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Abstract: This paper presents a comparative study between a traditional evolutionary algorithm with the 

values of the parameters set before the algorithm runs and that remain fixed during runtime, and a cultural 

algorithm using parameter control powered by Lévy flight to dynamically update the values of the 

parameters during runtime. The two algorithms are benchmarked on a subset of test problems, using an 

open-source platform for comparing continuous optimizers in a black box setting. The results obtained are 

examined in order to demonstrate the improved performance of the cultural algorithm using parameter 

control, its superiority becoming more evident as the dimensions of the test problems increase. 
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1. INTRODUCTION  

 

In the field of engineering, optimization 

algorithms are essential, allowing engineers to 

discover efficient and optimal solutions, leading 

to improved design and performance for a 

variety of real-world problems [1]–[6]. 

One of the challenges of using optimization 

algorithms is making sure the algorithm 

parameters have good values. It is generally 

accepted that optimization algorithms with 

specific parameters configurations yield better 

results if applied on specific problem types [7].  

When dealing with parameters of 

optimization algorithms, two distinct methods 

can be employed: parameter tuning and 

parameter control. Parameter tuning is the 

process of systematically exploring different 

combinations of parameter values before the 

algorithm is started and will remain fixed during 

the run [8], [9]. Parameter control on the other 

hand refers to the process of dynamically 

changing the parameter values during the run. 

The algorithm starts with initial parameter 

values that change according to the implemented 

heuristics [8], [10]. Parameter control might 

seem superior since it allows the algorithm to 

use multiple values for the parameters. In the 

following sections, both approaches are 

examined on a set of test problems. 

 

2. ALGORITHMS 

 

2.1 Evolutionary algorithm 
Evolutionary algorithms (EA) emulate 

natural evolution, maintaining a population of 

solutions and iteratively applying genetic 

operators to create new candidate solutions, 

simulating the processes of reproduction, 

crossover, and mutation [11]. The most popular 

use-cases for EAs are solving optimization 

problems in various domains. The term EA 

usually refers to an entire family of algorithms: 

genetic algorithms, differential evolution, 

evolution strategy, evolutionary programming, 

and genetic programming [12]. 

 
2.2 Lévy flight 

Lévy flight falls into the category of random-

search algorithms, where the step lengths are 

drawn from a heavy-tailed probability 

distribution, also known as a Lévy distribution. 

Lévy flight behaves similarly to a random-walk 

algorithm with one key difference represented 

by the occasional large jumps, leading to a much 

more efficient exploration of the search space 

[13], [14]. 
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Lévy flight is typically used on the genes 

space [15], [16], however in this paper it is 

applied on the parameters space as a mechanism 

for implementing parameter control. 
 
2.3 Cultural algorithm  

Cultural algorithms (CA) are inspired by the 

concept of culture in human society and can be 

described as an EA enhanced with a belief space 

incorporating cultural knowledge. The belief 

space contains heuristics, insights and rules that 

are learned and shared between the individuals 

in the population [17]–[19]. The structure of a 

CA is presented in Fig. 1. The belief space is 

updated through the Accept function and 

typically only knowledge from the most 

competent individuals is considered. The 

information in the belief space can also be 

adjusted according to custom rules or heuristics 

using the Update function. The effect of the 

belief space on the population is possible 

through the Influence function, where 

individuals can access collective knowledge. 

 
Fig. 1. Structure of CA 

  

CAs have been successfully applied in 

various domains, including mechanical, civil, 

electrical and chemical engineering, and 

computer science [20]. 

In this article, a new cultural algorithm is 

proposed which uses a dedicated knowledge 

structure for parameter values, and updates them 

using Lévy flight, achieving an improved 

exploration of the search space of the 

parameters. The parameters are used in the 

recombination and mutation operators, having a 

direct effect on how close the offspring are to 

their parents, respectively how close mutants are 

to the original individuals. The mechanism is 

built on the idea that for any given position in the 

search space, some parameter values would 

yield better results than the ones obtained with 

fixed values during runtime. 

In contrast, the EA used for comparison 

employs fixed values of these parameters 

favoring the exploration of the search space for 

the recombination and mutation operators. 

