
381

Received: 28.06.23; Similarities: 04.07.23: Reviewed: 14.07./24.07.23: Accepted:20.08.23.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 66, Issue III, August, 2023

FROM DATA TO DECISIONS: THE IMPORTANCE OF MONITORING ML

SYSTEMS IN INDUSTRIAL SETTINGS

Adrian-Ioan ARGESANU, Gheorghe-Daniel ANDREESCU

Abstract: Machine learning (ML) systems have been extensively used in various industrial applications,

including process optimization, predictive maintenance, quality control, and decision support. The success

of ML systems in these domains depends on their ability to make accurate predictions, decisions, and

recommendations. With all ML models being inherently perishable, precautionary measures need to be put

in place to ensure that degrading performance is detected before it yields negative outcomes. In this paper,

we explore the importance of monitoring ML systems, and the various areas that need to be surveilled. We

present a novel implementation, leveraging a bespoke combination of components to achieve complete

visibility over the state of the ML solution at any given moment, discussing employed methods and how

these provide insights for Process & Pipeline Services’ use-case of detecting mechanically induced stress

cracking in pipelines. This paper adds to the limited literature on ML system monitoring.
Key words: AI, machine learning, system monitoring, prediction monitoring, data monitoring.

1. INTRODUCTION

Machine learning has found widespread
adoption in various fields of the industrial sector,
such as manufacturing, logistics, and energy.
ML systems use large datasets to construct
models that make predictions or decisions in
either real-time or batch-mode. Machine
learning has been shown to outperform
traditional approaches in many cases, leading to
improved efficiency, accuracy, and cost savings.

Situated at the core of ML systems, the ML
models are known to be inherently perishable,
meaning that their performance can decline over
time. Precautionary measures are therefore
required, to ensure that degrading performance
is detected before it yields negative outcomes.

When compared to traditional software
systems, ML systems exhibit all the challenges
of traditional code, plus an array of machine
learning-specific considerations [6]. Unlike in
traditional software systems, an ML system’s
behavior is governed not just by rules specified
in the code, but also by model behavior learned
from data. This presents a major challenge as the
real-world conditions where ML systems are

deployed may change over time [5], causing
shifts in the data distribution, the introduction of
new types of events or inputs, and the emergence
of new correlations or dependencies. These
changes may affect the performance of the ML
system and make it less accurate, relevant, and
reliable.

One way of tackling this is to surveil the
performance of ML systems and detect any
deviations from the expected performance. This
can be done by regularly collecting performance
metrics, such as accuracy, recall, precision, F1-
score, and AUC, and comparing them to the
performance metrics obtained during the
training phase.

In addition, it is important to monitor the
inputs, features, and outputs of the ML system
and detect any anomalies, outliers, or
discrepancies. This can be done by using
statistical or graphical methods, such as
histograms, box plots, or scatter plots, or by
using machine learning methods, such as
anomaly detection or clustering.

Tracking system availability is crucial in
ensuring ML offerings remain accessible to their

382

consumers, and dependent business processes
can continue without interruption.

As ML system can change over time, regular
updates and maintenance of the monitoring
setup are also necessary to ensure that the system
stays relevant. Regular monitoring also provides
an opportunity for identifying areas for
improvement, enabling ongoing optimization of
the system.

Despite the complexity and importance in
operational excellence, there is limited literature
discussing ML monitoring aspects and solutions
[10]. [4] highlights the importance of ML system
monitoring in the context of 3 failure scenarios:
hard – such as data source failures, soft – such as
feature drift in the data pipeline, and drift errors
– referring to the natural data drift. Shankar et al.
[7] note that many ML-related interview studies
exist, but these focus primarily on engineering,
not operational, challenges. Surveys such as [9]
recognize a trend towards interactive data
visualization tools supporting decision makers.
[10] concludes that ML monitoring needs to be
considered an augmentation to the existing well
maintained software service monitoring
practices.

This paper aims to help close this gap in
literature. The presented concepts and methods,
although applied to a production-deployed
industrial ML application, are applicable to any
ML system of any domain throughout its entire
lifecycle.

