
13

Received: 29.01.24; Similarities: 07.03.24: Reviewed: 09.02/15.02.24: Accepted:21.03.24.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 67, Issue I, March, 2024

GENERALIZATION BY PARAMETERIZATION WITH ASSOCIATED

ARRAYS, IN PHP, IN A MANIPULATOR COMPUTATION

Tiberiu Alexandru ANTAL

Abstract: The paper approached, using the PHP open-source server-side scripting language, a case of

abstraction for a 2R manipulator using routines and parameters. If certain design and abstraction

conditions are meet general routines can be built to allow code reuse. However, these computational

libraries will only cover a limited domain for manipulators as finding the right balance between abstraction

and simplicity is influenced by generality, context and, dependencies.

Key words: function, manipulator, parameter, PHP, reuse, routine.

1. INTRODUCTION

Hypertext Preprocessor abbreviated as PHP is an

open-source, server-side scripting language

designed initially for web purpose. Born in

Greenland, grew up in Denmark and Canada,

Rasmus Lerdorf, developed PHP, in 1994, while

working on his personal website. Originally

PHP meant "Personal Home Page" as it was a

tool to manage and maintain Rasmus Lerdorf's

personal website. Over time PHP has evolved

into a solid server-side scripting language for

web development. Today, the name PHP is

redefined as the pun "PHP = Hypertext

Preprocessor" to emphasize the power of the

language in processing hypertext and creating

dynamic web pages. As described in [1] the idea

of the language is to program without effort.

Being a week typed language [2], with a

simplified syntax, where variable types are

determined dynamically during runtime

beginners start learning and working in the

language easier [11], [12], [13]. There was

another language in the history of programming

that started from the idea of learning as quickly

as possible to code. The original creators of

BASIC wanted to create a version of the Fortran

language that was easier to lean. The resulted

language had the acronym BASIC from

Beginner's All-purpose Symbolic Instruction

Code and was developed at Dartmouth College

in 1964 by Prof. John G. Kemeny and Prof.

Thomas E. Kurtz. Over the years, numerous

dialects or variations of BASIC emerged.

Microsoft introduced Visual Basic in 1991,

providing a graphical development environment

for building Windows applications [4] that could

be used to perform complex numerical

calculations [9], [10]. In time, BASIC became

one of the scripting languages for system

administration tasks of the Windows Operating

System under the name of VBScript as well as

server-side scripting language of the IIS

(Internet Information Services) the web server

[8] created by Microsoft for use with the

Windows Server operating systems. Without

going into details, the PHP development

environment can be used independently or

integrated as a module in the Apache web server,

is open-source and cross-platform and can run

on various operating systems. This is probably

the reason for the immense success enjoyed by

the language. An excellent open-source text

editor that can be used to edit and run PHP is the

Atom [5] text editor developed by GitHub. This

can be customized to edit, debug and run, using

plugins, the PHP code outside the PHP

development environment (see Figure 1).

14

Fig. 1. - The Atom editor configured to run PHP code.

1.1 Some words on the computations to be

carried out

Consider the two link planar manipulator

with revolute joints from Figure 2.

Fig. 2. - The two-link with two revolute joints planar

manipulator.

We are interested to compute the coordinates of

the E point having as inputs the φ1 and φ2 angles.

The Cartesian position of the end-effector, in E,

of the manipulator in terms of the input angles

with respect of x0y is:

��� = �� + �� cos��� + �� cos���
�� = �� + �� sin��� + �� sin��� (1)

1.2 Structured code for the PHP environment

The following code is written to produce the

results as a HTML table. The code runs on the

Apache web server (as part of the PHP

environment) and the results are shown in a

browser (Microsoft Edge). The structured

programming paradigm is used to compute the

results from Figure 3.

