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Abstract: Machine learning (ML) systems have been extensively used in various industrial applications, 

including process optimization, predictive maintenance, quality control, and decision support. The success 

of ML systems in these domains depends on their ability to make accurate predictions, decisions, and 

recommendations. With all ML models being inherently perishable, precautionary measures need to be put 

in place to ensure that degrading performance is detected before it yields negative outcomes. In this paper, 

we explore the importance of monitoring ML systems, and the various areas that need to be surveilled. We 

present a novel implementation, leveraging a bespoke combination of components to achieve complete 

visibility over the state of the ML solution at any given moment, discussing employed methods and how 

these provide insights for Process & Pipeline Services’ use-case of detecting mechanically induced stress 

cracking in pipelines. This paper adds to the limited literature on ML system monitoring.  
Key words: AI, machine learning, system monitoring, prediction monitoring, data monitoring. 

1. INTRODUCTION

Machine learning has found widespread 
adoption in various fields of the industrial sector, 
such as manufacturing, logistics, and energy. 
ML systems use large datasets to construct 
models that make predictions or decisions in 
either real-time or batch-mode. Machine 
learning has been shown to outperform 
traditional approaches in many cases, leading to 
improved efficiency, accuracy, and cost savings. 

Situated at the core of ML systems, the ML 
models are known to be inherently perishable, 
meaning that their performance can decline over 
time. Precautionary measures are therefore 
required, to ensure that degrading performance 
is detected before it yields negative outcomes. 

When compared to traditional software 
systems, ML systems exhibit all the challenges 
of traditional code, plus an array of machine 
learning-specific considerations [6]. Unlike in 
traditional software systems, an ML system’s 
behavior is governed not just by rules specified 
in the code, but also by model behavior learned 
from data. This presents a major challenge as the 
real-world conditions where ML systems are 

deployed may change over time [5], causing 
shifts in the data distribution, the introduction of 
new types of events or inputs, and the emergence 
of new correlations or dependencies. These 
changes may affect the performance of the ML 
system and make it less accurate, relevant, and 
reliable.  

One way of tackling this is to surveil the 
performance of ML systems and detect any 
deviations from the expected performance. This 
can be done by regularly collecting performance 
metrics, such as accuracy, recall, precision, F1-
score, and AUC, and comparing them to the 
performance metrics obtained during the 
training phase.  

In addition, it is important to monitor the 
inputs, features, and outputs of the ML system 
and detect any anomalies, outliers, or 
discrepancies. This can be done by using 
statistical or graphical methods, such as 
histograms, box plots, or scatter plots, or by 
using machine learning methods, such as 
anomaly detection or clustering. 

Tracking system availability is crucial in 
ensuring ML offerings remain accessible to their 
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consumers, and dependent business processes 
can continue without interruption. 

As ML system can change over time, regular 
updates and maintenance of the monitoring 
setup are also necessary to ensure that the system 
stays relevant. Regular monitoring also provides 
an opportunity for identifying areas for 
improvement, enabling ongoing optimization of 
the system. 

Despite the complexity and importance in 
operational excellence, there is limited literature 
discussing ML monitoring aspects and solutions 
[10]. [4] highlights the importance of ML system 
monitoring in the context of 3 failure scenarios: 
hard – such as data source failures, soft – such as 
feature drift in the data pipeline, and drift errors 
– referring to the natural data drift. Shankar et al. 
[7] note that many ML-related interview studies 
exist, but these focus primarily on engineering, 
not operational, challenges. Surveys such as [9] 
recognize a trend towards interactive data 
visualization tools supporting decision makers. 
[10] concludes that ML monitoring needs to be 
considered an augmentation to the existing well 
maintained software service monitoring 
practices. 

This paper aims to help close this gap in 
literature. The presented concepts and methods, 
although applied to a production-deployed 
industrial ML application, are applicable to any 
ML system of any domain throughout its entire 
lifecycle. 

In the following section we discuss relevant 
areas of monitoring for ML systems, providing 
recommendations for each of them. Section 3 
introduces practical implementations for all 

presented aspects, showcasing employed 
methods and resulting insights on Process & 
Pipeline Services’ use-case of detecting 
mechanically induced stress cracking in 
pipelines. Section 4 concludes by summarizing 
ML system monitoring importance, outlining 
possible directions for future work.  
 

2. MONITORING AREAS AND BEST 

PRACTICES 
 

Monitoring can be defined as continuous 
observation of performance and behavior, with 
the aim of detecting any issues or deviations 
from the expected outcome.  