In the following section we discuss relevant
areas of monitoring for ML systems, providing
recommendations for each of them. Section 3
introduces practical implementations for all

presented aspects, showcasing employed
methods and resulting insights on Process &
Pipeline Services’ use-case of detecting
mechanically induced stress cracking in
pipelines. Section 4 concludes by summarizing
ML system monitoring importance, outlining
possible directions for future work.

2. MONITORING AREAS AND BEST

PRACTICES

Monitoring can be defined as continuous
observation of performance and behavior, with
the aim of detecting any issues or deviations
from the expected outcome.

For machine learning systems in specific,
monitoring refers to the way performance is
tracked and understood from both a data science
and operational perspective. Figure 1 compares
traditional software systems to ML ones,
highlighting the additional challenges pertaining
to the post-production stage of the ML lifecycle.
We include “System Monitoring” due to the
increased overall complexity of the resulting
system.

Data monitoring plays a vital role as it
ensures that the prediction candidates are
compatible with the model, or in other words,
the model is certified to accurately infer results
on the provided input data. In case of
incompatibility, the inference outcome is
undefined and should not be trusted. This is of
extreme importance for safety-critical
applications.

Data monitoring involves observing various
aspects of data such as missing values, outliers,

Fig. 1. Monitoring of traditional code (left) versus ML systems (right) [1].

383

or changes in data distributions. By detecting
these issues, data monitoring helps to prevent the
ML system from producing incorrect results or
failing entirely.

Anomalies detected as part of data
monitoring can typically be translated into pre-
predict conditions, which act as filters,
disqualifying data before the inference step.

Post inference, the predictions, confidence
scores, as well as any exceptional circumstance
that prevented processing of specific data items
must be kept track of. Referred to as prediction

monitoring, this helps to detect any anomalies,
such as bias or inconsistency, and guarantees
that the ML system is continuing to make
accurate predictions when compared to the
performance achieved during training. In
addition, ML features can be captured for
detailed analysis whenever model introspection
is required.

Prediction monitoring is best aligned with the
performance goals specific to the requirements
and expectations of the application. These goals
should be defined before deployment and used
as the basis for selecting appropriate
performance metrics, such as accuracy, recall,
precision, F1-score, AUC, or any combinations
of the these. For industrial or safety-critical
applications, conservative-skewed metrics are
preferred, ensuring safety-outliers are
eliminated or at least minimized – e.g., higher
FP rates might be acceptable if the FN rate is
kept close to 0.

For applications where ML systems are
integrated in complex data pipelines, prediction
monitoring is of exceptional importance, as
incorrect predictions can lead to operational
problems, financial losses, and potential safety
hazards.

Prediction monitoring is imperative for the
definition of post-prediction safeguards – when
circumstances render the inference process
“best-endeavor” or predictions need to be
invalidated, as well as for strategic ML lifecycle
decisions such as model finetuning or retraining
– e.g., when performance degradation is
detected.

System monitoring refers to the monitoring
of the ML system as a whole. This encompasses
the monitoring of hardware indicators such as

CPU and memory utilization, software
performance indicators such as processing time,
as well as identifying potential problems with
the system itself. In production settings, system
monitoring is essential for predictive
maintenance and recovery from hardware and
software failures, thus downtime reduction and
minimization of potential operational impact.

Data, prediction, and system monitoring
are essential for ensuring smooth and effective
operation of ML applications. As the
applications evolve over time, the monitoring
systems and processes might lose effectiveness.
To counteract that, it is necessary to design these
to continuously adapt to changes in the system
and data. Moreover, regular review and
evaluation of the monitoring processes is
necessary to guarantee their continued
robustness and relevance.

The involvement of human experts in the
monitoring process is also a key factor. Their
expertise and judgment can provide valuable
assistance in situations where the process does
not provide a clear recommendation. The
combination of human and automated
monitoring can guarantee that the ML system is
running at its best, providing accurate
predictions.

With monitoring systems capturing
significant amounts of data, interpretation and
visualization of the surveillance results becomes
a challenge. The data can be complex, multi-
dimensional, and difficult to understand,
especially for non-experts or stakeholders who
are not familiar with the underlying concepts
and methods. To address this challenge, it is
necessary to develop user-friendly, interactive,
and accessible visualization tools and
dashboards that allow various user groups to
explore and interpret the results in a meaningful
and intuitive way.

