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Abstract: In this study, matrix exponential functions will be utilized to formulate the direct geometric equations for 

a multi-body system. Matrix exponential functions will be employed to analyze a serial robot structure of the 2RTR type. 

In comparison to conventional algorithms, the advantages of matrix exponential functions are notable in deriving the 

direct geometric equations. The outcomes derived from the geometric representation will serve as initial input for 

kinematic modeling. This data is crucial for investigating the dynamic characteristics of any multi-body system. 
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1. INTRODUCTION

 The methodologies for geometric modeling 
of industrial robots, frequently employed in 
academic literature, are closely linked with the 
inherent geometry of the robot [1]. In this 
context, the robot is envisioned as an assembly 
of rigid structures (multibody system), 
flawlessly characterized by dimensions and 
spatial configuration. 
 To initiate the investigation of kinematics 
followed by the subsequent dynamic analysis of 
the robot, it becomes crucial to meticulously 
examine its geometrical model. This procedure 
involves the assessment and simulation of the 
components, limitations, and operational 
conditions encompassing the entire system. 
 The core challenge of direct geometric 
modeling (DGM) can be effectively tackled 
through a range of techniques [1]-[6]: the 
location matrix algorithm, the PG-type 
composite operator algorithm, the DH-type 
composite operator algorithm, and the 
exponentials matrix algorithm. Amid the 
aforementioned alternatives through which the 
geometric scrutiny of the robot's structure can be 
executed, the application of matrix exponential 
functions provides notable benefits in inferring 
the equations related to direct geometry, as 
delineated in [1]-[6]. 

 Geometric modeling harnessed with matrix 
exponential functions represents a more 
advanced approach that capitalizes on intricate 
mathematical concepts to clarify and regulate the 
robot's spatial displacement [1]. This approach 
empowers the portrayal of intricate motions and 
meticulous oversight of the robot's path. 
 The geometric investigation outlined in this 
document was performed on the suspended 
Epson RS4-551 robot (figure 1), acknowledged 
as a multi-elemental system. 

Fig. 1 Epson RS4-551 robot [9] 

1.1. EPSON RS4-551 ROBOT 

 The Epson robotic system is a SCARA-type 
robot, commonly employed within industrial 
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automation due to its relatively compact size and 
minimal footprint upon integration into 
industrial processes. 
 The arm's architecture has been meticulously 
crafted to facilitate the placement of joint 2 
beneath joint 1, enabling the entire workspace 
beneath the arm to be effectively utilized. Unlike 
alternative robot designs, it boasts a 360-degree 
operational workspace envelope. 
 These structural configurations exhibit 
superior swiftness, accuracy, and reproducibility 
in contrast to human operators, without 
necessitating breaks. Consequently, they are 
increasingly favored within industrial 
automation [12]. Their prevalent applications 
include enhancing the efficiency of Pick&Place 
tasks, as well as facilitating the intricacies of 
small-to-medium assembly procedures, 
fastening, precise dosing, and manipulation of 
diverse components throughout various phases. 
 The Epson robot consists of four joints, more 
accurately it has two rotation joints (joint 1 and 
joint 2) and a roto-translation joint (joint 3+4) 
which is capable of performing both a rotation 
and a translational movement on the Z axis 
according to Fig. 2. 
 

 
Fig. 2 Epson RS4-551 robot [9] 

  
 For the purpose of investigating the roto-
translation joint, it will be treated as two distinct 
components: specifically, joint 3 will be 
identified as a translational articulation, while 

joint 4 will be characterized as a rotational joint. 
The subsequent illustration provides enhanced 
clarity on the roto-translation joint, which 
incorporates a ball screw mechanism powered 
by two motors. One of these motors imparts 
rotational motion, resulting in a reciprocating 
movement along the ball screw and 
consequently inducing linear motion in the robot 
arm. The second motor generates the rotational 
movement around the Z-axis. 

Fig. 3 Epson RS4-551 robot 
 
 The roto-translational articulation provides 
the benefit of exceptional accuracy and 
dependable functionality, with the ball screw 
mechanism renowned for possessing these 
attributes. An additional advantage lies in the 
fact that this roto-translation joint can be 
effortlessly managed via the robot's software, 
enabling the attainment of rapid and precise 
motions during operational utilization. 
 
