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Abstract: The study of the elastic curve has been a constant concern in the field of mechanical engineering 

and has led to several analytical, graphical, and graph-analytical methods of analysis. In this work, an 

analytical method of study is presented that can be counted among the energy methods for calculating 

deformations, since the potential energy of deformation expression is used in the case of beams loaded to 

simple bending, in the field of elastic deformations, using isotropic materials. The elastic curve expressed 

by a fourth-order differential equation can also be approximated by an infinite trigonometric series, leading 

to a good convergence of the results obtained by classical methods. Starting from a series of simple loading 

cases, which serve to illustrate the method of solving the problem, this study examines two cases with a 

higher degree of complexity: in the first study, the beam is loaded on the first half unit length by a uniformly 

distributed load q(x), and in the second study, the beam is loaded by two concentrated forces arranged 

symmetrically concerning the support points.  

Keywords:  trigonometric series, the potential energy of deformation, isotropic beams 

 

1. INTRODUCTION 

 

Beams made of isotropic materials are 

important components of structures and are 

subjected to various types of loads, such as static 

and dynamic loads. During service, these beams 

may exhibit deformations under the action of 

loads. Understanding and analyzing these 

deformations is critical for the design and 

evaluation of mechanical structures, civil 

structures, etc. Accurate knowledge of the 

deformation mode of the elastic curve is critical 

for determining the stress state, load carrying 

capacity, or load capacity of the beams [1-16]. 

The nature of the deformation of an isotropic 

beam (with a constant moment of inertia) loaded 

(statically) in bending is expressed by the 

differential equation of the elastic curve. It is a 

fourth-order function that can be solved by direct 

integration, using Clebsch’s method to evaluate 

the integration constants (by introducing the 

condition of smoothness and continuity of the 

function that determines the elastic curve, but 

also by introducing boundary conditions at the 

inflection points).  

However, such a function can be solved by 

various approximation methods, including 

polynomials (the method of least squares, 

Cebasev) [17, 18], the polynomial of best 

approximation (Remez algorithm) [19], Fourier 

series [20-22], etc. 

The use of trigonometric series [23-27] in 

approximating the elastic curve of isotropic bars 

is of great importance because of the efficiency 

and convenience of this method in the analysis 

and representation of deformations. 

Trigonometric series are extremely effective 

in representing and analyzing periodic functions, 

and the elastic curve of isotropic bars can be 

considered a periodic function in many cases. 

This is because the elastic curve varies 

periodically along the beam, depending on the 

distance from one support point to another and 

the type of loading [35–38]. The trigonometric 

series allows an accurate representation of these 

periodic variations and provides a solid basis for 
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the study of the elastic curve. The trigonometric 

series allows for the expression of a periodic 

function using an infinite number of 

trigonometric terms. With a sufficient number of 

terms in the trigonometric series, a very good 

approximation to the real form of the 

deformations can be obtained. Trigonometric 

series have important mathematical properties 

such as orthogonality and convergence. These 

properties facilitate the analysis and 

mathematical calculations of the elastic curve. 

Orthogonality allows the coefficients of the 

series to be determined by integration and dot 

products, and convergence ensures that the 

partial sum of the terms of the series approaches 

the original function as more terms are added. 

The method of trigonometric series benefits 

from a high efficiency in the numerical 

calculation of the coefficients of the series. 

There are algorithms [28, 29] and well-

developed techniques for the fast and accurate 

calculation of these coefficients, which allow an 

efficient and convenient analysis of the elastic 

curve. 

This study aims to highlight and analyze the 

trigonometric series used in studying the elastic 

curve of isotropic beams with constant moments 

of inertia. The article presents a detailed 

approach to the method of applying 

trigonometric series and demonstrates its 

advantages and efficiency in the analysis of the 

elastic curve, starting from two examples with 

simple loading (case 1: beam supported at both 

ends and loaded in the middle with a force 

concentrated – C1; case 2: beam supported at 

both ends and loaded along its entire length with 

a uniformly distributed load – C2) and ending 

with the presentation of two more examples with 

more complex loading (case 3: beam supported 

at both ends and loaded on one half of unit length 

with a uniformly distributed load – C3; case 4: 

beam supported at both ends symmetrically 

loaded with two concentrated forces – C4). 