<html>

 <head>

 <title>2R planar manipulator

robfunV0.php</title>

 </head>

 <body>

 <h1>2R manipulator</h1>

 <?php

 function main() {

 $l1=1;

 $l2=1;

 $x0=0;

 $y0=0;

 $l=1;

 echo "<table border=1> <tr>

<th></th> <th> fi1</th> <th>fi2</th>

<th>xe</th> <th>ye</th> </tr>";

 for($fi1=0;$fi1<=360;$fi1+=5) {

 for($fi2=0;$fi2<=360;$fi2+=5) {

 $xe=$x0+$l1*cos(deg2rad($fi1))+

$l2*cos(deg2rad($fi2));

 $ye=$y0+$l1*sin(deg2rad($fi1))+

$l2*sin(deg2rad($fi2));

15

 printf("<tr bgcolor =

%s><td>%d</td> <td>%6.2f</td><td>

%6.2f</td><td> %10.5f</td><td>

%10.5f</td></tr>",($l%2 ==

0)?"#ffffff":"#cccccc",$l++,$fi1,$fi2,

$xe,$ye));

 }

 }

 }

 main();

 ?>

 </body>

</html>

Fig. 3. - HTML results of the structured PHP code used

to compute the coordinates of the E point with respect of

the input angles.

1.3 Structured code for Atom

Eliminating HTML tags from the previous

code a shorter and more readable code is

obtained that will run directly in Atom if the

marked script from Figure 4 is installed and

enabled.

And the result from Figure 5 is printed

directly in the output window of the Atom editor.

The php code markup must be preserved, that is

the code must be written between <?php and ?>

tags.

Fig. 4. - Atom script to run PHP code directly in the editor.

The corresponding code follows:

 <?php
 function main() {

 $l1=1;

 $l2=1;

 $x0=0;

 $y0=0;

 printf(" fi1 fi2 xe

ye\n");

 $l=1;

 for($fi1=0;$fi1<=360;$fi1+=30) {

 for($fi2=0;$fi2<=360;$fi2+=30) {

 $xe=$x0+$l1*cos(deg2rad($fi1))+

$l2*cos(deg2rad($fi2));

 $ye=$y0+$l1*sin(deg2rad($fi1))+

$l2*sin(deg2rad($fi2));

 printf("%3d) %6.2f %6.2f %9.5f

%9.5f\n",$l++,$fi1,$fi2,$xe,$ye);

 }

 }

 }

 main();

 ?>

If the Apache server is up the code can also be

executed inside a browser, however the

displayed results will look like a bunch of

numbers without any alignment or formatting,

because the browser’s corresponding

arrangement tags in the html has been cut out

from de code (the code produces the data

without any formatting).

16

Fig. 5. - Direct PHP results, in Atom, of the structured

code used to compute the coordinates of the E point with

respect of the input angles.

2. REUSABLITY

Modular programing was one of the dedicated

ways of constructing programs from small units

of code [6]. The common method to reach such

a code organization is based on

decomposability, which lead to the design

method named top-down design. The designer

starts with the most abstract description of the

system and then this is refined, by

decomposition, to simpler subsystems until they

are close enough to allow direct implementation

by routines. Reusability is obtained then by

building libraries of routines. The routine is a

software unit that may be called to execute a task

based on certain inputs and producing certain

outputs and possibly modifying some data other

data. The terms of subroutine, subprogram,

procedure or function are sometimes used

instead of routine. The name procedure is used

for a routine that does not return a result while

that of function for a routine that returns one

result.

2.1 The concept of routine in PHP

 In PHP the routine is implemented under the

term of function (as in C [7]), and it is a unit of

code with a given name (the name of the

function) possibly working with some input data

(the parameters) and possibly returning a single

value (the output). One way of reorganizing the

presented structured code is to decompose the

grouped computation and printing tasks into

distinct subsystems, one for computation and

one for printing. This means that all

computations must be stored using arrays. Scalar

types can store a single value; array types can

store more values in a single variable. PHP

supports two kinds of arrays: indexed and

associative. Indexed array use keys that are

integers (staring from 0) to identify the position

in the array. Associative arrays use keys that are

stings to identify elements in the array. The

following code is using three global indexed

arrays to store the data ($xea - array to store xE

from (1); $yea - array to store yE from (1); $ea

- array that combines the two array to another

array to hold under a single name both distinct

arrays). The global keyword (see compute()

and printA()) must be used in the function in

order to access the global variable.