For machine learning systems in specific, 
monitoring refers to the way performance is 
tracked and understood from both a data science 
and operational perspective. Figure 1 compares 
traditional software systems to ML ones, 
highlighting the additional challenges pertaining 
to the post-production stage of the ML lifecycle. 
We include “System Monitoring” due to the 
increased overall complexity of the resulting 
system. 

Data monitoring plays a vital role as it 
ensures that the prediction candidates are 
compatible with the model, or in other words, 
the model is certified to accurately infer results 
on the provided input data. In case of 
incompatibility, the inference outcome is 
undefined and should not be trusted. This is of 
extreme importance for safety-critical 
applications. 

Data monitoring involves observing various 
aspects of data such as missing values, outliers, 

 
Fig. 1. Monitoring of traditional code (left) versus ML systems (right) [1]. 
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or changes in data distributions. By detecting 
these issues, data monitoring helps to prevent the 
ML system from producing incorrect results or 
failing entirely. 

Anomalies detected as part of data 
monitoring can typically be translated into pre-
predict conditions, which act as filters, 
disqualifying data before the inference step. 

Post inference, the predictions, confidence 
scores, as well as any exceptional circumstance 
that prevented processing of specific data items 
must be kept track of. Referred to as prediction 

monitoring, this helps to detect any anomalies, 
such as bias or inconsistency, and guarantees 
that the ML system is continuing to make 
accurate predictions when compared to the 
performance achieved during training. In 
addition, ML features can be captured for 
detailed analysis whenever model introspection 
is required.  

Prediction monitoring is best aligned with the 
performance goals specific to the requirements 
and expectations of the application. These goals 
should be defined before deployment and used 
as the basis for selecting appropriate 
performance metrics, such as accuracy, recall, 
precision, F1-score, AUC, or any combinations 
of the these. For industrial or safety-critical 
applications, conservative-skewed metrics are 
preferred, ensuring safety-outliers are 
eliminated or at least minimized – e.g., higher 
FP rates might be acceptable if the FN rate is 
kept close to 0. 

For applications where ML systems are 
integrated in complex data pipelines, prediction 
monitoring is of exceptional importance, as 
incorrect predictions can lead to operational 
problems, financial losses, and potential safety 
hazards. 

Prediction monitoring is imperative for the 
definition of post-prediction safeguards – when 
circumstances render the inference process 
“best-endeavor” or predictions need to be 
invalidated, as well as for strategic ML lifecycle 
decisions such as model finetuning or retraining 
– e.g., when performance degradation is 
detected. 

System monitoring refers to the monitoring 
of the ML system as a whole. This encompasses 
the monitoring of hardware indicators such as 

CPU and memory utilization, software 
performance indicators such as processing time, 
as well as identifying potential problems with 
the system itself. In production settings, system 
monitoring is essential for predictive 
maintenance and recovery from hardware and 
software failures, thus downtime reduction and 
minimization of potential operational impact. 

Data, prediction, and system monitoring 
are essential for ensuring smooth and effective 
operation of ML applications. As the 
applications evolve over time, the monitoring 
systems and processes might lose effectiveness. 
To counteract that, it is necessary to design these 
to continuously adapt to changes in the system 
and data. Moreover, regular review and 
evaluation of the monitoring processes is 
necessary to guarantee their continued 
robustness and relevance. 

The involvement of human experts in the 
monitoring process is also a key factor. Their 
expertise and judgment can provide valuable 
assistance in situations where the process does 
not provide a clear recommendation. The 
combination of human and automated 
monitoring can guarantee that the ML system is 
running at its best, providing accurate 
predictions. 

With monitoring systems capturing 
significant amounts of data, interpretation and 
visualization of the surveillance results becomes 
a challenge. The data can be complex, multi-
dimensional, and difficult to understand, 
especially for non-experts or stakeholders who 
are not familiar with the underlying concepts 
and methods. To address this challenge, it is 
necessary to develop user-friendly, interactive, 
and accessible visualization tools and 
dashboards that allow various user groups to 
explore and interpret the results in a meaningful 
and intuitive way. 