In the case of straight beams subjected to 

bending by various types of loads acting nodally 

or in a given interval (corresponding to a given 

unit length), the elastic curve may have a 

different shape in each interval. Assuming that 

the elastic curve y(x) is expressed by a single 

curve, it must satisfy a set of boundary 

conditions at the inflection points for 

displacements, slopes, bending moments, and 

shear forces, regardless of the number of 

intervals. 

For example, if we consider a beam (simply 

supported) loaded to bending by a nodal force F, 

which is study case 1, the elastic curve (as shown 

in Figure 1) is expressed by the following 

relationship: 

���� = �� ∙ 	
� � ∙ �
                     �1� 

The differential equation of the elastic curve 

is as follows: ������ = �� ∙ ��                           �2� 

 
Fig. 1. Beam - simply supported -  loaded to bending by 

a nodal force F. 

In Figure 1, the points marked with 1, 2, and 

3 indicate the position of the supporting 

elements or the nodal force F applied to the bar. 

Equation (1) must satisfy the boundary 

conditions in the support points (inflection 

points) as follows: for x=0 (point 1 in Figure 1) 

and x=l (point 2 in Figure 1) y(x)=0, 

y'(x)=φ(x)≠0, y''(x)=Mz(x)=0, y'''(x)=Ty(x)≠0; 

where: y(x) represents the elastic curve, y'(x)= 

φ(x) is the slope of the cross-section, 

y''(x)=Mz(x) represents the bending moment and 

y'''(x)=Ty(x) is the shear force, sin (π∙x)/l is a 

function that depends on the variable x and is a 

dimensionless quantity, v1 represents the 

amplitude of the oscillation y(x) and from the 

perspective of the cross section of the beam, it is 

the displacement of the center of gravity in 

relation to the y axis. 

The amplitude v1 is determined by imposing 

the condition that external mechanical work (Le) 

produced by the nodal force F, applied to the 

beam, is transformed into potential energy of 

deformation (Ud) as a result of moving to a new 

equilibrium position (dv1). The magnitude dv1 

was produced by a small static increase in the dF 

of the applied nodal force F (according to Figure 

2). In Figure 2, line OA represents the range of 



57 

 

 

elastic deformations of the material from which 

the beam was made. The external mechanical 

work dLe represents the surface area (abcde) 

under the characteristic curve and is expressed 

as follows: ��� = ������ = ����� + ����            �3� 

or 

��� = � ∙ ��� + �� ∙ ���2 ≅ � ∙ ���     �4� 

The term 
�"∙�#$% , from relation (4), is 

neglected considering that it is a small infinite of 

higher order. 

 
Fig. 2. Graphic representation of the domain of 

elastic deformations for the evaluation of the variation of 

the external mechanical work (dLe) in the case of a beam 

(simply supported) loaded to bending, using a nodal 

force, F. 

When the straight beams are loaded for 

bending, the potential deformation energy Ud (or 

internal mechanical work, Li) is expressed 

through the following relationship: 

&� = ' (�%���2 ∙ � ∙ �� ∙ �� )
*                 �5� 

 From Equation (2), we can deduce the 

expression of the bending moment Mz(x) of the 

form: 

(���� = −� ∙ �� ∙ �%������% = −� ∙ �� ∙ � ,,����6� 

where the (-) sign is considered because the y 

axis is in the direction of the convexity of the 

beam. 

Thus, relations (5) and (6) result in: 

&� = � ∙ ��2 ∙ ' /� ,,���0% ∙ ��)
*          �7� 

where: 

���� = �� ∙ 	
� � ∙ �
  

By successive derivation and squaring, we 

obtain: 

� ,��� = � ∙ ��
 23	 � ∙ �
  

� ,,��� = − �%

% ∙ �� ∙ 	
� � ∙ �
  

/� ,,���0% = ��

� ∙ ��% ∙ 	
�% � ∙ �
       �74� 

Introducing relation (7a) into the expression of 

the potential deformation energy - relation (7), it 

results: 

&� = � ∙ ��2 ∙ ' ��

� ∙ ��% ∙ 	
�% � ∙ �
 ∙ �� =)

*  

= � ∙ ��2 ∙ ��% ∙ ' ��

� ∙ 	
�% � ∙ �
 ∙ ��)

*   �8� 

If noted: 

6 ′′%��� = ��

� ∙ 	
�% � ∙ �
  

from relation (8) we obtain: 

&� = � ∙ ��2 ∙ ��% ∙ ' 6 ′′%��� ∙ ��)
*     �9� 

In the case of an increase in the amplitude by 

dv1, the deformation potential energy is 

expressed as follows: 

