
389

Received: 28.06.23; Similarities: 04.07.23: Reviewed: 14.07./24.07.23: Accepted:20.08.23.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 66, Issue III, August, 2023

STREAMLINING MACHINE LEARNING WORKFLOWS IN INDUSTRIAL

APPLICATIONS WITH CLI’S AND CI/CD PIPELINES

Adrian-Ioan ARGESANU, Gheorghe-Daniel ANDREESCU

Abstract: The integration of machine learning (ML) in various organizations has become an essential

aspect with a wide range of applications. However, the development and deployment of machine learning

models can be time-consuming and prone to errors due to the iterative nature of the process and the

constant testing and retraining of models. As ML becomes more integrated with industrial systems, the

demand for controlled, reproducible and repeatable processes rises. This paper proposes a novel approach

for the automation of various workflows of the ML model lifecycle via custom Command Line Interfaces

(CLI) and Continuous Integration/Continuous Deployment (CI/CD) pipelines. We discuss the challenges

and pitfalls of non-automated ML workflows, as well as the benefits of using the proposed toolset. We

introduce our bespoke approach to CLI and CI/CD automation, highlighting timesaving as well as

consistency-improvement aspects for Process & Pipeline Services’ use-case of detecting mechanically

induced stress cracking in pipelines. This paper adds to the limited literature on ML lifecycle automation.

Key words: machine learning, workflow automation, CLI, CI/CD, glue code, automated deployment.

1. INTRODUCTION

 Machine learning has become a critical tool

in many organizations. Development and

productionization of ML applications requires

coordinated efforts from machine learning

experts, data scientists, data engineers, software

engineers, and DevOps personnel. A variety of

tools, open source or licensed, exists and are

continuously developed to support the cross-

disciplinary team in the various stages of the ML

lifecycle. Orchestration of these tools however is

an aspect which is typically neglected. Systems

coordinated via glue code and scripts suffer from

high technical debt [1] and therefore system

fragility.

 ML systems furthermore are rarely

production-ready after the first model training.

With every iteration of the development cycle, a

variety of steps are repeated, and artefacts

generated and moved around. When these

operations are executed manually, in a non-

predefined order, or lack the necessary

guardrails to suppress subjective interpretation,

the risk of human error is greatly increased, and

consistency and reproducibility potentially

compromised.

 The growing complexity of ML systems can

also not be neglected. Abiding to the software

development paradigm, each module,

component, or service of the ML application

must be first tested in isolation, before being

integrated at various levels to iteratively validate

the complete solution. Failing to do so might

result in unexpected results and system

instability.

 Despite the vast array of challenges and

importance of efficient solutions for operational

excellence, there is limited literature discussing

ML workflow automation. [9] discusses

Software Engineering challenges in ML

solutions but offers but a theoretical checklist

not yet applied in the industry. Studies such as

[6] and [7] have identified a knowledge gap

among machine learning developers in building

automation pipelines. [8] notes that “unifying

and automating the day-to-day workflow of […]

engineers reduces overhead and facilitates

progress in the field”. [10] investigates the use

of DevOps practices in ML applications in an

390

effort to improve operational functions for real-

world applications – a concept this paper

expands and improves on.

 Expanding on the introductory concepts,

section 2 lays out automation challenges as well

as potential solutions. Section 3 presents our

proposed approach, developed as part of Process

& Pipeline Services’ use-case of detecting

mechanically induced stress cracking in

pipelines, addressing presented risks and

showcasing benefits. We conclude in section 4,

outlining directions for future work.

2. AREAS OF AUTOMATION

In this section, we focus on three often

overlooked pitfalls of ML systems. We discuss

their risks and provide solutions.

2.1 Glue Code

The main purpose of glue code is to make the

components work together seamlessly, and

provide a single, cohesive system. It is often

found in the following components:

• Data ingress and egress, to handle

reading/writing data from/to various stores.

Examples include files and databases, and

often involve format conversions.

• Preprocessing, to perform data cleaning,

normalization, and other transformations,

preparing the data for ML operations. We

consider preprocessing the prototype of the

data pipeline of a ML model, consisting of

ad-hoc operations executed as part of

exploratory model development.