In summary, maintaining the effectiveness of
machine learning models requires ongoing effort
and attention. By combining automated
monitoring, human expertise, regular
evaluations and updates, and a clear
understanding of the business requirements and
model limitations, organizations can ensure that
their models remain effective, safe, and continue
to deliver positive outcomes.

384

3. CASE STUDY

For a practical implementation of the
presented concepts and considerations, we focus
on Process & Pipeline Services’ pipeline
inspection use-case. With pipelines considered
the primary means to transport oil or gas safely
and efficiently at high pressures across long
distances, the safety and availability of the
pipeline system is a primary concern. From the
integrity perspective pipelines can be treated as
pressure vessels. These are particularly
susceptible to longitudinal cracking due to
circumferential stress. Process & Pipeline
Services’ UltraScan™ CD Plus [8] crack
detection tool has been developed to detect and
identify any anomaly of the pipeline wall before
it has a detrimental effect on the integrity of a
given line or system.

We employ our Platform for End-to-End
Lifecycle Management of Batch-Prediction
Machine Learning Models, introduced in [2], to
support the safety-critical analysis of the 4-
dimensional signal data recorded by the
UltraScan™ CD Plus inspection tool via a
complex ML model.

In our platform, ML models are hosted in the
form of Docker containers. Environments –the
collection of all deployed models, their auxiliary
services such as data ingress/egress connectors,
and management services, are orchestrated via
Docker Swarm. Each environment features a
middleware storage service, which persists all
prediction requests, errors, and outcomes.

In our ML monitoring solution, we employ a
multi-tiered setup. The novelty of the approach
lies in how the individual components are
selected, layered, integrated, and presented to

various levels of stakeholders. We screen and
capture:
• Availability of hardware and its usage (HW

uptime and utilization) as part of system
monitoring.

• Availability of individual services and their
status (service uptime and health) as part of
system monitoring.

• Performance of machine learning models
(input and safeguard monitoring, prediction
outcomes, feedback loops) as a combination
of data and prediction monitoring.

• Event logs from all models and services
(auditability and debugging) as a
combination of all three monitoring areas
highlighted in Figure 1.

For availability of hardware and services we

rely on metrics. Metrics represent the raw
measurements of resource usage or behavior,
that can be observed and collected throughout
the systems. These might be low-level usage
summaries provided by the operating system, or
higher-level types of data tied to the specific
functionality or work of a component, like
requests served per second or outputs from a
particular function. For metric scraping,
aggregation, visualization and interpretation, we
employ a Prometheus + Grafana setup (Figure
3):
• We run a Prometheus Node Exporter instance

on each node to expose a wide variety of
hardware- and kernel-related metrics,
including, but not limited to overall usage of
CPU, RAM, and disk space.

• Each node also hosts a Google cAdvisor
(Container Advisor) daemon that collects,
aggregates, processes, and exports
information about running containers. For
each container, cAdvisor tracks resource
isolation parameters, histograms of complete
historical resource usage and network
statistics.

• Furthermore, we deploy custom metric
scrapers in the form of Docker containers on
each node to monitor service health data via
the health APIs of the deployed services.

• The metrics scraped by all of these containers
are aggregated and stored as timeseries data
in a central Prometheus instance.

Fig. 2. UltraScan™ CD Plus [8] (top), with mechanical stress induced

cracking examples – fatigue, stress-corrosion-cracking (SCC)
and shrinkage (bottom).

385

• To visualize, monitor and analyze all data
collected by Prometheus, we employ the
observability tool Grafana.

Stakeholders, as well as members of the

DevOps team use Grafana as an entry point
when assessing the availability and health of the
overall application or system. Grafana supports
the definition of visual alerts, to allow users to
quickly home in on problematic areas. For our
platform, we have configured alerts for:
• Failing services. We consider a service as

failed whenever it returns a negative or no
result during a health check. Failed services
need immediate attention to ensure
application recovery.

