees [7], SVM [8], 

Bayesian networks [9], and artificial neural 

networks [10]. 

Because within the analysed problem we 

want to acquire a numerical value for the effort, 

and not to classify the result in a category, a 

supervised learning method [11] based on 

regression will be used. This type of method 

approximates the numerical value that an 

instance of observations can have it. Thus, in the 

research presented in this article, the KNN 

method was chosen to predict the effort.  

KNN is one of the simplest and fundamental 

classification and regression methods in 

machine learning. Distinguished from the other 

regression techniques, the KNN method is part 

of lazy learning, this means that there is no 

evident training phase before regression. 

Instead, KNN is based on a similarity of the 

features, which means that the level of similarity 
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of the characteristics of the instances with those 

of the training set determines how the new value 

will be obtained.  

   

3. DATASET ANALYSIS  

   

There are a multitude of datasets that can be 

used by effort prediction models, such as: China, 

ISBSG, Albrecht, NASA63, NASA93, and 

Tukutuku. For this study, the NASA93 [12] set 

was chosen, which includes information from 93 

software projects developed between 1971-

1987. The information is structured into 24 

attributes, and for prediction model presented in 

this article, 10 attributes were used as input data 

and one attribute for the output date.  

The ten selected attributes are described in 

table 1. In order to obtain the accurate possible 

effort, the first 5 attributes: acap, pcap, modp, 

tool, and lexp should be characterized by large 

values, and the last attributes: stor, data, time, 

virt, and cplx should be characterized by small 

values. 
Table 1 

List with input chosen attributes. 

Used Attributes Attribute Description 

acap Analysis capability 

pcap Programmer capability 

modp Modern programming practices 

tool Use of software tools 

lexp Language experience 

stor Main memory constraint 

data Data base size 

time Time constraint for cpu 

virt Machine volatility 

cplx Process complexity 

 

The attribute representing the output date is 

the actual effort (measured in Person-months), 

the values being obtained following the use of 

the Intermediate COCOMO model. 

 

4. DESIGN DETAILS  

  

In UML diagram [13] of the use cases (figure 

1), the main components of the software 

implemented for estimating the effort are 

highlighted. "Data collection" use case 

represents the process by which the original and 

unprocessed data is obtained from a csv file. 

"Data preparation" use case refers to extraction 

of data from csv file according to the 11 

attributes selected for this model, being 

dependent on the previous use case. 

"Data segregation" use case represents the 

process of dividing the data set into two 

categories: training data and test data in order to 

check the performance of the model. From the 

93 projects analysed by the NASA93 data set, 

79% of the data were used for the training set 

(meaning 73 projects) and 21% of the data were 

used for the test set (meaning 20 projects). This 

case is dependent on "Data preparation" use case 

as represented in figure 1. 

"Model training - KNN" use case refers to the 

training of the intelligent model based on the 

KNN method, being dependent on the "Data 

segregation" use case. This method will be 

analysed based on 2 parameters: the value of k 

(neighbours number) and the distance used to 

calculate the predicted value.  

"Model evaluation" use case aims to 

determine that variant of KNN model that is 

characterized by the best performances. 

 

 
Fig. 1. UML use case diagram 

  

5. MODEL TRANING 

  

For certain methods of machine learning [14], 

the parameters are variables that they use to be 

able to learn the characteristics of the data and to 

be able to adjust the learning according to the 

data set, in order to obtain the best possible 

performance. Parameter tuning [15] concept 

involves finding the optimal parameters for each 

individual method, so that the results of the 

classifier are maximum. For KNN method, 
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parameters that have been adjusted to determine 

optimal performance are as follows: 

• kNeighbours - represents the number of 

neighbours taken into account to determine 

the prediction for new instances. In this study, 

the values chosen for this parameter are 

between 3 and 10.  

• pMinkowski - represents the power 

parameter from Minkowski metric, given by 

the following formula: 

���������� = 
∑ 
⌊� − ��⌋���
��� �

�
�.         (1) 

Minkowski distance [16] is used by the KNN 

method to determine which are the neighbours 

that must be considered in order to compare their 

characteristics with those of a new instance for 

which a new prediction is desired. Thus, the 

distance metrics used determine which are the 

neighbours with the most similar characteristics 

and select the first kNeighbours from among 

them to calculate the new prediction. 

 For the prediction of the effort by the KNN 

method, 3 values for this second parameter 

between 1 and 3 were used. In the case of the 

value 1 for the pMinkowski parameter, the 

Manhattan metric is obtained (equation 2): 

 

����ℎ����� = ∑ ⌊� − ��⌋�
��� .         (2) 

 

In case of choosing the value 2 for the 

pMinkowski parameter, the Minkowski metric is 

transformed into the Euclidean metric, 

represented by the following formula: 

 

���������� = �∑ 
� − ��� �
��� .         (3) 

 

Thus, the activities required for effort 

prediction by means of the KNN method 

characterized by the 2 parameters are presented 

in the UML activity diagram [17] in figure 2. 

 

 
Fig. 2. UML activity diagram 

The implementation of the KNN method was 

achieved using Python programming language 

[18] and sklearn.neighbors library belonging to 

the Scikit-learn tool [19].  

 

6. MODEL EVALUATION 

  

KNN method evaluation and establishment of 

the variant with the best results is achieved on 

the basis of test data set described in section 4. 

