
327

Received: 18.06.23; Similarities: 04.07.23: Reviewed: 20.07./17.08.23: Accepted:18.08.23.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

 Series: Applied Mathematics, Mechanics, and

Engineering Vol. 66, Issue III, August, 2023

ESTIMATION OF THE EFFORT REQUIRED TO DEVELOP A SOFTWARE

THROUGH THE K-NEAREST NEIGHBORS METHOD

Anca-Elena IORDAN, Florin COVACIU

Abstract: The purpose of the study presented in this article is to improve the efficiency of estimating the

effort required to develop a software product by means of k-Nearest Neighbours machine learning method

(KNN). The data set used for training KNN method is NASA93. The evaluation is related to the parameter

tuning concept, KNN method being characterized by 2 parameters: the distance used to determine which

are neighbours with common characteristics and the number of used neighbours for determining the

prediction. To determine which version of KNN method provides the most accurate values for effort, three

metrics were calculated: mean absolute error, mean squared error, and median absolute error.

Implementation was done using Python programming language and Scikit-learn tool.

Key words: Software Effort Estimation, Machine Learning, KNN, Python, NASA93.

1. INTRODUCTION

To guarantee precise quality, the effort put

into the development and maintenance process

of a software product must be approximated by

project managers as accurately as possible. To

help them, various research had been achieved

based on methods from the fields of probability,

artificial intelligence [1], and graph theory [2] in

order to estimate the effort as precisely as

possible.

This paper presents an effort estimation study

based on KNN method [3], which is an artificial

intelligence method. With this aim, the paper is

structured as follows:

• The second section elaborates on KNN

intelligent method used in this study.

• The third section includes the description of

the data set used for prediction.

• The fourth section presents the design details

for the prediction optimization.

• The fifth section describes the steps required

to train the intelligent KNN model related to

the parameter tuning concept.

• The sixth section evaluates the implemented

model from the perspective of 3 used metrics.

• The last section presents the conclusions of

this study.

2. KNN

Investigating the suitable literature in the

sphere of artificial intelligence [4], two

directions of machine learning [5] (ML) are

deduced: unsupervised learning and supervised

learning. Supervised learning is based on a

training model that uses a set of labelled data.

The most known supervised learning methods

are: KNN [6], decision trees [7], SVM [8],

Bayesian networks [9], and artificial neural

networks [10].

Because within the analysed problem we

want to acquire a numerical value for the effort,

and not to classify the result in a category, a

supervised learning method [11] based on

regression will be used. This type of method

approximates the numerical value that an

instance of observations can have it. Thus, in the

research presented in this article, the KNN

method was chosen to predict the effort.

KNN is one of the simplest and fundamental

classification and regression methods in

machine learning. Distinguished from the other

regression techniques, the KNN method is part

of lazy learning, this means that there is no

evident training phase before regression.

Instead, KNN is based on a similarity of the

features, which means that the level of similarity

328

of the characteristics of the instances with those

of the training set determines how the new value

will be obtained.

3. DATASET ANALYSIS

There are a multitude of datasets that can be

used by effort prediction models, such as: China,

ISBSG, Albrecht, NASA63, NASA93, and

Tukutuku. For this study, the NASA93 [12] set

was chosen, which includes information from 93

software projects developed between 1971-

1987. The information is structured into 24

attributes, and for prediction model presented in

this article, 10 attributes were used as input data

and one attribute for the output date.

The ten selected attributes are described in

table 1. In order to obtain the accurate possible

effort, the first 5 attributes: acap, pcap, modp,

tool, and lexp should be characterized by large

values, and the last attributes: stor, data, time,

virt, and cplx should be characterized by small

values.
Table 1

List with input chosen attributes.

Used Attributes Attribute Description

acap Analysis capability

pcap Programmer capability

modp Modern programming practices

tool Use of software tools

lexp Language experience

stor Main memory constraint

data Data base size

time Time constraint for cpu

virt Machine volatility

cplx Process complexity

The attribute representing the output date is

the actual effort (measured in Person-months),

the values being obtained following the use of

the Intermediate COCOMO model.

4. DESIGN DETAILS

In UML diagram [13] of the use cases (figure

1), the main components of the software

implemented for estimating the effort are

highlighted. "Data collection" use case

represents the process by which the original and

unprocessed data is obtained from a csv file.

"Data preparation" use case refers to extraction

of data from csv file according to the 11

attributes selected for this model, being

dependent on the previous use case.