• Model training and evaluation, as a harness to

run the ML model training, as well as

evaluate its performance.

• Deployment, to integrate the trained model

into a larger system and make it accessible to

consumers.

 The use of glue code in ML systems however

poses some risks and challenges:

• Maintainability. Glue code can become

complex and hard to maintain over time,

especially as the system evolves and grows.

Poorly written glue code can result in bugs

and errors that can impact the performance

and stability of the system.

• Lack of scalability. The code may not be

designed to handle large-scale data

processing and may become a bottleneck.

This can result in degraded performance and

longer processing times, leading to decreased

efficiency and user frustration.

• Integration issues. Glue code is responsible

for integrating different components of the

system, and if not designed correctly, it can

yield interfacing issues and data loss.

• Lack of modularity. Glue code can

sometimes become monolithic, making it

difficult to change or update components

without affecting the rest of the system.

• Lack of reusability. Glue code is typically

highly customized for a specific task or

scenario and its inputs and outputs. The lack

of modularity and impaired maintainability

inhibits the reuse of glue code, with

development teams often rewriting it even for

similar problems.

 System incohesion as well as the undefined

impact on inference performance through buggy

behavior or data loss have an exceptional

bearing on safety-critical or industrial

applications. To mitigate these, as well as all

other risks listed above, it is important to invest

in good software engineering practices when

developing glue code. This includes using well-

established design patterns, rigorous testing

processes, and keeping code modular and

scalable.

 One way to achieve this is to abstract

common functionality into a command line

interface (CLI). A well-designed CLI can

provide a consistent and automated method for

performing frequent operations:

• Consolidation of data connectors can

facilitate re-use throughout the system. In

addition, store schema can be abstracted and

configured via e.g., JSON to increase

flexibility.

• Applying good software engineering

practices when developing preprocessing

routines facilitates their immediate reuse in

production pipelines.

391

• Abstract training, evaluation and deployment

scaffolds, as well as use-case independent

utilities can be recycled for subsequent ML

applications.

In addition, a custom CLI can also provide a

user-friendly ingress route for personnel

attempting to perform common tasks they are

not specialized in – e.g., a data scientist wanting

to deploy a ML model in a sandbox environment

would not need to be aware of the DevOps

specifics.

2.2 Workflows

Production-ready ML products are rarely the

result of the first training iteration. The machine

learning development cycle involves repeating

various steps, producing artifacts, and moving

them around with each change made to the input

set, data pipeline, model architecture and

parameters, or deployment strategy. When done

at scale, this increases the risk of errors unless

standardized and automated.

One way of addressing this aspect is to

implement often repeated operations in the CLI,

aggregate these to workflows, and add CLI

commands as hooks for the newly created

workflows. The benefits of this approach

include:

• Improved reproducibility, ensuring that the

same steps are followed every time a model

is developed or deployed.

• Reduced risk of human error, minimizing the

need for manual intervention. This is

particularly important in complex ML

projects, where this risk can be significant.

• Consistent execution, guaranteeing that all

steps are executed consistently and in the

correct order, reducing the risk of missed

steps or incorrect configurations.

• Faster deployment times. Automated

workflows can greatly reduce the time

required to deploy machine learning models,

as they eliminate the need for user interaction

and ensure that all steps are executed quickly

and efficiently.

• Improved collaboration through integration

with version control systems and other

collaboration tools, making it easier for teams

to work together on a project. This helps to

reduce the risk of conflicting changes and

improves communication between team

members.

• Increased efficiency, freeing engineers from

performing repetitive tasks, and thus

allowing them to focus on more important

aspects of the development cycle.

• Auditability. Workflows can be configured to

generate and automatically upload audit

artefacts for applications where extensive

recordkeeping is required.

2.3 Testing and Integration

 Similar to traditional software development,

from which ML system engineering inherits its

coding-specific challenges, testing and

integration represent critical aspects for ML

development.

 We define testing as the process of evaluating

the code against a set of test cases to verify its

behavior and performance. The main purpose is

to identify bugs, issues, and errors in the code as

early as possible. Similar to traditional code, ML

test coverage should include unit- as well as

integration tests, ensuring low-level operations

and the modules that aggregate them perform to

specification.