Thus, for realization of this process, three 

evaluation metrics [20] used in the case of 

regression problems were used: 

• mean absolute error - signifies the average 

sum of absolute errors, characterized by the 

following formula: 

 

!"# = �
�
∙ ∑ ⌊� − %�⌋�

��� .         (4) 

 

• mean squared error – evaluates the standard 

deviation of the estimated value, 

characterized by the following formula: 

 

!&# = �
�
∙ ∑ 
� − %�� �

��� .         (5) 

 

• median absolute error – is calculated by 

taking the median of all absolute differences 

between the target and the prediction, 

characterized by the following formula:   

 

!�"# = '(�)*+
,|� − %�|.���
� �.      (6) 

 

The calculation of the specific values of the 3 

metrics was done through sklearn.metrics library 

belonging to the Scikit-learn tool [21]. 

In the case of mean absolute error metric, 

varying the 2 parameters kNeighbours and 

pMinkowski, the results shown in table 2 were 

obtained. A graphic comparison of the values 

obtained for MAE metric is shown in figure 3. 

Analysing the values in table 2, it is found 

that the minimum value for the MAE metric was 

obtained in the case of using Manhattan distance 

and value 5 for the kNeighbours parameter, 

being equal to 188,812.  

In the case of the mean squared error metric, 

varying the 2 parameters kNeighbours and 

pMinkowski, the results shown in table 3 were 

obtained. 
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Table 2 

Mean absolute error values. 

k \ d  Manhattan Euclidean Minkowski 

3 218.280 390.300 339.350 

4 208.505 282.732 277.668 

5 188.812 333.705 264.915 

6 333.392 317.312 241.169 

7 359.463 352.978 359.987 

8 366.235 415.629 470.837 

9 359.453 433.755 494.918 

10 337.126 455.511 466.531 

 

 
Fig. 3. Graphical representation - MAE 

 

A graphic comparison of the values obtained 

for the MSE metrics is shown in figure 4.  

Analysing the values in table 3, it is found 

that the minimum value for the MSE metric was 

obtained in the case of using Manhattan distance 

and value 5 for the kNeighbours parameter, 

being equal to 77600.596. 
Table 3 

Mean squared error values. 

k \ d Manhattan Euclidean Minkowski 

3 105907.336 718510.204 583997.154 

4 122054.139 371385.885 369796.779 

5 77600.596 421617.145 272512.748 

6 276603.631 274088.560 175444.459 

7 313011.964 244778.697 254162.304 

8 287861.258 420147.357 503718.432 

9 251656.849 459235.509 555439.268 

10 246960.323 493201.021 522394.392 

 

 
Fig. 4. Graphical representation - MSE 

 

In the case of the median squared error 

(MdAE) metric, varying the 2 parameters 

kNeighbours and pMinkowski, the results 

presented in table 4 were obtained. A graphic 

comparison of the values obtained for the MdAE 

metrics is shown in figure 5.  
Table 4 

Median squared error values. 

k \ d Manhattan Euclidean Minkowski 

3 94. 667 94.833 94.697 

4 89.251 93.625 97.625 

5 88.973 92.893 107.376 

6 129.437 130.785 138.473 

7 147.829 171.417 191.583 

8 189.382 201.538 214.643 

9 206.573 216.256 235.251 

10 214.839 224.375 264.561 

 
Fig. 5. Graphical representation - MdAE  
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Analysing the values in table 4, it is found 

that the minimum value for the MdAE metric 

was also obtained in the case of using Manhattan 

distance and value 5 for kNeighbours parameter, 

being equal to 88,973. 

Considering that, according to the 3 metrics 

used, the best results were obtained in the case 

of using the Minkowski distance to the power of 

1 (case when this becomes Manhattan distance) 

and the number of neighbours equal to 5, figure 

6 shows a comparison between the current effort 

and the values predicted by the KNN method. 

 

 
Fig. 6. Testing results 

 

Analysing the previous results, it is found that 

KNN method characterized by value 5 for the 

kNeighbours parameter and value 1 for the 

pMinkowski parameter has the ability to better 

capture the sequential dependencies in the data 

set and to predict, as accurately as possible, the 

future values.  

 

7. CONCLUSIONS  

   

In the presented work, a software based on 

KNN machine learning method was designed, 

implemented, and evaluated to estimate the 

effort required to develop a software project 

expressed in Person-months. 

To train the model, the NASA93 data set 

characterized by information obtained from 93 

projects was used, and for its evaluation 3 

metrics were calculated: mean absolute error, 

mean squared error, and median absolute error. 

The implementation was made using the Python 

programming language and the Scikit-learn tool. 

In order to obtain results appropriate to the 

current effort, the two parameters that 

characterize the KNN method were varied, and 

predicted results were extracted in the situation 

where the 3 metrics are characterized by 

minimum values. Thus, the most accurate 

estimated values were obtained when the 

pMinkowski parameter is equal to 1 and the 

kNeighbours parameter is equal to 5.  

This new approach chosen for improving the 

estimated effort obtained with the help of the 

KNN method can be improved, in the future, by 

comparing it with results generated by other 

intelligent methods.  
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Estimarea efortului necesar dezvoltării unui software prin intermediul metodei KNN  

 

Scopul studiului prezentat în acest articol constă în eficientizarea estimării efortului necesar 

dezvoltării unui produs soft prin intermediul metodei de învățare automată k-Nearest Neighbors 

(KNN). Setul de date utilizat pentru antrenarea metodei este NASA93. Evaluarea este raportată la 

conceptul parameter tuning, metoda KNN fiind caracterizată de 2 parametrii: distanța utilizată pentru 

a determina care sunt vecinii având caracteristici comune și numărul de vecini luați în considerare 

pentru a determina predicția. Pentru a determina care variantă a metodei KNN furnizează cele mai 

exacte valori pentru efort, au fost calculate trei metrici: MAE, MSE și MdAE. Implementarea a fost 

realizată utilizând limbajul de programare Python și instrumentul Scikit-learn.    
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