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Abstract: The integration of machine learning (ML) in various organizations has become an essential 

aspect with a wide range of applications. However, the development and deployment of machine learning 

models can be time-consuming and prone to errors due to the iterative nature of the process and the 

constant testing and retraining of models. As ML becomes more integrated with industrial systems, the 

demand for controlled, reproducible and repeatable processes rises. This paper proposes a novel approach 

for the automation of various workflows of the ML model lifecycle via custom Command Line Interfaces 

(CLI) and Continuous Integration/Continuous Deployment (CI/CD) pipelines. We discuss the challenges

and pitfalls of non-automated ML workflows, as well as the benefits of using the proposed toolset. We

introduce our bespoke approach to CLI and CI/CD automation, highlighting timesaving as well as

consistency-improvement aspects for Process & Pipeline Services’ use-case of detecting mechanically

induced stress cracking in pipelines. This paper adds to the limited literature on ML lifecycle automation.
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1. INTRODUCTION

 Machine learning has become a critical tool 

in many organizations. Development and 

productionization of ML applications requires 

coordinated efforts from machine learning 

experts, data scientists, data engineers, software 

engineers, and DevOps personnel. A variety of 

tools, open source or licensed, exists and are 

continuously developed to support the cross-

disciplinary team in the various stages of the ML 

lifecycle. Orchestration of these tools however is 

an aspect which is typically neglected. Systems 

coordinated via glue code and scripts suffer from 

high technical debt [1] and therefore system 

fragility. 

 ML systems furthermore are rarely 

production-ready after the first model training. 

With every iteration of the development cycle, a 

variety of steps are repeated, and artefacts 

generated and moved around. When these 

operations are executed manually, in a non-

predefined order, or lack the necessary 

guardrails to suppress subjective interpretation, 

the risk of human error is greatly increased, and 

consistency and reproducibility potentially 

compromised. 

 The growing complexity of ML systems can 

also not be neglected. Abiding to the software 

development paradigm, each module, 

component, or service of the ML application 

must be first tested in isolation, before being 

integrated at various levels to iteratively validate 

the complete solution. Failing to do so might 

result in unexpected results and system 

instability. 

 Despite the vast array of challenges and 

importance of efficient solutions for operational 

excellence, there is limited literature discussing 

ML workflow automation. [9] discusses 

Software Engineering challenges in ML 

solutions but offers but a theoretical checklist 

not yet applied in the industry. Studies such as 

[6] and [7] have identified a knowledge gap

among machine learning developers in building

automation pipelines. [8] notes that “unifying

and automating the day-to-day workflow of […]

engineers reduces overhead and facilitates

progress in the field”. [10] investigates the use

of DevOps practices in ML applications in an
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effort to improve operational functions for real-

world applications – a concept this paper 

expands and improves on. 

 Expanding on the introductory concepts, 

section 2 lays out automation challenges as well 

as potential solutions. Section 3 presents our 

proposed approach, developed as part of Process 

& Pipeline Services’ use-case of detecting 

mechanically induced stress cracking in 

pipelines, addressing presented risks and 

showcasing benefits. We conclude in section 4, 

outlining directions for future work. 

 

2. AREAS OF AUTOMATION 

 

In this section, we focus on three often 

overlooked pitfalls of ML systems. We discuss 

their risks and provide solutions. 

 

2.1 Glue Code 

 

The main purpose of glue code is to make the 

components work together seamlessly, and 

provide a single, cohesive system. It is often 

found in the following components:  

• Data ingress and egress, to handle 

reading/writing data from/to various stores. 

Examples include files and databases, and 

often involve format conversions. 

• Preprocessing, to perform data cleaning, 

normalization, and other transformations, 

preparing the data for ML operations. We 

consider preprocessing the prototype of the 

data pipeline of a ML model, consisting of 

ad-hoc operations executed as part of 

exploratory model development. 

• Model training and evaluation, as a harness to 

run the ML model training, as well as 

evaluate its performance. 

• Deployment, to integrate the trained model 

into a larger system and make it accessible to 

consumers. 

 

 The use of glue code in ML systems however 

poses some risks and challenges: 

• Maintainability. Glue code can become 

complex and hard to maintain over time, 

especially as the system evolves and grows. 

Poorly written glue code can result in bugs 

and errors that can impact the performance 

and stability of the system. 

• Lack of scalability. The code may not be 

designed to handle large-scale data 

processing and may become a bottleneck. 