 In the context of this paper, integration is

defined as the process of aggregating the

machine learning code with other components

and (sub-)systems to create a complete solution.

Functional tests should be performed at this

level to assert the success of the integration and

identify any issues or conflicts.

 Testing and integration efforts can scale

proportionally to the overall complexity of the

solution. Regular execution of these operations

might imply disruption of up to several hours for

the user executing these. In addition, functional

tests might require components or services of the

broader system that are difficult to deploy or

emulate locally.

 Failing to test and integrate code, modules

and services might result in uncontrolled

program behavior, undefined results and service

incompatibility. Relying on manual integration

workflows adds several of the risks presented in

section 2.2. When executed too rarely, testing

392

and integration efforts might aggregate

significant amounts of updates, making root

cause analysis of failures increasingly difficult.

 Inspired by the software development

paradigm, Continuous Integration / Continuous

Deployment (CI/CD) systems can be set up to

continuously run ML-specific testing and

integration tasks. In addition to running unit and

integration tests, CI/CD pipelines can be used to:

• Simulate the ML training process and assert

the stability of the training workflow.

• Act as a controlled-environment sandbox for

functional testing, validating the integration

of readily trained models with other

components of the broader system.

• Build and deploy ML models.

3. CASE STUDY

 For a practical implementation of the

presented concepts and considerations, we focus

on our Platform for End-to-End Lifecycle

Management of Batch-Prediction Machine

Learning Models, as introduced in [2] and

employed for Process & Pipeline Services’ use-

case of detecting mechanically induced stress

cracking in data recorded during pipeline in-line

inspections.

 The solutions and components presented in

this section have been production-hardened for

several years. Although bespoke to our platform,

these can be translated to any ML system and

domain. The safety-critical nature of the use-

case these have been developed for increases

overall robustness and resiliency.

 In our platform, we employ containerization

to wrap individual services in HTTP servers.

Employing the “separation of concerns”

software design principle, services are never

collocated in the same Docker container – ML

models are separated from data ingress

connectors, platform orchestration modules, and

other auxiliary components. A complete system

is therefore composed of at least three

containers: ML model, data access, and

orchestration. Each service is developed, tested,

and deployed in isolation.

 Similar to source code version control, we

implement a versioning system for all services,

in which each service can be uniquely identified

by the tuple (<service_name>;

<build_uuid>), where service_name

represents the name of the service and

build_uuid is a universally unique identifier

(UUID) generated at build time.

 To automate the majority of the glue code

operations, a novel and dedicated CLI with

customizable contexts has been implemented.

CLI commands are available anywhere inside

the checked-out copy of the source code. On the

file system, the source code is organized in

folders; each folder stores the code and

configuration of one service. The behavior of the

CLI commands is custom to the context – or

working directory – of their execution. When

processing any command, the name of the

service is implied from the context.

 Use-cases of the CLI include integration and

testing of code modules, building and testing of

Docker images, training and validation of ML

models, and deployment and rollback of

services. To list a few examples:

• Interaction with the service versioning

system, including logging in and out, running

queries and checks, and pulling and pushing

of artefacts:

cli pull {build_uuid}: pulls the

Docker image and auxiliary artefacts of the

provided build_uuid to the local

machine. The service is implied from the

context.

cli push {build_uuid}: the

counterpart of pull; pushes the artefacts

associated with the provided build_uuid

to the versioning system.

cli ls: lists all available build UUIDs for

a service.

• Deployment of services in the local Docker

environment, including debugging

capabilities:

cli up: deploys/starts the service.

cli down: stops the service.

• Deployment of services on remote Docker

systems:
cli deploy [{scm_ref}

{build_uuid}]: either builds the service

from the provided source code management

(SCM) revision scm_ref, or pulls the

readily available build with build_uuid

393

from the versioning system and deploys it on

the remote system.

• Automation around model training, including

building of model images, running,

monitoring and validation of the training, and

capturing of the training artefacts:
cli build {data}

{configuration}: builds a Docker

image for the ML model and trains the model

on the specified data as per

configuration. Once trained, the model

is saved to disk.

cli predict {data}: deploys a trained

model locally and predicts on the provided

data.