In summary, maintaining the effectiveness of 
machine learning models requires ongoing effort 
and attention. By combining automated 
monitoring, human expertise, regular 
evaluations and updates, and a clear 
understanding of the business requirements and 
model limitations, organizations can ensure that 
their models remain effective, safe, and continue 
to deliver positive outcomes. 
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3. CASE STUDY 
 

For a practical implementation of the 
presented concepts and considerations, we focus 
on Process & Pipeline Services’ pipeline 
inspection use-case. With pipelines considered 
the primary means to transport oil or gas safely 
and efficiently at high pressures across long 
distances, the safety and availability of the 
pipeline system is a primary concern. From the 
integrity perspective pipelines can be treated as 
pressure vessels. These are particularly 
susceptible to longitudinal cracking due to 
circumferential stress. Process & Pipeline 
Services’ UltraScan™ CD Plus [8] crack 
detection tool has been developed to detect and 
identify any anomaly of the pipeline wall before 
it has a detrimental effect on the integrity of a 
given line or system. 

We employ our Platform for End-to-End 
Lifecycle Management of Batch-Prediction 
Machine Learning Models, introduced in [2], to 
support the safety-critical analysis of the 4-
dimensional signal data recorded by the 
UltraScan™ CD Plus inspection tool via a 
complex ML model. 

In our platform, ML models are hosted in the 
form of Docker containers. Environments –the 
collection of all deployed models, their auxiliary 
services such as data ingress/egress connectors, 
and management services, are orchestrated via 
Docker Swarm. Each environment features a 
middleware storage service, which persists all 
prediction requests, errors, and outcomes.  

In our ML monitoring solution, we employ a 
multi-tiered setup. The novelty of the approach 
lies in how the individual components are 
selected, layered, integrated, and presented to 

various levels of stakeholders. We screen and 
capture: 
• Availability of hardware and its usage (HW 

uptime and utilization) as part of system 
monitoring. 

• Availability of individual services and their 
status (service uptime and health) as part of 
system monitoring. 

• Performance of machine learning models 
(input and safeguard monitoring, prediction 
outcomes, feedback loops) as a combination 
of data and prediction monitoring. 

• Event logs from all models and services 
(auditability and debugging) as a 
combination of all three monitoring areas 
highlighted in Figure 1. 

 
For availability of hardware and services we 

rely on metrics. Metrics represent the raw 
measurements of resource usage or behavior, 
that can be observed and collected throughout 
the systems. These might be low-level usage 
summaries provided by the operating system, or 
higher-level types of data tied to the specific 
functionality or work of a component, like 
requests served per second or outputs from a 
particular function. For metric scraping, 
aggregation, visualization and interpretation, we 
employ a Prometheus + Grafana setup (Figure 
3): 
• We run a Prometheus Node Exporter instance 

on each node to expose a wide variety of 
hardware- and kernel-related metrics, 
including, but not limited to overall usage of 
CPU, RAM, and disk space. 

• Each node also hosts a Google cAdvisor 
(Container Advisor) daemon that collects, 
aggregates, processes, and exports 
information about running containers. For 
each container, cAdvisor tracks resource 
isolation parameters, histograms of complete 
historical resource usage and network 
statistics. 

• Furthermore, we deploy custom metric 
scrapers in the form of Docker containers on 
each node to monitor service health data via 
the health APIs of the deployed services. 

• The metrics scraped by all of these containers 
are aggregated and stored as timeseries data 
in a central Prometheus instance. 

 
Fig. 2. UltraScan™ CD Plus [8] (top), with mechanical stress induced 

cracking examples – fatigue, stress-corrosion-cracking (SCC) 
and shrinkage (bottom). 
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• To visualize, monitor and analyze all data 
collected by Prometheus, we employ the 
observability tool Grafana. 

 
Stakeholders, as well as members of the 

DevOps team use Grafana as an entry point 
when assessing the availability and health of the 
overall application or system. Grafana supports 
the definition of visual alerts, to allow users to 
quickly home in on problematic areas. For our 
platform, we have configured alerts for: 
• Failing services. We consider a service as 

failed whenever it returns a negative or no 
result during a health check. Failed services 
need immediate attention to ensure 
application recovery. 

• Predictive maintenance. In this category we 
alert e.g., for low available disk space. This 
helps plan maintenance windows upfront, 
minimizing production outage.  

• System optimization potential. Tracking 
hardware metrics over time allows the 
detection of e.g., disproportionally high CPU 
usage during certain operations or in certain 
parts of the distributed system. Optimization 
efforts can subsequently be planned on mid- 
and long-term time horizons to improve 
overall system performance. 

 
Figure 4 displays an excerpt of the Grafana 

dashboard and tracks the availability of 
individual hardware nodes – or instances, and 
services. The “Model Service Health” widget 
displayed in the bottom half of the figure shows 
the data collected in Prometheus from the 
custom health-metric scrapers of the ML 
models. The result of the health-check is 
displayed in binary format, where 1 means the 
service is healthy. The graph shows intermittent 
health check failures, and the associated alerts, 

around 18:00, all of which were immediately 
recovered from.  