2. THE STRUCTURE OF THE ROBOT 

 
 The kinematic schematic of the robot was 
crafted using SolidWorks software, aiming to 
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ensure a comprehensible delineation of its 
structure, facilitating the subsequent geometric 
analysis. 
 Within the robotic system, there exist two 
rotational joints and a singular roto-translational 
joint. To facilitate the geometric investigation, 
the roto-translation joint is perceived as 
comprising two separate components: 
specifically, a translational joint (joint 3) and a 
rotational joint (joint 4), as depicted in figure 4. 
 

 
Fig. 4 The kinematic diagram of the 2RTR 

structure 

 
 For the purpose of the geometric exploration, 
direct your attention to the kinematic 
configuration of the 2RTR-style robot (rotation-
rotation-translation-rotation) as illustrated in 
figure 2. Through the application of the matrix 
exponentials algorithm in the context of direct 
geometry, the equations governing direct 
geometric attributes are established, offering 
representation of the end-effector's position and 
orientation within Cartesian space. 
 By employing the matrix exponential 
algorithm, the exponential values of the location 

matrices across the { } { }0 5→  systems are 

ascertained. These matrices elucidate the spatial 
orientation (both position and orientation) of the 
end-effector concerning the {0} coordinate 
system, which is affixed to the immobile base of 
the robot. To achieve this, a sequence of steps, 
as detailed in [1], is executed, and these stages 
are elaborated upon subsequently. 
  
3. INPUT DATA 

 

 The matrix of the nominal geometry ( )0
vnM , 

specific to the configuration ( )0θ  of the robot, is 
given, the kinematic scheme is presented in 
figure 2, the matrix of the nominal geometry is 
completed with the skew parameters ( ) ( ){ }0 0

;i ik v  

according to [1]-[7]. Thus, the new matrix 
corresponding to the 2RTR structure of the 
nominal geometry is symbolized by ( )0 **

vnM  and is 
presented in table 1. 

(0) 2vnM RTR∗∗ ∈  
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1 R 0 0 1 0 0 l0 0 0 0 
2 R 0 0 1 l1 0 z2 0 -l1 0 
3 T 0 0 1 x3 0 z3 0 0 1 
4 R 0 0 1 x4 0 z4 0 -l1-l3 0 

5 - - - - - - - - - - 
 
Where:  x3 =l1+l3;         z2= z3=l0+l2 
              x4 =l1+l3;             z4=l0+l2+l4 

                      x5 =l1+l3;               
                                                       
4. DETERMINATION OF THE SCREW 

PARAMETERS MATRIX  

 
 The skew parameter matrix is employed to 
depict the geometric alteration executed by a 
robotic joint at a specific location within its 
operational area. This matrix comprises an array 
of skewness parameters that delineate the 
structure and motion characteristics of the robot.
 The homogeneous transformation matrix iA  
maintains the same expression for both 
configurations of the robot ( )0θ  and θ  
according to [1], this matrix is determined for 
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each joint of the robot and is necessary to further 
calculate the derivative of the matrix 
exponentials. 
 Thus, the matrices of skew parameters are 
determined for each element of the robot: (i=1); 
(i=2); (i=3) and (i=4), as follows:  
 The matrix Ai for the first joint (i=1), which 
is a rotation joint, is: 

 

 The matrix Ai for the second joint (i=2), 
which is a rotation joint, is: 

 
 The matrix Ai for the third joint (i=3), which 
is a translation joint, is: 

 
 The matrix Ai for the fourth joint (i=4), 
which is a rotation joint, is: 
 

 
 

5. THE EXPONENTIAL OF THE 
ROTATION MATRIX 

 
 Within the realm of industrial robotics, the 
exponentiation of the rotational matrix finds 
utility within control algorithms, enabling 

computation of the robot arm's spatial 
arrangement and orientation within the 
workspace milieu. Furthermore, this matrix 
holds vital significance in devising and refining 
the robot's motion strategies, allowing for pre-
execution simulations prior to their practical 
implementation in the actual surroundings. 
 The exponential of the rotation matrix is determined 
according to [1]-[6] with the following expression, that 
is: 

 

 
where ( )0

ik  is the versor that expresses the 

orientation of the motor rotation axis of the 
studied robot.  
 By substituting into the previous expression, 
are obtain expressions for each kinematic 
element as follows: 
 For (i=1), specific to the first kinetic element 
of the robot under study, is: 

 

 For (i=2), specific to the second element 
within the robot structure, is: 

 

 For (i=3), specific to the third element within 
the robot structure, is: 
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 For (i=4), specific to the fourth element 
within the robot structure, is: 

 
 Next, applying the definition expression of 
the column vector of size (3x1) denoted by bi, 
according to [1]-[4]: 