• Predictive maintenance. In this category we
alert e.g., for low available disk space. This
helps plan maintenance windows upfront,
minimizing production outage.

• System optimization potential. Tracking
hardware metrics over time allows the
detection of e.g., disproportionally high CPU
usage during certain operations or in certain
parts of the distributed system. Optimization
efforts can subsequently be planned on mid-
and long-term time horizons to improve
overall system performance.

Figure 4 displays an excerpt of the Grafana

dashboard and tracks the availability of
individual hardware nodes – or instances, and
services. The “Model Service Health” widget
displayed in the bottom half of the figure shows
the data collected in Prometheus from the
custom health-metric scrapers of the ML
models. The result of the health-check is
displayed in binary format, where 1 means the
service is healthy. The graph shows intermittent
health check failures, and the associated alerts,

around 18:00, all of which were immediately
recovered from.

The “Running Instances” graph tracks, at the
most basic of levels, the availability of the
hardware nodes hosting various services.
Results are again depicted in binary fashion,
where 1 means the machine is online.

For prediction and data monitoring, we
leverage the data persisted in a middleware
storage. Currently in the form of a relational
database, the middleware storage is interacted
with before and after each prediction request to
persist all prediction candidates and update them
with relevant ML features as computed by the
model’s data pipeline, as well as inference
results and exceptional situations.

For visual assessment of the data of the
middleware store, we offer a Redash view.
Dashboards can be configured, saved, and
shared with various user groups in Redash. For
each deployed model, we recommend a
dedicated dashboard containing the following
minimum set of tiles:
• Automation percentage(s) (number of

predictions with high confidence scores
versus total candidates) – one tile per model
output.

• Prediction score distribution(s) – one tile per
model output.

• Pre-predict filter statistics.
• Post-predict safeguard statistics.

Redash can be linked up with all data sources
the deployed platform has access to, which

Fig. 4. Grafana dashboard – instance and service health.

Fig. 3. Hardware and service monitoring with Prometheus and

Grafana.

386

enables the creation of feedback dashboards. For
applications where human experts engage in QA
checks of inference results to potentially
overrule these, Redash can be configured to
display overruled predictions side-by-side with
the middleware data, enabling expert personnel
to detect shortcomings of the ML model. This
feature is extensively leveraged in Process &
Pipeline Services’ use-case to track model
performance and ensure it remains safe to use.

Figure 5 depicts the dashboard of Process &
Pipeline Services’ ML system for detection of
mechanically induced stress cracking in
pipelines. The model is tasked with identifying
two patterns in the data, referred to as “event 1”
and “event 2”. The model is configured to run in
batch-mode; the depicted results are for one
dataset. The top half of the figure depicts the
automation percentage per event (left hand side)
as well as the inference score distribution (right
hand side). Qualified personnel can evaluate this
information for abnormal automation rates – too
high or too low, as well as population
segregation – in case of classification models.

The bottom half of Figure 5 presents a
summary of the pre-predict filters, followed by a
summary of the post-predict safeguards. One
example of a pre-predict filter is a compatibility
assertion between the input vector of the
prediction candidate and the model contract –
e.g., a value-range constraint. A second example

checks whether the input vector was
successfully processed by all stages of the data
pipeline. Any failing pre-predict check is
immediately noted in the protocol associated
with the prediction candidate and the candidate
is disqualified from inference, mitigating safety-
outliers.

The post-predict safeguards are executed
after the model has predicted on the candidate.
The main goal is to notify the requester if any of
the predictions need to be treated as “best-
endeavor”. One example safeguard for the
presented system evaluates whenever the 4D
input vector of a prediction candidate was
cropped to match the input requirements of the
model. In such scenarios, the outcome of the
prediction might still be relevant for
augmentation or QA scenarios, but is
disqualified for safety-critical automation
applications. Any post-predict failure is noted in
the protocol of the prediction candidate. The
client is responsible for acting on safeguard hits.
The depicted model applies the same pre-
prediction filters and post-prediction safeguards
for both events.