• Automation around unit and integration

testing of various components, including

environment setup and teardown:

cli test: runs the tests – unit, integration,

functional – available for the current context.

 The CLI does not only cover individual

operations, but also aggregates these to

automated workflows. One of the most

prominent examples is the cli deploy

command, which, when called with the

scm_ref argument, initiates a five-step

workflow: 1) run SCM checks; 2) build the

service – ML model or auxiliary; 3) push the

artefacts to the versioning system; 4) deploy the

product on the client system; and 5) verify

deployment success.

 The CLI also acts as the onboarding platform

for novel functionality intended to be shared

across ML models or services, such as data

accessors and preprocessing operations. As code

and functionality is especially volatile in early

ML development phases, the CLI can be used to

rapidly prototype new functions, with the stricter

development standards imposed by the CLI

enabling subsequent promotion of these to the

individual services and modules as they mature.

Once available in the CLI, functionality can be

immediately reused by other users.

 Our CLI facilitates but does not impose

regular integration and testing efforts. To ensure

the stability of the codebase across commits, a

custom CI/CD setup is employed. We configure

Jenkins pipelines, to build, test and deploy code,

images and services. The Jenkins pipelines

leverage CLI functionality wherever possible –

e.g., via the build, test, up hooks, and in

turn the CLI leverages the Jenkins deploy

pipeline for remote rollout of services.

 To build and test all code check-ins –

including production simulation, a multi-stage

build pipeline has been set up. The following

stages are executed for every build, and are

depicted in Figure 1:

• Environment reset. The Jenkins instance

builds several images and runs several

containers from these images as part of every

build. The “Preparing” step ensures previous

artefacts do not interfere with the active build.

• Checkout of the latest code from the SCM

system, as part of the “Checking out

repositories” step.

• Build of all non-model / auxiliary

components using the CLI’s build hook,

followed by unit and integration testing via

cli test. The unit tests use mock-services

Fig. 1. Jenkins build pipeline.

394

and -stores; the integration tests simulate

small-scale deployment.

Pipeline steps: “Aux: Preparing tests”, “Aux:

Running unit tests” and “Aux: Running

integration tests”.

• Build – cli build – and test – cli up

followed by cli test – of the ML model

components. Besides unit and integration

tests, all available functional tests are

executed to assert the interfacing with the rest

of the system, including complete-solution

simulation. For functional testing, we treat

the containers as black boxes. At the very

least, every developed ML model has

functional tests to check the train and predict

functionality.

Relevant pipeline steps are: “Model:

Preparing”, “Model: Installing

Prerequisites”, “Model: Building Docker

images” and “Model: Running tests”.

• Aggregation of test reports and cleanup, as

part of the “Clean-up” step.

 The build pipeline is configured to fail fast. If

any of the stages reports errors, the build is

interrupted. Figure 1 presents two builds, #6

which failed the integration tests for the

auxiliary services and #7 which successfully

completed all stages after further 17 commits.

The average build time for the whole pipeline is

roughly 76 minutes, with the ML model tests

amounting to 73% of the total.

 For deployment of any service, a second

Jenkins pipeline is employed. Depicted in Figure

2, the deploy pipeline consists of two stages:

• Source code checkout – “SCM operations”.

• The actual deployment – “Deployment”.

 The deploy pipeline leverages the CLI’s

push functionality to persist all services and

their artefacts in the versioning system. This not

only allows us to trace any prediction to the

exact version of the model that generated it and

its source code, but also to identify all supporting

services of that particular setup, including their

versions.

 This Jenkins pipeline takes 3 parameters, as

illustrated in Figure 3. The first two, SCM_REF

and SERVICE_NAME are relevant for

deployment of new builds and specify the source

code revision to use and the service to be

deployed.

 The deploy pipeline can also be used to roll

services and models back to previous versions.

To roll items back, the third parameter of the

deploy pipeline, BUILD_UUID, must be

configured. Rollback operations do not build

any new images or services since these are

readily available in the versioning system.