This can result in degraded performance and 

longer processing times, leading to decreased 

efficiency and user frustration. 

• Integration issues. Glue code is responsible 

for integrating different components of the 

system, and if not designed correctly, it can 

yield interfacing issues and data loss. 

• Lack of modularity. Glue code can 

sometimes become monolithic, making it 

difficult to change or update components 

without affecting the rest of the system. 

• Lack of reusability. Glue code is typically 

highly customized for a specific task or 

scenario and its inputs and outputs. The lack 

of modularity and impaired maintainability 

inhibits the reuse of glue code, with 

development teams often rewriting it even for 

similar problems. 

 

 System incohesion as well as the undefined 

impact on inference performance through buggy 

behavior or data loss have an exceptional 

bearing on safety-critical or industrial 

applications. To mitigate these, as well as all 

other risks listed above, it is important to invest 

in good software engineering practices when 

developing glue code. This includes using well-

established design patterns, rigorous testing 

processes, and keeping code modular and 

scalable.  

 One way to achieve this is to abstract 

common functionality into a command line 

interface (CLI). A well-designed CLI can 

provide a consistent and automated method for 

performing frequent operations: 

• Consolidation of data connectors can 

facilitate re-use throughout the system. In 

addition, store schema can be abstracted and 

configured via e.g., JSON to increase 

flexibility. 

• Applying good software engineering 

practices when developing preprocessing 

routines facilitates their immediate reuse in 

production pipelines. 
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• Abstract training, evaluation and deployment 

scaffolds, as well as use-case independent 

utilities can be recycled for subsequent ML 

applications. 

 

In addition, a custom CLI can also provide a 

user-friendly ingress route for personnel 

attempting to perform common tasks they are 

not specialized in – e.g., a data scientist wanting 

to deploy a ML model in a sandbox environment 

would not need to be aware of the DevOps 

specifics. 

 

2.2 Workflows 

 

Production-ready ML products are rarely the 

result of the first training iteration. The machine 

learning development cycle involves repeating 

various steps, producing artifacts, and moving 

them around with each change made to the input 

set, data pipeline, model architecture and 

parameters, or deployment strategy. When done 

at scale, this increases the risk of errors unless 

standardized and automated. 

One way of addressing this aspect is to 

implement often repeated operations in the CLI, 

aggregate these to workflows, and add CLI 

commands as hooks for the newly created 

workflows. The benefits of this approach 

include: 

• Improved reproducibility, ensuring that the 

same steps are followed every time a model 

is developed or deployed. 

• Reduced risk of human error, minimizing the 

need for manual intervention. This is 

particularly important in complex ML 

projects, where this risk can be significant. 

• Consistent execution, guaranteeing that all 

steps are executed consistently and in the 

correct order, reducing the risk of missed 

steps or incorrect configurations. 

• Faster deployment times. Automated 

workflows can greatly reduce the time 

required to deploy machine learning models, 

as they eliminate the need for user interaction 

and ensure that all steps are executed quickly 

and efficiently. 

• Improved collaboration through integration 

with version control systems and other 

collaboration tools, making it easier for teams 

to work together on a project. This helps to 

reduce the risk of conflicting changes and 

improves communication between team 

members. 

• Increased efficiency, freeing engineers from 

performing repetitive tasks, and thus 

allowing them to focus on more important 

aspects of the development cycle. 

• Auditability. Workflows can be configured to 

generate and automatically upload audit 

artefacts for applications where extensive 

recordkeeping is required. 

 

2.3 Testing and Integration 

 

 Similar to traditional software development, 

from which ML system engineering inherits its 

coding-specific challenges, testing and 

integration represent critical aspects for ML 

development. 

 We define testing as the process of evaluating 

the code against a set of test cases to verify its 

behavior and performance. The main purpose is 

to identify bugs, issues, and errors in the code as 

early as possible. Similar to traditional code, ML 

test coverage should include unit- as well as 

integration tests, ensuring low-level operations 

and the modules that aggregate them perform to 

specification. 

 In the context of this paper, integration is 

defined as the process of aggregating the 

machine learning code with other components 

and (sub-)systems to create a complete solution. 

Functional tests should be performed at this 

level to assert the success of the integration and 

identify any issues or conflicts. 

 Testing and integration efforts can scale 

proportionally to the overall complexity of the 

solution. Regular execution of these operations 

might imply disruption of up to several hours for 

the user executing these. In addition, functional 

tests might require components or services of the 

broader system that are difficult to deploy or 

emulate locally.  