"Data segregation" use case represents the

process of dividing the data set into two

categories: training data and test data in order to

check the performance of the model. From the

93 projects analysed by the NASA93 data set,

79% of the data were used for the training set

(meaning 73 projects) and 21% of the data were

used for the test set (meaning 20 projects). This

case is dependent on "Data preparation" use case

as represented in figure 1.

"Model training - KNN" use case refers to the

training of the intelligent model based on the

KNN method, being dependent on the "Data

segregation" use case. This method will be

analysed based on 2 parameters: the value of k

(neighbours number) and the distance used to

calculate the predicted value.

"Model evaluation" use case aims to

determine that variant of KNN model that is

characterized by the best performances.

Fig. 1. UML use case diagram

5. MODEL TRANING

For certain methods of machine learning [14],

the parameters are variables that they use to be

able to learn the characteristics of the data and to

be able to adjust the learning according to the

data set, in order to obtain the best possible

performance. Parameter tuning [15] concept

involves finding the optimal parameters for each

individual method, so that the results of the

classifier are maximum. For KNN method,

329

parameters that have been adjusted to determine

optimal performance are as follows:

• kNeighbours - represents the number of

neighbours taken into account to determine

the prediction for new instances. In this study,

the values chosen for this parameter are

between 3 and 10.

• pMinkowski - represents the power

parameter from Minkowski metric, given by

the following formula:

���������� =
∑
⌊� − ��⌋���
��� �

�
�. (1)

Minkowski distance [16] is used by the KNN

method to determine which are the neighbours

that must be considered in order to compare their

characteristics with those of a new instance for

which a new prediction is desired. Thus, the

distance metrics used determine which are the

neighbours with the most similar characteristics

and select the first kNeighbours from among

them to calculate the new prediction.

 For the prediction of the effort by the KNN

method, 3 values for this second parameter

between 1 and 3 were used. In the case of the

value 1 for the pMinkowski parameter, the

Manhattan metric is obtained (equation 2):

����ℎ����� = ∑ ⌊� − ��⌋�
��� . (2)

In case of choosing the value 2 for the

pMinkowski parameter, the Minkowski metric is

transformed into the Euclidean metric,

represented by the following formula:

���������� = �∑
� − ��� �
��� . (3)

Thus, the activities required for effort

prediction by means of the KNN method

characterized by the 2 parameters are presented

in the UML activity diagram [17] in figure 2.

Fig. 2. UML activity diagram

The implementation of the KNN method was

achieved using Python programming language

[18] and sklearn.neighbors library belonging to

the Scikit-learn tool [19].

6. MODEL EVALUATION

KNN method evaluation and establishment of

the variant with the best results is achieved on

the basis of test data set described in section 4.

Thus, for realization of this process, three

evaluation metrics [20] used in the case of

regression problems were used:

• mean absolute error - signifies the average

sum of absolute errors, characterized by the

following formula:

!"# = �
�
∙ ∑ ⌊� − %�⌋�

��� . (4)

• mean squared error – evaluates the standard

deviation of the estimated value,

characterized by the following formula:

!&# = �
�
∙ ∑
� − %�� �

��� . (5)

• median absolute error – is calculated by

taking the median of all absolute differences

between the target and the prediction,

characterized by the following formula:

!�"# = '(�)*+
,|� − %�|.���
� �. (6)

The calculation of the specific values of the 3

metrics was done through sklearn.metrics library

belonging to the Scikit-learn tool [21].

In the case of mean absolute error metric,

varying the 2 parameters kNeighbours and

pMinkowski, the results shown in table 2 were

obtained. A graphic comparison of the values

obtained for MAE metric is shown in figure 3.

Analysing the values in table 2, it is found

that the minimum value for the MAE metric was

obtained in the case of using Manhattan distance

and value 5 for the kNeighbours parameter,

being equal to 188,812.

In the case of the mean squared error metric,

varying the 2 parameters kNeighbours and

pMinkowski, the results shown in table 3 were

obtained.

330

Table 2

Mean absolute error values.

k \ d Manhattan Euclidean Minkowski

3 218.280 390.300 339.350

4 208.505 282.732 277.668

5 188.812 333.705 264.915

6 333.392 317.312 241.169

7 359.463 352.978 359.987

8 366.235 415.629 470.837

9 359.453 433.755 494.918

10 337.126 455.511 466.531

Fig. 3. Graphical representation - MAE

A graphic comparison of the values obtained

for the MSE metrics is shown in figure 4.