 Although it can be manually invoked from

the Jenkins UI, the deploy pipeline is meant to

run as part of the automated workflow of the

CLI’s deploy command. When triggered

through the CLI hook, the pipeline is augmented

with pre- and post-deploy checks, and the

Fig. 3. Jenkins deploy pipeline parameters.

Fig. 2. Jenkins deploy pipeline.

395

SERVICE_NAME is implied from the context

the CLI was run in.

 Figure 2 shows four successful deploy jobs,

with execution times ranging from under 20

seconds to several minutes. The time required

for the “Deployment” step is proportional to the

complexity of the service being rolled out.

 Our automated build and deploy workflows

abstract away DevOps-specifics, allowing

software developers, data scientists and ML

experts to focus their efforts where they matter

most, thus increasing efficiency. Furthermore,

the consistent execution of all involved steps

minimizes the risk of human error and improves

reproducibility. Being configured to fail fast

ensures relevant personnel is immediately

notified on build or deploy errors, reducing the

risk of production outage.

 Our solution improves on the

recommendations of [10] in several ways. To

name a few:

• Our bespoke CLI abstracts common

functionality for maximum reuse in local

development, as well as in the CI/CD context.

• Our CI/CD approach entails building and

testing of code directly in Docker images,

ensuring compatibility with the target

runtime.

• The proposed CI/CD flow includes staging

environment simulation as part of the

functional tests to ensure system-wide

cohesion without the need of a separate

environment.

• The CLI and CI/CD automations produce and

store audit artefacts.

 For Process & Pipeline Services’ use-case,

the CLI’s model build automation allowed

training iterations to run unattended for several

weeks, enabling the project team to focus on

different tasks. With validation metrics and

training artefacts captured at the end of each

cycle, audit logs were readily available, and

performance walks across model iterations and

production rollout were greatly simplified.

 The CLI and CI/CD solutions were employed

from prototyping to production rollout, as

depicted in Figures 1 and 2. The resulting ML

system was production-deployed on a cluster of

AWS g3.4xlarge EC2s, serving batch

predictions on several million data points per

dataset, for datasets exceeding several TB in

uncompressed storage, utilizing up to 64 Data

Access connectors in parallel, without stability

or memory exhaustion issues.

4. CONCLUSIONS AND FUTURE WORK

 ML model development and deployment

remains time-consuming and prone to errors if

orchestration aspects are neglected. Poorly

developed glue code, manual executed

workflows, and the lack of testing and

integration can lead to system fragility and

instability, consistency and reproducibility

issues, as well as undefined inference results.

 Striving to help close the gap in ML

workflow automation literature, we have not just

discussed theoretical considerations, but also

presented a practical implementation of our

novel approach consisting of bespoke CLI

commands and CI/CD pipelines, as applied to

Process & Pipeline Services’ use-case of

detecting mechanically induced stress cracking

in pipelines.

 The presented approach has the potential to

revolutionize the way organizations develop,

train, and deploy machine learning models. The

automation of workflows can greatly improve

the efficiency and reliability, CLI

standardization can increase overall code

quality, improve code reuse and system

accessibility for non-expert personnel,

automated integration and testing efforts can

mitigate code validation risks as well as ensure

system cohesion in production settings.

 Whilst the integration of CLI and CI/CD has

been shown to be a successful approach in

streamlining ML workflows, there is still room

for improvement. One avenue for further

exploration is to examine the integration of these

tools with other DevOps technologies, such as

cloud deployment.

5. REFERENCES

[1] D. Sculley, G. Holt, D. Golovin, E. Davydov,

T. Phillips, D. Ebner, V. Chaudhary, M.

Young, D. Dennison, Hidden Technical Debt

396

in Machine Learning Systems, 2015, NIPS.

2494-2502.

[2] A. -I. Argesanu, G. -D. Andreescu, A

Platform to Manage the End-to-End Lifecycle

of Batch-Prediction Machine Learning

Models, 2021 IEEE 15th International

Symposium on Applied Computational

Intelligence and Informatics (SACI), 2021,

pp. 329-33.

[3] S. Amershi et al., Software Engineering for

Machine Learning: A Case Study, 2019

IEEE/ACM 41st International Conference on

Software Engineering: Software Engineering

in Practice (ICSE-SEIP), 2019, pp. 291-300,

doi: 10.1109/ICSE-SEIP.2019.00042.