Whenever the pre- or post-predict statistics
highlight anomalous behavior, a detailed
analysis of the chain of events might be required.
For aggregated interpretation of events from
different services, potentially deployed across
multiple machines, we offer a Kibana interface.
As part of the ELK stack (Elasticsearch +
Logstash + Kibana), Kibana (the flexible
visualization tool), sits on top of Elasticsearch
(the open source, distributed, RESTful, JSON-
based search engine), which gets fed by
Logstash (the ingest pipeline) from several Beats
instances (lightweight, single-purpose data
shippers). The Beats instances tail the logs of all
running services, thus allowing temporal
correlation in Kibana. Kibana also allows users
to search through historic logs for additional
occurrences of events of interest. Figure 6
presents the ELK stack, showcasing how Docker
log messages are aggregated to a log-level
frequency bar chart.

In summary, our monitoring solution offers
three dashboards, each catering to a specific
level of detail and thus audience. With Grafana
as the high-level system view, stakeholders and
maintenance personnel have a one-stop

Fig. 5. Redash dashboard.

387

dashboard for the health of the application.
Leveraging all historic prediction data, Redash
can be used to display high-level as well as
detailed insights to stakeholders and expert users
alike, enabling them to track the behavior of
each ML model versus its performance targets.
Finally, the Kibana dashboard allows temporal
correlation of all events recorded throughout the
system, greatly improving failure analysis and
debugging activities for development personnel,
whilst eliminating the need to manually
aggregate information from different sources.

All components of the monitoring setup have
been chosen for their ability to adapt to the
changing needs of ML systems. For collection of
additional data, further metrics can be
programmed in custom scraping containers, ML
model contracts can be extended to forward
more insights, extended logging can be
implemented for improved debugging. For
persistence of this data, Prometheus can be
configured to scrape the new metrics, and the
schema of the middleware storage can be
extended to capture the additional prediction
artefacts; the ELK stack does not require any
updates, as it implicitly captures all available
information. Visualization is subsequently
enabled by Grafana, Redash and Kibana; their
dashboards can be freely configured to present
the collected data in meaningful ways.

Combining the robustness of automated
monitoring with the sophistication of applying

of human expertise through regular evaluation of
the complex collected insights, our proposed
solution enables Process & Pipeline Services’ to
reliably operate its safety-critical ML system for
mechanically induced stress cracking of
pipelines, with close to 0 downtime across
multiple years of operation.

4. CONCLUSIONS AND FUTURE WORK

Monitoring ML systems is a complex task
that requires careful planning, design, and
implementation. The challenges of monitoring
ML systems include the selection of appropriate
metrics, regular collection of performance data,
the interpretation and visualization of the results,
and the maintenance and updating of the
monitoring frameworks. These are all
accentuated for industrial and safety-critical
applications, where inaccurate predictions can
lead to operational problems, financial losses,
and safety hazards.

Our bespoke multi-tiered approach to
monitoring addresses the evolving needs of data,
prediction as well as system monitoring,
providing insights to a variety of user groups –
from technical experts to stakeholders who are
not familiar with ML concepts and methods. By
implementing strong monitoring processes,
incorporating human expertise, and addressing
potential implications, we ensure the optimal
operation of ML systems and the generation of
reliable predictions under real-world scenarios,
ads demonstrated for Process & Pipeline
Services’ use-case.

As much as monitoring can be automated,
interpretation of complex graphs and statistics
remains largely a manual task carried out by
human experts. To reduce the workload and
associated costs, future work will focus on the
development of automated surveillance and
maintenance tools, such as self-diagnostic
systems and auto-tune methods.

Furthermore, with the increasing appetite for
explainability of ML decisions, future research
will focus on investigating new methods and
means to increase the transparency and
accountability of ML systems, and their
integration into monitoring solutions.

Fig. 6. ELK stack.

388

This paper adds to the limited literature on
ML system monitoring.

5. REFERENCES

[1] E. Breck, S. Cai, E. Nielsen, M. Salib, D.

Sculley, The ML Test Score: A Rubric for ML

Production Readiness and Technical Debt

Reduction, Proceedings of IEEE Big Data,
2017.