�&� = 8&�8�� = 

= �� ∙ ��� ∙ � ∙ �� ∙ ' 6 ′′%��� ∙ ��)
*      �10� 

The principle of conservation of energy states 

that the external mechanical work (Le) is equal 

to the internal mechanical work (Li) also called 

the potential energy of deformation (Ud). Thus, 

from Equations (4) and (10), it follows that: ��� = �&� 

or 

� ∙ ��� = �� ∙ ��� ∙ � ∙ �� ∙ ' 6 ′′%��� ∙ ��)
*  �11� 

From relation (11) we obtain: 

�� = �
� ∙ �� ∙ : 6 ′′%��� ∙ ��)*

         �12� 

where: 

' 6 ′′%��� ∙ ��)
* = ' ��


� ∙ 	
�% � ∙ �

)

* ∙ �� = 

= ��

� ∙ ' 	
�% � ∙ �
 ∙ ��)

*         �13� 

Because: 
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�%� = 12 ∙ /1 − 23	�2 ∙ ��0 
result: 

	
�% � ∙ �
 = 12 ∙ ;1 − 23	 <2 ∙ � ∙ �
 => 

Thus, 

' 	
�% � ∙ �
 ∙ ��)
* = ' 12 ∙ ;1 − 23	 <2 ∙ � ∙ �
 =>)

*  

= ' ?12 − 12 23	 <2 ∙ � ∙ �
 =@)
* ∙ �� = 

= 
2 − 12 ∙ ' 23	 <2 ∙ � ∙ �
 = ∙ ��)
*     �14� 

Because: 

' 23	�4 ∙ �� ∙ �� = 	
��4 ∙ ��4  

result: 

' 23	 <2 ∙ � ∙ �
 = ∙ ��)
* = 	
� <2 ∙ �
 ∙ �=

2 ∙ �

A
0 = 0 

Thus, from relation (14) we obtain: 

' 	
�% � ∙ �
 ∙ ��)
* = 
2               �15� 

The l/2 term in equation (15) represents the 

integral in relation (13). By substitution we get: 

' 6 ′′%��� ∙ ��)
* = ��


� ∙ 
2 = ��
2 ∙ 
B       �16� 

Substituting Equation (16) into Equation (12) 

results in: 

�� = �
� ∙ �� ∙ ��2 ∙ 
B

= 0.02053 ∙ � ∙ 
B
� ∙ ��    �17� 

The exact solution for this case is expressed 

through the following relation: 

�� = � ∙ 
B
48 ∙ � ∙ �� = 0.02083 ∙ � ∙ 
B

� ∙ ��     �18� 

 Comparing the results obtained through 

Eqs. (17) and (18) results in a relative deviation 

of 1.445%. 

In the following case study, the beam is 

loaded through a uniformly distributed force 

q(x), also applied in the transverse plane 

(according to Figure 3), the amplitude v1 is also 

determined, with relationship (1) as the starting 

point. In Figure 3, the points marked with 1 and 

2 indicate the position of the supporting 

elements. 

 
Fig. 3. Straight beam (simply supported) loaded to 

bending by a uniformly distributed force, q(x). 

The amplitude v1 is calculated by imposing 

the condition that the external mechanical work 

(Le), produced by the uniformly distributed 

force, q(x), applied to the beam, is transformed 

into potential energy of deformation (Ud) as a 

result of moving to a new equilibrium position 

(dv1). The quantity dv1 is produced by a small 

static increase in dF of the uniformly distributed 

load q(x) applied (according to Figure 4). 

 
Fig. 4. Evaluation of the variation of the external 

mechanical work (dLe) in the case of a beam simply 

supported and subjected to bending using a uniformly 

distributed load, q(x). 

In Figure 4, segment OA represents the range 

of elastic deformations corresponding to the 

material from which the beam was made. The 

external mechanical work dLe represents the 

area of the surface abcde under the characteristic 

curve and can be evaluated using the following 

formula: ��� = ������ = ����� + ���� = 

= D��� ∙ 
 ∙ ��� + �D��� ∙ ���2       �19� 

The term 
�E�F�∙�#$% , from relation (19), is 

neglected considering that it is a small infinity of 

higher order. 