[4] D. Xin, E.Y. Wu, D.J. Lee, N. Salehi, A.

Parameswaran, Whither automl?

understanding the role of automation in

machine learning workflows, InProceedings

of the 2021 CHI Conference on Human

Factors in Computing Systems 2021 May 6

(pp. 1-16).

[5] I. Karamitsos, S. Albarhami, C.

Apostolopoulos, Applying DevOps Practices

of Continuous Automation for Machine

Learning, Information 2020, 11, 363,

https://doi.org/10.3390/info11070363

[6] S. Garg, P. Pundir, G. Rathee, P.K. Gupta, S.

Garg, S. Ahlawat, On Continuous Integration

/ Continuous Delivery for Automated

Deployment of Machine Learning Models

using MLOps, 2021 IEEE Fourth

International Conference on Artificial

Intelligence and Knowledge Engineering

(AIKE), 25-28, 2021.

[7] L.E. Lwakatare, A. Raj, I. Crnkovic, J.

Bosch, H.H. & Olsson, Large-scale machine

learning systems in real-world industrial

settings: A review of challenges and

solutions, Inf. Softw. Technol., 127, 106368,

2020.

[8] S. Amershi, A. Begel, C. Bird, R. DeLine,

H.C. Gall, E. Kamar, N. Nagappan, B. Nushi,

T. Zimmermann, Software Engineering for

Machine Learning: A Case Study, 2019

IEEE/ACM 41st International Conference on

Software Engineering: Software Engineering

in Practice (ICSE-SEIP), 291-300, 2019.

[9] E.D. Nascimento, I., Ahmed, E. Oliveira,

M.P. Palheta, I. Steinmacher, T.U. Conte,

Understanding Development Process of

Machine Learning Systems: Challenges and

Solutions, 2019 ACM/IEEE International

Symposium on Empirical Software

Engineering and Measurement (ESEM), 1-6,

2019.

[10] I. Karamitsos, S. Albarhami, C.

Apostolopoulos, Applying DevOps Practices

of Continuous Automation for Machine

Learning, Inf., 11, 363, 2020.

AUTOMATIZAREA WORKFLOW-URILOR ML IN APLICATII INDUSTRIALE PRIN

CLI SI CI/CD

Rezumat: Integrarea învățării automate (ML) în diverse organizații a devenit un aspect esențial cu o gamă largă de

aplicații. Cu toate acestea, dezvoltarea și implementarea modelelor ML poate necesita o perioade de timp îndelungata, și

poate fi predispusă la erori, datorită naturii iterative a procesului. Pe măsură ce ML devine din ce în ce mai integrat cu

sistemele industriale, cererea de procese controlate, reproductibile și repetabile crește. Această lucrare propune o abordare

nouă pentru automatizarea diferitelor workflow-uri ale ciclului de viață al modelelor ML prin intermediul interfețelor de

linie de comandă (CLI) personalizate și pipeline-urile de Continuous Integration/Continuous Deployment (CI/CD).

Dezbatem provocările și riscurile workflow-urilor ML neautomatizate, precum și beneficiile utilizării soluțiilor propuse,

explorând use-case-ul al Process & Pipeline Services de detectare a fenomenelor de fisurare al pipeline-urilor datorate

tensiunilor mecanice acumulate. In lucrare propunem elemente avansate de stricta noutate nemaiîntâlnite in literatura de

specialitate.

Adrian-Ioan ARGESANU, PhD. Stud. Eng., Politehnica University Timisoara, Faculty of

Automation and Computers, adrian.argesanu@student.upt.ro, Bulevardul Vasile Pârvan 2, 300223

Timișoara, Romania, Baker Hughes, Process & Pipeline Services,

adrian.argesanu@bakerhughes.com, +4972447320, Lorenzstraße 10, 76297 Stutensee, Germany.

Gheorghe-Daniel ANDREESCU, PhD. Eng. Prof., Politehnica University Timisoara, Faculty of

Automation and Computers, daniel.andreescu@upt.ro, +40256403507, Bulevardul Vasile Pârvan

2, 300223 Timișoara, Romania.