 Failing to test and integrate code, modules 

and services might result in uncontrolled 

program behavior, undefined results and service 

incompatibility. Relying on manual integration 

workflows adds several of the risks presented in 

section 2.2. When executed too rarely, testing 
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and integration efforts might aggregate 

significant amounts of updates, making root 

cause analysis of failures increasingly difficult. 

 Inspired by the software development 

paradigm, Continuous Integration / Continuous 

Deployment (CI/CD) systems can be set up to 

continuously run ML-specific testing and 

integration tasks. In addition to running unit and 

integration tests, CI/CD pipelines can be used to: 

• Simulate the ML training process and assert 

the stability of the training workflow. 

• Act as a controlled-environment sandbox for 

functional testing, validating the integration 

of readily trained models with other 

components of the broader system. 

• Build and deploy ML models. 

 

3. CASE STUDY 

 

 For a practical implementation of the 

presented concepts and considerations, we focus 

on our Platform for End-to-End Lifecycle 

Management of Batch-Prediction Machine 

Learning Models, as introduced in [2] and 

employed for Process & Pipeline Services’ use-

case of detecting mechanically induced stress 

cracking in data recorded during pipeline in-line 

inspections. 

 The solutions and components presented in 

this section have been production-hardened for 

several years. Although bespoke to our platform, 

these can be translated to any ML system and 

domain. The safety-critical nature of the use-

case these have been developed for increases 

overall robustness and resiliency. 

 In our platform, we employ containerization 

to wrap individual services in HTTP servers. 

Employing the “separation of concerns” 

software design principle, services are never 

collocated in the same Docker container – ML 

models are separated from data ingress 

connectors, platform orchestration modules, and 

other auxiliary components. A complete system 

is therefore composed of at least three 

containers: ML model, data access, and 

orchestration. Each service is developed, tested, 

and deployed in isolation. 

 Similar to source code version control, we 

implement a versioning system for all services, 

in which each service can be uniquely identified 

by the tuple (<service_name>; 

<build_uuid>), where service_name 

represents the name of the service and 

build_uuid is a universally unique identifier 

(UUID) generated at build time. 

 To automate the majority of the glue code 

operations, a novel and dedicated CLI with 

customizable contexts has been implemented. 

CLI commands are available anywhere inside 

the checked-out copy of the source code. On the 

file system, the source code is organized in 

folders; each folder stores the code and 

configuration of one service. The behavior of the 

CLI commands is custom to the context – or 

working directory – of their execution. When 

processing any command, the name of the 

service is implied from the context. 

 Use-cases of the CLI include integration and 

testing of code modules, building and testing of 

Docker images, training and validation of ML 

models, and deployment and rollback of 

services. To list a few examples: 

• Interaction with the service versioning 

system, including logging in and out, running 

queries and checks, and pulling and pushing 

of artefacts: 

cli pull {build_uuid}: pulls the 

Docker image and auxiliary artefacts of the 

provided build_uuid to the local 

machine. The service is implied from the 

context. 

cli push {build_uuid}: the 

counterpart of pull; pushes the artefacts 

associated with the provided build_uuid 

to the versioning system. 

cli ls: lists all available build UUIDs for 

a service. 

• Deployment of services in the local Docker 

environment, including debugging 

capabilities: 

cli up: deploys/starts the service. 

cli down: stops the service. 

• Deployment of services on remote Docker 

systems: 
cli deploy [{scm_ref} 

{build_uuid}]: either builds the service 

from the provided source code management 

(SCM) revision scm_ref, or pulls the 

readily available build with build_uuid 
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from the versioning system and deploys it on 

the remote system. 

• Automation around model training, including 

building of model images, running, 

monitoring and validation of the training, and 

capturing of the training artefacts: 
cli build {data} 

{configuration}: builds a Docker 

image for the ML model and trains the model 

on the specified data as per 

configuration. Once trained, the model 

is saved to disk.  

cli predict {data}: deploys a trained 

model locally and predicts on the provided 

data.  

• Automation around unit and integration 

testing of various components, including 

environment setup and teardown: 

cli test: runs the tests – unit, integration, 

functional – available for the current context. 

 

 The CLI does not only cover individual 

operations, but also aggregates these to 

automated workflows. One of the most 

prominent examples is the cli deploy 

command, which, when called with the 

scm_ref argument, initiates a five-step 

workflow: 1) run SCM checks; 2) build the 

service – ML model or auxiliary; 3) push the 

artefacts to the versioning system; 4) deploy the 

product on the client system; and 5) verify 

deployment success. 