 

3. BENCHMARK FRAMEWORK  

 

The comparing continuous optimizers 

(COCO) [21], [22] platform was used to 

evaluate the performance of the two proposed 

algorithms. The main goal of COCO is to 

automate the laborious and repetitive process of 

benchmarking numerical algorithms as much as 

possible [23]. 

The structure of the COCO platform is 

illustrated in Fig. 2, where the code and data 

provided by the framework is represented in 

color blue and the code implemented by the user 

and the output generated by the platform is 

represented in color red. 

 
Fig. 2. Structure of COCO platform 

The platform generates figures of the 

Empirical Cumulative Distribution Functions 

(ECDF) of the bootstrap distribution of the 

Expected Running Time (ERT) divided by the 

dimension. The outputs show the ECDFs of the 

running times of the simulated runs divided by 

the corresponding dimension for 51 different 

targets logarithmically uniformly distributed in 

the [1e−8, 1e2] interval. The crosses on the 

figures represent the median of the maximal 
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length of the unsuccessful runs to solve the 

problems aggregated within the ECDF [24]. 

3.1 Sphere problem  

 The Sphere problem is one of the easiest 

continuous domain test problems, especially for 

non-specialized optimization algorithms. It is a 

unimodal function, highly symmetric and scale 

invariant [25]. The definition of the Sphere 

problem is given by: 
 ����� � ∑ ��

	 (1) 

 

3.2 Ellipsoid problem 
The Ellipsoid problem is a unimodal 

function, globally quadratic and ill-conditioned 

function with smooth local irregularities [25]. 

The Ellipsoid problem is defined as: 

 �	��� � ∑ 10�
��

�����
	 (2) 

where D represents the number of dimensions 

(also in the other equations). 

 

3.3 Rastrigin problem 
The Rastrigin problem is a highly multimodal 

function that has proven to be difficult for EAs 

to solve due to the high number of local minima. 

The definition of the Rastrigin problem is given 

by: 
 ����� � 10�� � ∑ ����2����� � ∑ ��

	 (3) 
 

3.4 Rastrigin-Büeche problem 
The Rastrigin-Büeche problem is a highly 

multimodal function, constructed to be 

deceptive for symmetrically distributed search 

operators [25]. The definition of the Rastrigin-

Büeche problem is given by: 
 ����� � 10�� � ∑ ����2����� � ∑ ��

	 � 10	���� (4) 
where g function is defined as: 
 ����: �� →  �, � → ∑ "#��0, |��| � 5�	�

�&�  (5) 

 

3.5 Linear slope problem 
The Linear slope problem is a purely linear 

function which verifies if the search operator is 

able to break out of the initial convex hull of 

solutions into the domain boundary [25]. The 

definition of the Linear slope problem is given 

by: 
 �'��� � ∑ 5|��| � ���� (6) 
where s function is defined as: 

 ��(� � �(�)����10
 � �

� � � (7) 

 

3.6 Rosenbrock problem 

Another popular benchmark problem which 

is notoriously difficult for EAs to solve is 

Rosenbrock. The challenge comes from the fact 

that the global minimum is situated in a deep 

banana shaped valley, and typically the 

convergence of the search operators towards the 

optimum is very slow. Having a greater number 

of dimensions makes the convergence even 

slower. The definition of the Rosenbrock 

problem is given by: 
 �*��� � ∑�100 ���

	 � ��+��	  �  ���  �  1�	� (8) 
 

4. RESULTS  

 

Both algorithms were tested on a subset of 

test functions for dimensions 2, 3, 5, 10, 20. The 

performance of the two algorithms is 

comparable for a low number of dimensions, 

however differences become noticeable for 

higher dimensions. The traditional evolutionary 

algorithm is depicted in blue color, annotated 

with the circle symbol, and labeled as baseline, 

whereas the cultural algorithm is depicted in 

magenta color, annotated with the diamond 

symbol, and labeled as levy. 