Analysing the values in table 3, it is found

that the minimum value for the MSE metric was

obtained in the case of using Manhattan distance

and value 5 for the kNeighbours parameter,

being equal to 77600.596.
Table 3

Mean squared error values.

k \ d Manhattan Euclidean Minkowski

3 105907.336 718510.204 583997.154

4 122054.139 371385.885 369796.779

5 77600.596 421617.145 272512.748

6 276603.631 274088.560 175444.459

7 313011.964 244778.697 254162.304

8 287861.258 420147.357 503718.432

9 251656.849 459235.509 555439.268

10 246960.323 493201.021 522394.392

Fig. 4. Graphical representation - MSE

In the case of the median squared error

(MdAE) metric, varying the 2 parameters

kNeighbours and pMinkowski, the results

presented in table 4 were obtained. A graphic

comparison of the values obtained for the MdAE

metrics is shown in figure 5.
Table 4

Median squared error values.

k \ d Manhattan Euclidean Minkowski

3 94. 667 94.833 94.697

4 89.251 93.625 97.625

5 88.973 92.893 107.376

6 129.437 130.785 138.473

7 147.829 171.417 191.583

8 189.382 201.538 214.643

9 206.573 216.256 235.251

10 214.839 224.375 264.561

Fig. 5. Graphical representation - MdAE

331

Analysing the values in table 4, it is found

that the minimum value for the MdAE metric

was also obtained in the case of using Manhattan

distance and value 5 for kNeighbours parameter,

being equal to 88,973.

Considering that, according to the 3 metrics

used, the best results were obtained in the case

of using the Minkowski distance to the power of

1 (case when this becomes Manhattan distance)

and the number of neighbours equal to 5, figure

6 shows a comparison between the current effort

and the values predicted by the KNN method.

Fig. 6. Testing results

Analysing the previous results, it is found that

KNN method characterized by value 5 for the

kNeighbours parameter and value 1 for the

pMinkowski parameter has the ability to better

capture the sequential dependencies in the data

set and to predict, as accurately as possible, the

future values.

7. CONCLUSIONS

In the presented work, a software based on

KNN machine learning method was designed,

implemented, and evaluated to estimate the

effort required to develop a software project

expressed in Person-months.

To train the model, the NASA93 data set

characterized by information obtained from 93

projects was used, and for its evaluation 3

metrics were calculated: mean absolute error,

mean squared error, and median absolute error.

The implementation was made using the Python

programming language and the Scikit-learn tool.

In order to obtain results appropriate to the

current effort, the two parameters that

characterize the KNN method were varied, and

predicted results were extracted in the situation

where the 3 metrics are characterized by

minimum values. Thus, the most accurate

estimated values were obtained when the

pMinkowski parameter is equal to 1 and the

kNeighbours parameter is equal to 5.

This new approach chosen for improving the

estimated effort obtained with the help of the

KNN method can be improved, in the future, by

comparing it with results generated by other

intelligent methods.

8. REFERENCES

[1] Panoiu, M., Panoiu, C., Mezinescu, S., Militaru,

G., Baciu, I. Machine Learning Techniques

Applied to the Harmonic Analysis of Railway

Power Supply, Mathematics 2023, Vol. 11(6).

[2] Iordan, A.E., Optimal Solution of the Guarini

Puzzle Extension using Tripartite Graphs, IOP

Conference Series: Materials Science and

Engineering 2019, Vol. 477(1).

[3] Marapelli, B., Software Development Effort

Duration and Cost Estimation using Linear

Regression and K-Nearest Neighbors,

International Journal of Innovative Technology

and Exploring Engineering 2019, Vol. 9(2),

1043–1047.

[4] Covaciu, F., Iordan, A.E., Control of a Drone in

Virtual Reality using MEMS Sensor Technology

and Machine Learning, Micromachines 2022,

Vol. 13(4), pp. 1-19.

[5] Rob, R., Panoiu, C, Rusu Anghel, S., Intelligent

System for tracking and logging the zigzag

pantograph motion, Innovations in Intelligent

Systems and Applications 2018.

[6] Goyal, R., Chandra, P., Singh, Y., Suitability of

KNN Regression in the Development of

Interaction Based Software Fault Prediction

Models, IERI Procedia 2014, Vol. 6, 15-21.

[7] Sanchez, E.R., Santacruz, E.FV., Maceda, H.C.,

Effort and cost estimation using decision tree

techniques and story points in agile software

development, Mathematics 2023, Vol. 11, 1477.

[8] Iordan, A.E., Supervised learning use to acquire

knowledge from 2D analytic geometry problems,

Recent Challenges in Intelligent Information and

Database Systems 2022,189-200.

