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Abstract: The Pipeline transport proves to be a highly efficient means of transporting fluids over long 
distances. Some of its benefits include continuity of transport, substantial volume capacity, lower energy 
costs and provides large environmental benefits. Pipelines damage could have negative effects on the 
economy, the environment and cause health and safety issues for the population. Therefore, the safety issues 
garner significant attention in both industry and science. The current study explores the dynamic stability 
of a cracked simply supported pipe. Throughout its entire length the pipe rests on a Winkler elastic 
foundation. The problem is numerically approached through the Galerkin method. The study provides 
insights into how both the crack and the parameters of the elastic foundation affect the stability of the 
system. 
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1. INTRODUCTION  
  

In recent years, considerable research have 
been devoted to investigating the interaction 
between fluid and structures. The dynamic 
behavior of pipes conveying fluids represents a 
fundamental problem in this particular domain. 
The oscillatory behavior of the pipe is 
contingent upon both the mass and velocity of 
the conveyed fluid. The system exhibits stability 
when flow velocity remains below a specific 
threshold known as the critical flow velocity. 
Engineers are responsible for ensuring the 
safety, reliability and proper functionality of 
structures over their entire lifespan. However, 
the presence of a defect in these structures can 
result in their failure. The most common type of 
damage found in structures is the presence of 
cracks. The presence of cracks results in a 
reduction in the stiffness of the structural 
element, thereby decreasing its natural 
frequencies and inducing alterations in its mode 
shapes. This is why the detection of cracks plays 
a crucial role in the ongoing structural strength 
monitoring process during the structure’s entire 
lifespan. 

In their study, Chondos and Dimarogonas [1] 
explored the influence of crack depth on the 
dynamic characteristics of a cantilevered beam. 
Their findings demonstrated that an increase in 
crack depth corresponds to a decrease in the 
natural frequency of the beam. 

Ostachowicz and Krawczuk [2] investigated 
how both the position and depth of cracks impact 
the dynamic characteristics of a cantilever beam. 

Yoon and Son [3] conducted a study on the 
dynamic response of a fluid-conveying pipe with 
a crack, which is fixed at both ends, in the 
presence of a moving mass. Once more, Yoon 
and Son [4] explored the same issue, this time 
employing Timoshenko beam theory. 

Eslami et al. [5], delved into the impact of an 
open crack and the shape of the flow velocity 
profile within the pipe on the dynamic 
characteristics of a fluid-conveying pipe 
immersed in a viscoelastic medium. 

The results suggest that the velocity profile 
arising from the viscosity of real fluids 
significantly influences the critical flow velocity 
in both unblemished and cracked pipes. 

Тhe utilization of alterations in natural 
frequencies caused by structural cracks has been 
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implemented as a means of detecting cracks. In 
reference [6], it is demonstrated that the depth of 
the crack exerts only a minimal effect on the 
natural frequency of the structure. 
Consequently, alternative approaches, such as 
the exploration of harmonic response analysis, 
have been pursued for the purpose of crack 
detection [7]. 

The objective of this study is to assess the 
impact of an open crack on the critical velocity 
of a simply supported fluid-conveying pipe on 
Winkler elastic foundation. 
  
2. PROBLEM FORMULATION 
  

The dynamic stability of a fluid-conveying 
pipe is investigated in this study using the Euler-
Bernoulli beam theory. The static scheme of the 
pipe is shown in Fig.1. The open edge crack is 
modeled as a rotational spring [8] (Fig.2). 

 

 
Fig. 1. Static scheme and cross-section of the pipe under 

investigation 
 

The pipe is divided into two sections: to the 
left and to the right of the crack. 

 

 
Fig. 2. Mechanical model of the crack 

 
rk  is the stiffness of the rotational spring. 

The transverse oscillations of a straight pipe, 
which transports inviscid fluids and lies on a 
Winkler elastic foundation, are described by the 
following differential equation. 
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In (1) ( )txw ,  is the function of the lateral 

displacment of the axis of the pipe. The 
remaining symbols in (1) are: the time t , the 
rigidity of the cross section of the pipe EI , the 
velocity of the flowing fluid V , the rigidity of 
the Winkler’s foundation k , the mass of the pipe 
per unit length pm  and the mass of the conveyed 
fluid per unit length of the pipe fm . 