The “Running Instances” graph tracks, at the 
most basic of levels, the availability of the 
hardware nodes hosting various services. 
Results are again depicted in binary fashion, 
where 1 means the machine is online. 

For prediction and data monitoring, we 
leverage the data persisted in a middleware 
storage. Currently in the form of a relational 
database, the middleware storage is interacted 
with before and after each prediction request to 
persist all prediction candidates and update them 
with relevant ML features as computed by the 
model’s data pipeline, as well as inference 
results and exceptional situations. 

For visual assessment of the data of the 
middleware store, we offer a Redash view. 
Dashboards can be configured, saved, and 
shared with various user groups in Redash. For 
each deployed model, we recommend a 
dedicated dashboard containing the following 
minimum set of tiles: 
• Automation percentage(s) (number of 

predictions with high confidence scores 
versus total candidates) – one tile per model 
output. 

• Prediction score distribution(s) – one tile per 
model output. 

• Pre-predict filter statistics. 
• Post-predict safeguard statistics. 
 

Redash can be linked up with all data sources 
the deployed platform has access to, which 

 
Fig. 4. Grafana dashboard – instance and service health. 

 
Fig. 3. Hardware and service monitoring with Prometheus and 

Grafana. 
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enables the creation of feedback dashboards. For 
applications where human experts engage in QA 
checks of inference results to potentially 
overrule these, Redash can be configured to 
display overruled predictions side-by-side with 
the middleware data, enabling expert personnel 
to detect shortcomings of the ML model. This 
feature is extensively leveraged in Process & 
Pipeline Services’ use-case to track model 
performance and ensure it remains safe to use. 

Figure 5 depicts the dashboard of Process & 
Pipeline Services’ ML system for detection of 
mechanically induced stress cracking in 
pipelines. The model is tasked with identifying 
two patterns in the data, referred to as “event 1” 
and “event 2”. The model is configured to run in 
batch-mode; the depicted results are for one 
dataset. The top half of the figure depicts the 
automation percentage per event (left hand side) 
as well as the inference score distribution (right 
hand side). Qualified personnel can evaluate this 
information for abnormal automation rates – too 
high or too low, as well as population 
segregation – in case of classification models. 

The bottom half of Figure 5 presents a 
summary of the pre-predict filters, followed by a 
summary of the post-predict safeguards. One 
example of a pre-predict filter is a compatibility 
assertion between the input vector of the 
prediction candidate and the model contract – 
e.g., a value-range constraint. A second example 

checks whether the input vector was 
successfully processed by all stages of the data 
pipeline. Any failing pre-predict check is 
immediately noted in the protocol associated 
with the prediction candidate and the candidate 
is disqualified from inference, mitigating safety-
outliers. 

The post-predict safeguards are executed 
after the model has predicted on the candidate. 
The main goal is to notify the requester if any of 
the predictions need to be treated as “best-
endeavor”. One example safeguard for the 
presented system evaluates whenever the 4D 
input vector of a prediction candidate was 
cropped to match the input requirements of the 
model. In such scenarios, the outcome of the 
prediction might still be relevant for 
augmentation or QA scenarios, but is 
disqualified for safety-critical automation 
applications. Any post-predict failure is noted in 
the protocol of the prediction candidate. The 
client is responsible for acting on safeguard hits. 
The depicted model applies the same pre-
prediction filters and post-prediction safeguards 
for both events.  

Whenever the pre- or post-predict statistics 
highlight anomalous behavior, a detailed 
analysis of the chain of events might be required. 
For aggregated interpretation of events from 
different services, potentially deployed across 
multiple machines, we offer a Kibana interface. 
As part of the ELK stack (Elasticsearch + 
Logstash + Kibana), Kibana (the flexible 
visualization tool), sits on top of Elasticsearch 
(the open source, distributed, RESTful, JSON-
based search engine), which gets fed by 
Logstash (the ingest pipeline) from several Beats 
instances (lightweight, single-purpose data 
shippers). The Beats instances tail the logs of all 
running services, thus allowing temporal 
correlation in Kibana. Kibana also allows users 
to search through historic logs for additional 
occurrences of events of interest. Figure 6 
presents the ELK stack, showcasing how Docker 
log messages are aggregated to a log-level 
frequency bar chart. 