 
Fig. 3. Results for Sphere 20D problem 

The results obtained for the Sphere problem 

with 20 genes are presented in Fig. 3 and 

indicate a superior performance of the CA over 

the traditional EA. The CA was able to hit all 51 

targets, whereas for the evolutionary algorithm, 

runtimes to the right of the cross at 

approximately 10'.' have at least one 

unsuccessful run. 

The results obtained for the Ellipsoid problem 

with 20 genes are presented in Fig. 4 indicating 

a superior performance of the CA over the 

traditional EA. The CA was able to hit all 51 



554 
 

 

targets, whereas for the evolutionary algorithm, 

runtimes to the right of the cross at 

approximately 10'.' have at least one 

unsuccessful run. 

 
Fig. 4. Results for Ellipsoid separable 20D problem 

The results obtained for the Rastrigin 

problem with 20 genes are presented in Fig. 5 

and again indicate a superior performance of the 

CA over the traditional EA. For this particular 

problem however, runtimes to the right of the 

crosses at approximately 10'.' have at least one 

unsuccessful run for both CA and EA 

algorithms. 

 
Fig. 5. Results for Rastrigin separable 20D problem 

The results obtained for the Rastrigin-Büeche 

problem with 20 genes are presented in Fig. 6 

and are similar to the ones obtained for the 

Rastrigin problem, showing that the CA 

performs better than the traditional EA, 

however, runtimes to the right of the crosses at 

approximately 10'.' have at least one 

unsuccessful run for both algorithms. 

The Linear slope problem with 20 genes 

proves to be an easy challenge for both 

algorithms, being able to hit all 51 targets. The 

ECDF plots in Fig. 7 show however that the CA 

has a slight advantage over the traditional EA. 

 

 
Fig. 6. Results for Rastrigin-Büeche 20D problem 

 
Fig. 7. Results for Linear slope 20D problem 

 
Fig. 8. Results for Rosenbrock 5D problem 

For the Rosenbrock problem, differences 

between the two algorithms become visible 

starting with 5 dimensions. The ECDF plots in 

Fig. 8 show that the cultural algorithm is 

superior to the traditional evolutionary 

algorithm, being able to hit all 51 targets for the 

Rosenbrock problem with 5 genes. For the EA, 

runtimes to the right of the cross at 
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approximately 10'.' have at least one 

unsuccessful run. 
 

5. CONCLUSIONS  

 

 The current paper examined two algorithms: 

a traditional evolutionary algorithm that uses 

fixed values of the parameters during the entire 

evolution favoring the exploration of the search 

space, and a cultural algorithm that uses Lévy 

flight to dynamically update the values of the 

parameters during the evolution. 

 The two algorithms were benchmarked using 

the COCO platform on a subset of test problems. 

The obtained results show that the cultural 

algorithm using parameter control clearly 

surpasses the traditional evolutionary algorithm. 

Some of the test problems, i.e., Rastrigin and 

Rastrigin-Büeche proved to be difficult also for 

the cultural algorithm, having some 

unsuccessful runs. However, the superiority of 

the CA was clear also for these functions. The 

results presented in this paper are promising and 

justify further research in the area of 

optimization algorithms using parameter control 

for tackling multimodal optimization problems. 
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CONTROLUL PARAMETRILOR UTILIZÂND ZBOR LÉVY ÎNTR-UN ALGORITM 
CULTURAL 

Această lucrare prezintă un studiu comparativ între un algoritm evolutiv tradițional care utilizează valori ale 

parametrilor setate înainte să ruleze algoritmul și care rămân fixe pe toată durata de execuției algoritmului, și un 

algoritm cultural care modifică valorile parametrilor în timpul execuției algoritmului cu ajutorul unui mecanism bazat 

pe zbor Lévy. Cei doi algoritmi sunt comparați pe un subset de probleme de test cu ajutorul unei platforme open source 

dedicate comparării algoritmilor numerici de optimizare. Rezultatele obținute sunt analizate pentru a demonstra 

performanța îmbunătățită a algoritmului cultural care controlează dinamic valorile parametrilor, superioritatea 

acestuia devenind mai evidentă când problemele de test au un număr mai mare de dimensiuni. 
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