For the sake of simplicity, we are introducing 
the following dimensionless parameters. 
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The non-dimensional equations that govern 

the lateral vibrations in the two sections of the 
pipe are as follows. 
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𝜂𝜂𝑛𝑛𝐼𝐼𝐼𝐼 + 𝑢𝑢2𝜂𝜂𝑛𝑛𝐼𝐼𝐼𝐼 + 2𝑢𝑢�𝛽𝛽�̇�𝜂𝑛𝑛𝐼𝐼 + �̈�𝜂𝑛𝑛 + 𝑘𝑘𝜂𝜂𝑛𝑛 = 0, 
 2,1=n . (3) 

 
In equation (3) and the subsequent 

expressions, dots represent derivatives with 
respect to the dimensionless time, while 
derivatives with respect to ξ  are indicated as 
primes. 

The solution of the differential equation (3) is 
approximated using the spectral Galerkin 
method. The expression for the solution in each 
segment of the pipe is as follows: 
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where 

( )τiq  are functions that are not specified or 
known 

( )ξinW  are fundamental functions that 
satisfy the boundary conditions. In this study, 
functions describing the i -th eigenform of a 
simply supported beam with length l  are 
employed for these functions. 

The boundary conditions for the system 
depicted in Fig.1 are as follows: 
• at the left end of the pipe 
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• at the right end of the pipe 
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• at the cracked cross-section of the pipe [9] 
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By inserting equation (3) in equation (4), one 

obtains: 

 
 |𝑀𝑀|�̈�𝑞 + |𝐶𝐶|�̇�𝑞 + |𝐾𝐾|𝑞𝑞 = 0. (8) 
 

The components of the matrices in equation 
(8) are: 
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The general solution for the system (8) is 

obtained by considering the roots of the 
characteristic equation. 
 
 0det =∆ . (12) 
 

The elements of the matrix in (12) are defined 
as follows: 

 
 ijijijij KCM ++=∆ λλ2 . (13) 

 
Conclusions about the system's stability can 

be drawn from the obtained roots. If the 
characteristic equation’s roots possess negative 
real parts, the system is regarded as stable. 

As the roots of the equation (13) are 
influenced by the system’s parameters, the 
following procedure could be employed to 
determine the critical velocity of the conveyed 
fluid. All system parameters are kept constant 
except fluid velocity. The fluid velocity is varied 
from zero to its critical value, at which point one 
or more roots of equation (13) change the sign of 
their real part from negative to positive. 
  
3. MODELING OF THE CRACK  
  

The study assumes that the Euler-Bernoulli 
beam's bending vibrations occur within the plane 

yx −  (as depicted in Fig. 1), which also serves 
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as a plane of symmetry for the cross-section. The 
crack is considered to be open.  

The calculation of the local flexibility in the 
presence of a crack is performed using 
Castigliano's theorem [5]. 
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In (14) U  is the potential energy, E  is the 

Young’s module, ν  is the Poison’s ratio and IK  
is referred as the stress intensity factor of 
bending. M  is the bending moment in the 
cracked cross-section. The crack dimensions are 
a  and b (Fig.1). 
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In (15) cθ  is the half central angle of the crack 
and pt  is the thicknes of the cross-section 
(Fig.1). The remaining parameters in equation 
(15) are computed using the following formulas 
[9]: 
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The determination of tA  is derived from the 
equations: 

 4
4
1

8
1

−=
p

t t
RA  for  105 ≤≤

pt
R  (18) 

 4 3
5
2

−=
p

t t
RA  for  2010 ≤≤

pt
R  (19) 

 
In (16) inR  and outR  are respectively the 

inner and the outer radii of the cross-section 
(Fig.1). 

 
 

4. RESULTS AND DISCUSSION  
  

Numerical studies have been carried out for 
the pipe shown in figure 1. 