From equation (19), it follows that: ��� = D��� ∙ 
 ∙ ���                  �20� 

From relations (20) and (11), we obtain: 
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D��� ∙ 
 ∙ ��� = 

= �� ∙ ��� ∙ � ∙ �� ∙ ' 6 ′′%��� ∙ ��)
*       �21� 

By dividing equation (21) by dv1, it follows 

that: 

�� = D��� ∙ 

� ∙ �� ∙ : 6 ′′%��� ∙ ��)*

= 

= D��� ∙ 

� ∙ �� ∙ ��
� ∙ : 	
�% � ∙ �
 ∙ ��)*

    �22� 

For x=l/2 from equation (22), we obtain: 

�� = D��� ∙ 
�
�� ∙ � ∙ �� = 0.01026 ∙ D��� ∙ 
�

� ∙ ��   �23� 

The exact solution for this support and 

loading case is expressed as follows: 

�� = 5 ∙ D��� ∙ 
�
384 ∙ � ∙ �� = 0.01302 ∙ D��� ∙ 
�

� ∙ �� �24� 

Comparing the results obtained through 

relations (23) and (24) results in a relative 

deviation of 21.19%. 

By analyzing the relative deviations obtained 

in the two cases of support and loading (in case 

1 it is 1.445% and in the second case 21.19%), it 

can be seen that the method of replacing the 

elastic curve with a single sinusoid does not 

provide a satisfactory result. Therefore, the 

elastic curve is expressed as follows, 

representing an infinite trigonometric series. 

   

2. DEVELOPMENT OF THE ELASTIC 
CURVE DIFFERENTIAL EQUATION IN A 
TRIGONOMETRIC SERIES 

 

For the first load case previously analyzed 

(beam - simply supported - loaded in the 

transverse plane with a nodal force, F), the 

trigonometric series expressing the equation of 

the elastic curve is of the form: 

���� = �� ∙ 	
� � ∙ �
 + �% ∙ 	
� 2 ∙ � ∙ �
 + ⋯ 

+�H ∙ 	
� � ∙ � ∙ �
                 �25� 

In Figure 5, successive sinusoids are 

represented, and in Figure 6, the same sinusoids 

are highlighted by their overlap. 

 
Fig. 5. Study case 1 (C1) – the elastic curve y(x) 

expressed by a sinusoidal series. 

 
Fig. 6. Superposition of the sinusoidal series. 

It should be specified that each component 

term of the sinusoidal series, as well as its 

derivatives, satisfies the boundary conditions in 

the supports (points 1 and 2 in Figure 5). 

When choosing the form of the trigonometric 

series, it must be considered that, because in 

relation (7), the potential deformation energy 

dUd depends on the square of the second 

derivative of the function y(x), it is very 

important that all the conditions for this 

derivative are satisfied to get relevant results. 

The condition for the third derivative of the 

function y(x), which represents the size of the 

shear force, may not be satisfied (Timoshenko-

Ehrenfest's theory of beams), without having a 

particular influence on the accuracy of the 

results [30-34]. 

To determine the amplitude of each sinusoid 

(v1, v2, ..., vn), the principle of energy 

conservation was applied. 

From relation (7), it follows that: 

&� = � ∙ ��2 ∙ ' /� ,,���0% ∙ ��)
* = 

= � ∙ ��2 ∙ ' I−�� ∙ �%

% ∙ 	
� � ∙ �
 − �% ∙ 2% ∙ �%


%
)

*
∙ 	
� 2 ∙ � ∙ �
 − �H ∙ �% ∙ �%


%
∙ 	
� � ∙ � ∙ �
 J% ∙ ��       �26� 

By squaring under the integral, two types of 

terms are obtained: 

�H% ∙ �� ∙ ��

� ∙ 	
�% � ∙ � ∙ �
  

and 
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2 ∙ �H ∙ �K ∙ �% ∙ L% ∙ ��

� ∙ 	
� � ∙ � ∙ �
∙ 	
� L ∙ � ∙ �
  

By integrating these two terms, we obtain: 

' �H% ∙ �� ∙ ��

� ∙ 	
�% � ∙ � ∙ �
 ∙ ��)

*
= �H% ∙ �� ∙ ��


� ∙ 
2 = �H% ∙ �� ∙ ��
2 ∙ 
B  

and 

' 2 ∙ �H ∙ �K ∙ �% ∙ L% ∙ ��

�

)
* ∙ 	
� � ∙ � ∙ �


∙ 	
� L ∙ � ∙ �
 ∙ �� = 0 

Thus, the expression of the potential energy 

will be of the form: 

&� = �� ∙ � ∙ ��4 ∙ 
B ∙ 
∙ ���% + 2� ∙ �%% + 3� ∙ �B% + ⋯ + �� ∙ �H%� = 

= �� ∙ � ∙ ��4 ∙ 
B ∙ M �� ∙ �H%
∞

HN�     �27� 

Equation (27) represents the sum of potential 

deformation energies that accumulate in the 

material of the beam during deformation in the 

elastic domain, corresponding to each sinusoid. 