In summary, our monitoring solution offers 
three dashboards, each catering to a specific 
level of detail and thus audience. With Grafana 
as the high-level system view, stakeholders and 
maintenance personnel have a one-stop 

 
Fig. 5. Redash dashboard. 
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dashboard for the health of the application. 
Leveraging all historic prediction data, Redash 
can be used to display high-level as well as 
detailed insights to stakeholders and expert users 
alike, enabling them to track the behavior of 
each ML model versus its performance targets. 
Finally, the Kibana dashboard allows temporal 
correlation of all events recorded throughout the 
system, greatly improving failure analysis and 
debugging activities for development personnel, 
whilst eliminating the need to manually 
aggregate information from different sources. 

All components of the monitoring setup have 
been chosen for their ability to adapt to the 
changing needs of ML systems. For collection of 
additional data, further metrics can be 
programmed in custom scraping containers, ML 
model contracts can be extended to forward 
more insights, extended logging can be 
implemented for improved debugging. For 
persistence of this data, Prometheus can be 
configured to scrape the new metrics, and the 
schema of the middleware storage can be 
extended to capture the additional prediction 
artefacts; the ELK stack does not require any 
updates, as it implicitly captures all available 
information. Visualization is subsequently 
enabled by Grafana, Redash and Kibana; their 
dashboards can be freely configured to present 
the collected data in meaningful ways. 

Combining the robustness of automated 
monitoring with the sophistication of applying 

of human expertise through regular evaluation of 
the complex collected insights, our proposed 
solution enables Process & Pipeline Services’ to 
reliably operate its safety-critical ML system for 
mechanically induced stress cracking of 
pipelines, with close to 0 downtime across 
multiple years of operation. 
 
4. CONCLUSIONS AND FUTURE WORK 
 

Monitoring ML systems is a complex task 
that requires careful planning, design, and 
implementation. The challenges of monitoring 
ML systems include the selection of appropriate 
metrics, regular collection of performance data, 
the interpretation and visualization of the results, 
and the maintenance and updating of the 
monitoring frameworks. These are all 
accentuated for industrial and safety-critical 
applications, where inaccurate predictions can 
lead to operational problems, financial losses, 
and safety hazards. 

Our bespoke multi-tiered approach to 
monitoring addresses the evolving needs of data, 
prediction as well as system monitoring, 
providing insights to a variety of user groups – 
from technical experts to stakeholders who are 
not familiar with ML concepts and methods. By 
implementing strong monitoring processes, 
incorporating human expertise, and addressing 
potential implications, we ensure the optimal 
operation of ML systems and the generation of 
reliable predictions under real-world scenarios, 
ads demonstrated for Process & Pipeline 
Services’ use-case. 

As much as monitoring can be automated, 
interpretation of complex graphs and statistics 
remains largely a manual task carried out by 
human experts. To reduce the workload and 
associated costs, future work will focus on the 
development of automated surveillance and 
maintenance tools, such as self-diagnostic 
systems and auto-tune methods. 

Furthermore, with the increasing appetite for 
explainability of ML decisions, future research 
will focus on investigating new methods and 
means to increase the transparency and 
accountability of ML systems, and their 
integration into monitoring solutions. 

 
Fig. 6. ELK stack. 
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This paper adds to the limited literature on 
ML system monitoring. 
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DE LA DATE LA DECIZII: IMPORTANȚA MONITORIZĂRII SISTEMELOR ML IN APLICAȚII 

INDUSTRIALE 
 

Rezumat: Sistemele de învățare automată (ML) au fost utilizate pe scară largă în diverse aplicații industriale, inclusiv 
optimizarea proceselor, mentenanța predictivă și controlul calității. Succesul sistemelor ML în aceste domenii depinde de 
capacitatea lor de a face predicții, decizii și recomandări precise. Având în vedere că toate modelele ML sunt în mod 
inerent perisabile, trebuie puse în aplicare măsuri de precauție pentru detectarea degradării de performanța înainte ca 
aceasta să producă rezultate negative. În această lucrare, explorăm importanța monitorizării sistemelor ML și diferitele 
zone care trebuie supravegheate. Prezentăm o implementare nouă, utilizând o combinație unică de componente pentru a 
obține o vedere de ansamblu asupra parametrilor de funcționare ai soluției ML, explorând use-case-ul al Process & 
Pipeline Services de detectare a fenomenelor de fisurare al pipeline-urilor datorate tensiunilor mecanice acumulate. In 
lucrare propunem elemente avansate de stricta noutate nemaiîntâlnite in literatura de specialitate. 
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