[2] A. -I. Argesanu, G. -D. Andreescu, A

Platform to Manage the End-to-End Lifecycle

of Batch-Prediction Machine Learning

Models, 2021 IEEE 15th International
Symposium on Applied Computational
Intelligence and Informatics (SACI), 2021,
pp. 329-334.

[3] C. Sridharan, Distributed Systems

Observability, O'Reilly Media, Inc., 2018,
ISBN 9781492033424.

[4] S. Shankar, A. Parameswara, Towards

Observability for Machine Learning

Pipelines, 2021,
https://arxiv.org/abs/2108.13557.

[5] Y. Wu, E.D. Yinjun, S.B. Davidson.
DeltaGrad: Rapid retraining of machine

learning models, International Conference on
Machine Learning, 2020.

[6] E.D. Nascimento, I., Ahmed, E. Oliveira,
M.P. Palheta, I. Steinmacher, T.U. Conte,

Understanding Development Process of

Machine Learning Systems: Challenges and

Solutions, 2019 ACM/IEEE International
Symposium on Empirical Software
Engineering and Measurement (ESEM), 1-6,
2019.

[7] S. Shankar, R. Garcia, J.M. Hellerstein, A.G.
Parameswaran. Operationalizing machine

learning: An interview study, arXiv preprint
arXiv:2209.09125 (2022).

[8] Crack capabilities overview, Process &
Pipeline Services, accessed June 2023,
https://www.bakerhughes.com/sites/bakerhu
ghes/files/2020-
07/19004_BH_PPS_ILI_US_BRO_1912%2
0%28CRACK%20CAPAB%29.pdf

[9] G. Nguyen, S. Dlugolinsky, M. Bobák, et al.
Machine Learning and Deep Learning

frameworks and libraries for large-scale data

mining: a survey, Artif Intell Rev 52, 77–124
(2019), https://doi.org/10.1007/s10462-018-
09679-z

[10] P. Baier, S. Dragiev, Challenges in Live

Monitoring of Machine Learning Systems,
The Upper-Rhine Artificial Intelligence
Symposium UR-AI 2021, ARTIFICIAL
INTELLIGENCE - APPLICATION IN LIFE
SCIENCES AND BEYOND, 2021.

DE LA DATE LA DECIZII: IMPORTANȚA MONITORIZĂRII SISTEMELOR ML IN APLICAȚII

INDUSTRIALE

Rezumat: Sistemele de învățare automată (ML) au fost utilizate pe scară largă în diverse aplicații industriale, inclusiv
optimizarea proceselor, mentenanța predictivă și controlul calității. Succesul sistemelor ML în aceste domenii depinde de
capacitatea lor de a face predicții, decizii și recomandări precise. Având în vedere că toate modelele ML sunt în mod
inerent perisabile, trebuie puse în aplicare măsuri de precauție pentru detectarea degradării de performanța înainte ca
aceasta să producă rezultate negative. În această lucrare, explorăm importanța monitorizării sistemelor ML și diferitele
zone care trebuie supravegheate. Prezentăm o implementare nouă, utilizând o combinație unică de componente pentru a
obține o vedere de ansamblu asupra parametrilor de funcționare ai soluției ML, explorând use-case-ul al Process &
Pipeline Services de detectare a fenomenelor de fisurare al pipeline-urilor datorate tensiunilor mecanice acumulate. In
lucrare propunem elemente avansate de stricta noutate nemaiîntâlnite in literatura de specialitate.

Adrian-Ioan ARGESANU, PhD. Stud. Eng., Politehnica University Timisoara, Faculty of

Automation and Computers, adrian.argesanu@student.upt.ro, Bulevardul Vasile Pârvan 2, 300223
Timișoara, Romania, Baker Hughes, Process & Pipeline Services,
adrian.argesanu@bakerhughes.com, +4972447320, Lorenzstraße 10, 76297 Stutensee, Germany.

Gheorghe-Daniel ANDREESCU, PhD. Eng. Prof., Politehnica University Timisoara, Faculty of
Automation and Computers, daniel.andreescu@upt.ro, +40256403507, Bulevardul Vasile Pârvan
2, 300223 Timișoara, Romania.