The dimensions and material properties of the 
pipe are as follows: inner radius of the cross-
section mRin 012.0= , outer radius of the cross-
section mRout 014.0= , modulus of elasticity 

GPaE 210= , density of the flowing fluid - 
3/1000 mkN=ρ , density of the material of the 

pipe - 3/7800 mkN=ρ , dimensions of the 
crack - mma 1= , and mmb 5= , coordinate 
determining the location of the crack along the 
axis of the pipe mxc 1= . 

The Finite Element Method (FEM) was 
employed to derive the fundamental functions 

( )ξinW , with these functions being the 
eigentfunctions for the pipe containing 
stationary fluid ( 0=V ). In the present study, 
the first 16 eigenmodes were used in the 
calculations. 

Conclusions about the stability of the system 
can be deduced from the roots derived from the 
characteristic equation (12). The stability of the 
system is determined by the negativity of the real 
parts of all roots; instability arises if one or more 
roots have positive real parts.  

Moreover, the system approaches instability 
if any roots of the characteristic equation have 
real parts equal to zero, and the fluid velocity 
corresponding to this condition is known as the 
critical fluid velocity crV .  

These roots are affected by every parameter 
in the system. By keeping all parameters 
constant except for the conveyed fluid velocity 
V , one can compute the associated critical 
velocity crV . 

The critical velocities for the pipe illustrated 
in Fig. 1 are evaluated across different values of 
the Winkler elastic foundation’s rigidity.  

The calculations are conducted for both the 
damaged and undamaged pipe. The results 
presented in Fig.3 depict the relationship 
between the critical velocity and the rigidity of 
the elastic foundation.  

Based on results shown in Fig.3, conclusions 
can be drawn regarding how the stiffness of the 
elastic foundation influences the stability of the 
two examined pipes. 
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Fig. 3. Critical velocity versus the rigidity of the Winkler elastic foundation 

 
 

5. CONCLUSION  
  

Structural damage in the form of cracks is one 
of the most common issues encountered in 
buildings and other structures. When a structure 
undergoes cracking, its stiffness diminishes, 
leading to a subsequent reduction in natural 
frequencies and a shift in natural vibration 
modes. 

The Winkler elastic foundation is commonly 
used as a model in geotechnical studies. It 
assumes that the deformation at any point on the 
surface of an elastic medium is directly 
proportional to the applied load at that specific 
point and is not influenced by the loads applied 
at other points on the surface. 

This research aims to evaluate how a Winkler 
elastic foundation influences the dynamic 
stability of a cracked fluid-conveying pipe. 

The cracked pipe is separated to two sections 
joined by an elastic rotational spring at the 
crack’s location. The rigidity of this spring is 
determined using Castigliano's theorem, and it 
relies on both the geometry of the cross-section 
of the pipe and the severity of the crack. 

The results obtained indicate that the Winkler 
foundation contributes to stabilizing the pipe—
increasing the foundation's rigidity results in an 
increase in critical velocity. Conversely, the 

crack destabilizes the system, leading to a 
decrease in critical velocity.  
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EFECTUL DAUNELOR PRIN CRĂPARE ASUPRA STABILITĂȚII DINAMICE A UNEI 

ȚEVI DE TRANSPORT FLUID AȘEZATE PE O FUNDATIE ELASTICA WINKLER 
 

Rezumat: Transportul prin conducte se dovedește a fi un mijloc extrem de eficient pentru 
transportul fluidelor pe distanțe lungi. Printre avantajele sale se numără continuitatea transportului, 
capacitatea substanțială de volum, costuri reduse cu energia și beneficii semnificative pentru 
mediu. Daunele la conducte ar putea avea efecte negative asupra economiei, mediului și pot 
provoca probleme de sănătate și siguranță pentru populație. Prin urmare, aspectele legate de 
siguranță atrag o atenție semnificativă atât în industrie, cât și în știință. Studiul curent explorează 
stabilitatea dinamică a unei conducte crăpate susținute simplu. Pe întreaga sa lungime, conducta 
se sprijină pe o fundație elastică de tip Winkler. Problema este abordată numeric prin metoda 
Galerkin. Studiul oferă perspectiva asupra modului în care atât crăpătura, cât și parametrii 
fundației elastice influențează stabilitatea sistemului. 
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