[9] Dragicevic, S., Turic, M., Bayesian network

model for task effort estimation in agile software

332

development, Journal of Systems and Software

2017, Vol. 127, 109-119.

[10] Iordan, A.E., Usage of Stacked Long Short-

Term Memory for Recognition of 3D Analytic

Geometry Elements, Proceedings of the 14th

International Conference on Agents and Artificial

Intelligence 2022, Vol. 3, 745-752.

[11] Panoiu, M., Panoiu, C., Iordan, A., Ghiormez,

L., Artificial neural networks in predicting

current in electric arc furnaces, IOP Conference

Series: Materials Science and Engineering 2014,

Vol. 57(1), 012011.

[12] Saif, A., A New Cost-Quality Estimation Model

Based on Case-Based Reasoning Technique,

International Journal of Computer Science and

Mobile Computing 2021, Vol. 10(3), 46-54.

[13] Iordan, A., Savii, G., Panoiu, M., Panoiu, C.,

Visual interactive environment for doing

geometrical constructions, Wseas Transactions

on Computers 2009, Vol. 8(2), 258-268.

[14] Iordan, A., Development of an interactive

environment used for simulation of shortest paths,

Annals of the Faculty of Engineering Hunedoara

2012, Vol. 10(3), 97-102.

[15] Mabayoje, A., Balogun, A., Hajarah, H.,

Atoyebi, J., Mojeed, H., Adeyemo, V., Parameter

tuning in KNN for software defect prediction: an

empirical analysis, Jurnal Teknologi dan Sistem

Komputer 2019, Vol. 7(4), 121-126.

[16] Lu, B., Charlton, M., Brunsdon, C., Harris, P.,

The Minkowski approach for choosing the

distance metric in geographically weighted

regression, International Journal of Geo-

graphical Information Science 2015, Vol. 30(2),

1-18.

[17] Iordan, A., Savii, G., Panoiu, M., Panoiu, C.,

Development of a dynamical software for

teaching plane analytical geometry, Mathematic

and Computers in Science and Engineering 2008,

Vol. 5, 55-60.

[18] Awar, N., Zhu, S., Biros, G., Gligoric, M., A

performance portability framework for Python,

Proceedings of the ACM International

Conference on Supercom-puting, USA 2021,

467-478.

[19] Amin, M.Z., Ali, A., An Intuitive Guide of K-

Nearest Neighbor with Practical Implementation

in Scikit Learn, International Journal of

Engineering Research and Technology 2019.

[20] Handelman, G.S., Kok, H.K., Chandra, R.,

Razavi, A., Huang, S., Brooks, M., Lee, M.,

Asadi, H., Peering into the Black Box of Artificial

Intelligence: Evaluation Metrics of Machine

Learning Methods, American Journal of

Roentgenology 2019, 212, 38-43.

[21] Iordan, A.E., Covaciu, F., Improving design of

a triangle geometry computer application using a

creational pattern, Acta Technica Napocensis:

Applied Mathematics, Mecha-nics and

Engineering 2020, Vol. 63(1), 73-78.

Estimarea efortului necesar dezvoltării unui software prin intermediul metodei KNN

Scopul studiului prezentat în acest articol constă în eficientizarea estimării efortului necesar

dezvoltării unui produs soft prin intermediul metodei de învățare automată k-Nearest Neighbors

(KNN). Setul de date utilizat pentru antrenarea metodei este NASA93. Evaluarea este raportată la

conceptul parameter tuning, metoda KNN fiind caracterizată de 2 parametrii: distanța utilizată pentru

a determina care sunt vecinii având caracteristici comune și numărul de vecini luați în considerare

pentru a determina predicția. Pentru a determina care variantă a metodei KNN furnizează cele mai

exacte valori pentru efort, au fost calculate trei metrici: MAE, MSE și MdAE. Implementarea a fost

realizată utilizând limbajul de programare Python și instrumentul Scikit-learn.

Anca-Elena IORDAN, PhD, Lecturer, Technical University of Cluj-Napoca, Computer Science

Department, anca.iordan@cs.utcluj.ro, Barițiu street no. 28, Cluj-Napoca 400027, ROMANIA.

Florin COVACIU, PhD Eng., Associate professor, Technical University of Cluj-Napoca,

Department of Design Engineering and Robotics, florin.covaciu@muri.utcluj.ro, Muncii Blvd. no.

103-105, Cluj-Napoca 400641, ROMANIA.