<?php

 $xea = array();

 $yea = array();

 $ea = array();

 function xe($x0,$l1,$l2,$fi1,$fi2) {

 return

$x0+$l1*cos(deg2rad($fi1))+$l2*cos(deg

2rad($fi2));

 }

 function ye($y0,$l1,$l2,$fi1,$fi2) {

 return

$y0+$l1*sin(deg2rad($fi1))+$l2*sin(deg

2rad($fi2));

 }

 function compute() {

 global $xea, $yea, $ea;

 $l1=1;$l2=1;

 $x0=0;$y0=0;

 for($fi1=0;$fi1<=360;$fi1+=120) {

17

 for($fi2=0;$fi2<=360;$fi2+=120) {

 $xea[] = xe($x0,$l1,$l2,$fi1,$fi2);

 $yea[] = ye($y0,$l1,$l2,$fi1,$fi2);

 $ea = [$xea, $yea];

 }

 }

 }

 function printA() {

 global $ea;

 [$xea, $yea] = $ea;

 $l=1; $i=0;

 printf(" xe ye\n");

 foreach($xea as $x)

 printf("%3d) %10.5f

%10.5f\n",$l++,$x,$yea[$i++]);

 }

 function main() {

 compute();

 printA();

 }

 main();

 ?>

The main() function only contains two calls,

one to compute(), and one to printA(). It is

very clear that the readability of the code has

increased and that the separation into two

distinct code units is possible, although instead

of parameters, global array variables were used

2.2 Routine generalization in PHP

Once the decomposition has been made into

simpler and directly implementable tasks, the

next stage is to give up global variables, which

can be modified by anyone and at any time, and

move to parameters that appear as arguments in

the call and, depending on the context and the

nature of the call, by value or by reference,

migrates input and output to the code that

processes them. This approach works to build a

library of more general routines if:

• a subtask can be identified and extracted

as a routine with a small number of

inputs and outputs - simple task with few

inputs/outputs;

• the subtask can be completely isolated

from others, thus eliminating any

common parts between distinct subtask -

no commonality or other interferences

with other subtasks;

• inputs/outputs with no complex

structures are involved in data transfers

as this will compromise the

independence of the isolated task due to

the specific adaptation needs in the

processing of the complex structured

input/output parameter;

The previous code is reorganized base on the

above principles. Functions like xe(), ye() and

compute() have a minimum number of inputs

basted on (1) and all return a single value. For

the first two functions the values are scalars

while for the last one is an associative array

which is processed by the printing printA1()

function. The parametrized routines can be used

to build a library to process any 2R manipulator

in PHP.

<?php

 function xe($x0,$l1,$l2,$fi1,$fi2) {

 return

$x0+$l1*cos(deg2rad($fi1))+$l2*cos(deg

2rad($fi2));

 }

 function ye($y0,$l1,$l2,$fi1,$fi2) {

 return

$y0+$l1*sin(deg2rad($fi1))+$l2*sin(deg

2rad($fi2));

 }

 function compute($fi1st, $fi1end,

$fi1step,$fi2st, $fi2end, $fi2step) {

 $l1=1;$l2=1;$x0=0;$y0=0;$l=1;

 for($fi1=$fi1st;$fi1<=$fi1end;

$fi1+=$fi1step) {

 for($fi2=$fi2st;$fi2<=$fi2end;

$fi2+=$fi2step) {

 $xyea[] = array("fi1" => $fi1, "fi2"

=> $fi2, "xe" =>

xe($x0,$l1,$l2,$fi1,$fi2), "ye" =>

ye($y0,$l1,$l2,$fi1,$fi2));

 }

 }

 return $xyea;

}

 function printA1($xyea) {

 $i=0;

 printf(" fi1 fi2 xe

ye\n");

 foreach ($xyea as $xye) {

 printf("%3d) %6.2f %6.2f %10.5f

%10.5f\n",$i++,$xye['fi1'],$xye['fi2']

,$xye['xe'],$xye['ye']);

 }

}

18

 function main() {

 printA1(compute(0, 360, 60, 0, 360,

60));

 }

 main();

 ?>

3. CONCLUSIONS

The above approach can suffer deeper

abstraction and the computation parts can be

generalized to a nR (3R, 4R, …) manipulator

with the help functions using simple input

parameters and computations with data transfers

based on indexed and associative arrays. Still,

the flexibility provided to achieve a more

advanced reuse is not meet as in the case of

routines the only adaptability stands in passing

more and different arguments which traps us to

the classical “Reuse or Redo” [6] dilemma.