 The CLI also acts as the onboarding platform 

for novel functionality intended to be shared 

across ML models or services, such as data 

accessors and preprocessing operations. As code 

and functionality is especially volatile in early 

ML development phases, the CLI can be used to 

rapidly prototype new functions, with the stricter 

development standards imposed by the CLI 

enabling subsequent promotion of these to the 

individual services and modules as they mature. 

Once available in the CLI, functionality can be 

immediately reused by other users. 

 Our CLI facilitates but does not impose 

regular integration and testing efforts. To ensure 

the stability of the codebase across commits, a 

custom CI/CD setup is employed. We configure 

Jenkins pipelines, to build, test and deploy code, 

images and services. The Jenkins pipelines 

leverage CLI functionality wherever possible – 

e.g., via the build, test, up hooks, and in 

turn the CLI leverages the Jenkins deploy 

pipeline for remote rollout of services. 

 To build and test all code check-ins – 

including production simulation, a multi-stage 

build pipeline has been set up. The following 

stages are executed for every build, and are 

depicted in Figure 1: 

• Environment reset. The Jenkins instance 

builds several images and runs several 

containers from these images as part of every 

build. The “Preparing” step ensures previous 

artefacts do not interfere with the active build. 

• Checkout of the latest code from the SCM 

system, as part of the “Checking out 

repositories” step. 

• Build of all non-model / auxiliary 

components using the CLI’s build hook, 

followed by unit and integration testing via 

cli test. The unit tests use mock-services 

 

 

Fig. 1. Jenkins build pipeline. 
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and -stores; the integration tests simulate 

small-scale deployment.  

Pipeline steps: “Aux: Preparing tests”, “Aux: 

Running unit tests” and “Aux: Running 

integration tests”. 

• Build – cli build – and test – cli up 

followed by cli test – of the ML model 

components. Besides unit and integration 

tests, all available functional tests are 

executed to assert the interfacing with the rest 

of the system, including complete-solution 

simulation. For functional testing, we treat 

the containers as black boxes. At the very 

least, every developed ML model has 

functional tests to check the train and predict 

functionality. 

Relevant pipeline steps are: “Model: 

Preparing”, “Model: Installing 

Prerequisites”, “Model: Building Docker 

images” and “Model:  Running tests”. 

• Aggregation of test reports and cleanup, as 

part of the “Clean-up” step. 

 

 The build pipeline is configured to fail fast. If 

any of the stages reports errors, the build is 

interrupted. Figure 1 presents two builds, #6 

which failed the integration tests for the 

auxiliary services and #7 which successfully 

completed all stages after further 17 commits. 

The average build time for the whole pipeline is 

roughly 76 minutes, with the ML model tests 

amounting to 73% of the total. 

 For deployment of any service, a second 

Jenkins pipeline is employed. Depicted in Figure 

2, the deploy pipeline consists of two stages: 

• Source code checkout – “SCM operations”. 

• The actual deployment – “Deployment”.  

 

 The deploy pipeline leverages the CLI’s 

push functionality to persist all services and 

their artefacts in the versioning system. This not 

only allows us to trace any prediction to the 

exact version of the model that generated it and 

its source code, but also to identify all supporting 

services of that particular setup, including their 

versions. 

 This Jenkins pipeline takes 3 parameters, as 

illustrated in Figure 3. The first two, SCM_REF 

and SERVICE_NAME are relevant for 

deployment of new builds and specify the source 

code revision to use and the service to be 

deployed. 

 The deploy pipeline can also be used to roll 

services and models back to previous versions. 

To roll items back, the third parameter of the 

deploy pipeline, BUILD_UUID, must be 

configured. Rollback operations do not build 

any new images or services since these are 

readily available in the versioning system. 

 Although it can be manually invoked from 

the Jenkins UI, the deploy pipeline is meant to 

run as part of the automated workflow of the 

CLI’s deploy command. When triggered 

through the CLI hook, the pipeline is augmented 

with pre- and post-deploy checks, and the 

 

Fig. 3. Jenkins deploy pipeline parameters. 

 

Fig. 2. Jenkins deploy pipeline. 
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SERVICE_NAME is implied from the context 

the CLI was run in. 

 Figure 2 shows four successful deploy jobs, 

with execution times ranging from under 20 

seconds to several minutes. The time required 

for the “Deployment” step is proportional to the 

complexity of the service being rolled out. 