 

 

 By substituting in the previous expression, is 
obtained expressions for each element, as 
follows: 
 For (i=1), specific to the first element of the 
robot under study, is: 

 
 For (i=2), specific to the second element 
within the robot structure, is:  

 

 
 For (i=3), specific to the third element within 
the robot structure, is: 
 

 
 For (i=4), specific to the fourth element 
within the robot structure, is: 
 

6. THE MATRIX EXPONENTIALS  

 The matrix exponentials is determined 
according to [1]-[5] using the following 
expression: 

 
For (i=1), specific to the first element of the 
robot under study, is: 
 

 

 For (i=2), specific to the second element 
within the robot structure, is: 

 
 For (i=3), specific to the third element within 
the robot structure, is: 

 
For (i=4), specific to the fourth element within 
the robot structure, is: 
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 The exponentials expressions that 
characterize the location matrices and that 
express the position and orientation of the 

systems { }n  and { }1n +  in relation to the system 

{ }0 , according to [1]-[4] are obtained as follows: 

  
By substituting into Rx0 from the previous 
expression, yilds the rotation matrices for each 
kinematic elements as follows: 
 
 For (i=1), specific to the first element of the 
robot, the rotation matrix is:  
 

 
 For (i=2), specific to the second element 
within the robot structure, is: 
 

 
 For (i=3), specific to the third element 
within the robot structure, is: 

 
 For (i=4), specific to the fourth element 
within the robot structure, is:  

 

 For the initial configuration 
)0(θ , the location 

matrix between the systems { } { }0 5→  is given 

by the following expression: 
 

 Substituting in the previous expression 
results: 

 
   To determine the orientation matrix of the 
end-effector of the robot according to [1] the 
following expression is used: 
 

 
 Thus, the orientation matrix of the end-
effector is: 

 
 To determine the position matrix of the end- 
effector of the robot according to [1] the 
following expression is used: 

 
 Substituting into the previous expression 
yields the end-effector position vector for the 
robot:             
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 Based on direct modeling and utilizing the 
orientation algorithm [1], in order to determine 
the autonomous orientation parameters while 
taking into account that each articulation of the 
robot solely operates along the z-axis, the 
subsequent matrix identity is formulated: 

 

 Where: ( )
0

; 0

0 0 1

z z

z z z

c s

R z s c

γ γ
γ γ γ

− 
 =  
 
 

 

 
 The matrix expresses rotations around the 
mobile z axis. Thus, the matrix identity is 
written developed as follows: 

 

         
 Given that it is only z-axis rotation, the 
rotation angle of the end-effector in the robot 
under study is: 

              
 The orientation angle, is generally used to  
simulate and program the movements of the 
robot, but it is essential to control the 
movements of a robot and also to achieve the 
desired results in its practical applications. 
 

7. CONCLUSIONS 

 
 In conclusion, matrix exponential functions 
present a modern alternative to classical 
geometric analyses when examining multibody 
systems. This advanced approach, driven by 
complex mathematical principles, offers 
enhanced capabilities for describing and 
controlling robotic motion within a spatial 
context. It enables the modeling of intricate 
maneuvers and precise motion management, 
thus yielding a range of valuable advantages. 

Notably, these matrix functions prove highly 
effective in deducing the direct geometric 
equations of the system. 
 Upon scrutinizing the matrix exponentials 
characterizing the previously established direct 
geometric model for the 2RTR configuration, 
several notable advantages come to light 
compared to the PG and DH type operators 
introduced in [1]-[6]. These benefits stem from 
their concise formulation, clear geometric 
interpretation, inherent independence, and the 
avoidance of reliance on specific motor pair 
systems. 
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Modelarea geometrică avansată a structurii de robot de tipul 2RTR 
 

 În acest studiu, funcțiile exponențialelor de matrice vor fi utilizate pentru a stabili ecuațiile 
geometriei directe pentru un sistem multi-corp. Funcțiile exponențialelor de matrice vor fi folosite 
pentru a analiza o structură de robot serial de tipul 2RTR. În comparație cu algoritmii convenționali, 
avantajele funcțiilor exponențialelor de matrice sunt notabile în derivarea ecuațiilor geometrice 
directe. Rezultatele derivate din reprezentarea geometrică vor servi ca intrare inițială pentru 
modelarea cinematică. Aceste date sunt cruciale pentru investigarea caracteristicilor dinamice ale 
oricărui sistem multicorp. 
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