4. REFERENCES

[1] Rasmus Lerdorf, Kevin Tatroewith, Bob Kaehms

and Ric McGredy, Programming PHP, O’Reilly,

2002, p. 507, ISBN 1-56592-610-2.

[2] ANTAL, Tiberiu Alexandru. A review of the PHP

server-side scripting language compared to C,

C++ and Java for numerical engineering

applications. ACTA TECHNICA NAPOCENSIS

- Series: APPLIED MATHEMATICS,

MECHANICS, and ENGINEERING, v. 66, n. 1,

2023. ISSN 2393–2988.

[3] https://www.dartmouth.edu/basicfifty/

basicmanual_1964.pdf

[4] ANTAL, Tiberiu Alexandru, Visual BASIC

pentru ingineri, Editura RISOPRINT, 2003,

p.244, ISBN 973-656-514-9.

[5] https://atom.io/

[6] Bertrand Meyer, Object-oriented software

construction. Prentice Hall PTR, 1997, p.1254,

ISBN 0-13629155-4.

[7] ANTAL, T.A., Limbajul C ANSI, Editura

RISOPRINT, 2001, p. 253, ISBN 973-656-065-1.

[8] ANTAL Tiberiu Alexandru, Proiectarea

paginilor Web cu HTML, VBScript şi ASP - ediţia

a II-a, Editura RISOPRINT, 2006, p.264, ISBN

973-751-349-5.

[9] ANTAL Tiberiu Alexandru, Addendum

modification of spur gears with equalized

efficiency at the points where the meshing stars

and ends, MECHANIKA, Issue: 6 , Pages: 480-

485, DOI: 10.5755/j01.mech.21.6.12480, 2015.

[10] Tiberiu Alexandru Antal, Adalbert Antal,

Mariana Arghir, Determination of the addendum

modification at helical gears, at the points where

the meshing starts and ends, based on the relative

velocity equalization criterion, Proceedings in

Applied Mathematics and Mechanics - PAMM

Journal, Volume 8, Issue 1, p.10965-10966, 2008;

[11] VLASE S; Marin, M; Bratu, P; Manea, R;

Shrrat, OAO, Analysis of Vibration Suppression

in Multi-Degrees of Freedom Systems, Romanian

Journal of Acoustics and Vibration, 2022, Vol.

19, Issue 2, pp.149-156;

[12] YA; Utomo, ABS; Mitrayana, M; Lelono, D,

Impedance Boundary Conditions on The Optimal

Design of the H-Type Cylinder Resonator Using

Transmission Matrix Method and Genetic

Algorithm, Romanian Journal of Acoustics and

Vibration, 2022, Vol. 19, Issue 1, pp.3-12;

[13} BRATU P, The performances in acoustics and

vibration engineering, Romanian Journal of

Acoustics and Vibration, 2021, Vol. 18, Issue 1,

pp.2-2.

Generalizare prin parametrizare cu tablouri asociative, în PHP, într-un calcul manipulator

Lucrarea abordează, folosind limbajul PHP, un caz de abstractizare pentru un manipulator 2R folosind rutine și

parametri. Dacă sunt îndeplinite anumite condiții de proiectare și abstractizare, pot fi construite rutine generale pentru

a permite reutilizarea codului și în alte contexte. Totuși, aceste biblioteci vor acoperi doar un domeniu limitat de

manipulatori, deoarece găsirea echilibrului între abstractizare și simplitate este influențat de nivelul de generalitate,

contextul de aplicare și de către dependențele specifice ale manipulatorilor investigați.

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca,

Department of Mechanical System Engineering, antaljr@mail.utcluj.ro, 0264-401667, B-dul

Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