 Our automated build and deploy workflows 

abstract away DevOps-specifics, allowing 

software developers, data scientists and ML 

experts to focus their efforts where they matter 

most, thus increasing efficiency. Furthermore, 

the consistent execution of all involved steps 

minimizes the risk of human error and improves 

reproducibility. Being configured to fail fast 

ensures relevant personnel is immediately 

notified on build or deploy errors, reducing the 

risk of production outage. 

 Our solution improves on the 

recommendations of [10] in several ways. To 

name a few: 

• Our bespoke CLI abstracts common 

functionality for maximum reuse in local 

development, as well as in the CI/CD context. 

• Our CI/CD approach entails building and 

testing of code directly in Docker images, 

ensuring compatibility with the target 

runtime. 

• The proposed CI/CD flow includes staging 

environment simulation as part of the 

functional tests to ensure system-wide 

cohesion without the need of a separate 

environment. 

• The CLI and CI/CD automations produce and 

store audit artefacts. 

 

 For Process & Pipeline Services’ use-case, 

the CLI’s model build automation allowed 

training iterations to run unattended for several 

weeks, enabling the project team to focus on 

different tasks. With validation metrics and 

training artefacts captured at the end of each 

cycle, audit logs were readily available, and 

performance walks across model iterations and 

production rollout were greatly simplified. 

 The CLI and CI/CD solutions were employed 

from prototyping to production rollout, as 

depicted in Figures 1 and 2. The resulting ML 

system was production-deployed on a cluster of 

AWS g3.4xlarge EC2s, serving batch 

predictions on several million data points per 

dataset, for datasets exceeding several TB in 

uncompressed storage, utilizing up to 64 Data 

Access connectors in parallel, without stability 

or memory exhaustion issues. 

 

4. CONCLUSIONS AND FUTURE WORK 

 

 ML model development and deployment 

remains time-consuming and prone to errors if 

orchestration aspects are neglected. Poorly 

developed glue code, manual executed 

workflows, and the lack of testing and 

integration can lead to system fragility and 

instability, consistency and reproducibility 

issues, as well as undefined inference results. 

 Striving to help close the gap in ML 

workflow automation literature, we have not just 

discussed theoretical considerations, but also 

presented a practical implementation of our 

novel approach consisting of bespoke CLI 

commands and CI/CD pipelines, as applied to 

Process & Pipeline Services’ use-case of 

detecting mechanically induced stress cracking 

in pipelines. 

 The presented approach has the potential to 

revolutionize the way organizations develop, 

train, and deploy machine learning models. The 

automation of workflows can greatly improve 

the efficiency and reliability, CLI 

standardization can increase overall code 

quality, improve code reuse and system 

accessibility for non-expert personnel, 

automated integration and testing efforts can 

mitigate code validation risks as well as ensure 

system cohesion in production settings. 

 Whilst the integration of CLI and CI/CD has 

been shown to be a successful approach in 

streamlining ML workflows, there is still room 

for improvement. One avenue for further 

exploration is to examine the integration of these 

tools with other DevOps technologies, such as 

cloud deployment. 
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AUTOMATIZAREA WORKFLOW-URILOR ML IN APLICATII INDUSTRIALE PRIN 

CLI SI CI/CD 
 

Rezumat: Integrarea învățării automate (ML) în diverse organizații a devenit un aspect esențial cu o gamă largă de 

aplicații. Cu toate acestea, dezvoltarea și implementarea modelelor ML poate necesita o perioade de timp îndelungata, și 

poate fi predispusă la erori, datorită naturii iterative a procesului. Pe măsură ce ML devine din ce în ce mai integrat cu 

sistemele industriale, cererea de procese controlate, reproductibile și repetabile crește. Această lucrare propune o abordare 

nouă pentru automatizarea diferitelor workflow-uri ale ciclului de viață al modelelor ML prin intermediul interfețelor de 

linie de comandă (CLI) personalizate și pipeline-urile de Continuous Integration/Continuous Deployment (CI/CD). 

Dezbatem provocările și riscurile workflow-urilor ML neautomatizate, precum și beneficiile utilizării soluțiilor propuse, 

explorând use-case-ul al Process & Pipeline Services de detectare a fenomenelor de fisurare al pipeline-urilor datorate 

tensiunilor mecanice acumulate. In lucrare propunem elemente avansate de stricta noutate nemaiîntâlnite in literatura de 

specialitate. 
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