For small deformations of an elastic system, 

starting from the equilibrium position, the 

deformation potential energy Ud is equal to the 

mechanical work Le produced by the external 

forces (nodal force F) during this deformation. 

According to relation (25), a small deformation 

is equivalent to a small change in the coefficients 

v1, v2, and v3, which, in reality, represent the 

displacements of the center of gravity of the 

transversal section of the beam in different 

nodes. Thus, dvn represents to be the variation of 

coefficient vn. 

With this variation the term 

�H ∙ 	
� � ∙ � ∙ �
                      �28� 

turns into 

��H + ��H� ∙ 	
� � ∙ � ∙ �
              �29� 

 This increase is similar to the insertion of 

an additional sinusoidal function in the 

trigonometric series (25), which can be 

expressed as follows: 

��H ∙ 	
� � ∙ � ∙ �
                 �30� 

 Through this additional deformation, the 

point of application of force F (node 3 in Figure 

1), positioned at a distance l/2 from the origin of 

the orthogonal system of reference axes (node 1 

in Figure 1), moves in the vertical plane with 

��H ∙ 	
� � ∙ � ∙ �
  

 The external mechanical work dLext, 

generated by the nodal force F, will be of the 

following form: 

���FO = � ∙ ��H ∙ 	
� � ∙ � ∙ 4
           �31� 

where a=l/2 and represents the elevation 

corresponding to the point of application of 

nodal force F to node 1 in Figure 5. 

The internal mechanical work dLint expressed 

according to the amplitudes v1, v2, v3, ..., vn by 

the variation of a single coefficient, will present 

an increase of it and can be represented by the 

relation: 

��PHO = 8&�8�H ∙ ��H = 

= 88�H ∙ Q� ∙ �� ∙ ��
4 ∙ 
B ∙ M �� ∙ �H�

∞

HN�
R ∙ ��H ⇒ 

��PHO = � ∙ �� ∙ ��
2 ∙ 
B ∙ �� ∙ �H ∙ ��H    �32� 

 According to the principle of energy 

conservation, the internal mechanical work dLint, 

expressed in relation (32), is equalized with the 

external mechanical work dLext, expressed with 

relation (31), and it follows that: 

� ∙ ��H ∙ 	
� � ∙ � ∙ 4
 = 

= � ∙ �� ∙ ��
2 ∙ 
B ∙ �� ∙ �H ∙ ��H        �33� 

Where to get: 

�H = 2 ∙ � ∙ 
B ∙ 	
� � ∙ � ∙ 4
� ∙ �� ∙ �� ∙ ��           �34� 

 By substituting the coefficients vn in 

equation (25), we obtain: 

���� = 2 ∙ � ∙ 
B
� ∙ �� ∙ �� ∙ 

∙ T 11� ∙ 	
� � ∙ 4
 ∙ 	
� � ∙ �
 + 12� ∙ 	
� 2 ∙ � ∙ 4

∙ 	
� 2 ∙ � ∙ �
 + 13� ∙ 	
� 3 ∙ � ∙ 4

∙ 	
� 3 ∙ � ∙ �
 U   �35� 

or 
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���� = 2 ∙ � ∙ 
B
� ∙ �� ∙ �� ∙ 

∙ M 1�� ∙ 	
� � ∙ � ∙ 4
 ∙ 	
� � ∙ � ∙ �

∞

HN�
   �36� 

If it is considered that the beam has a total 

length of l=200[mm] and is loaded with a force 

F=100[N], having the rectangular cross-section 

defined using the dimensions h=12[mm] and 

b=4[mm], the variation of the elastic curve is 

evaluated, in the following, using relation (36), 

of the finite element method (FEA) but also 

using relations (36a) and (36b). 

��B = 1� ∙ �� ∙ V− � ∙ �B
12 + W ∙ � + XY �364� 

�B% = − � ∙ �B12 + � ∙ <� − 
2=B
6 + W ∙ � + X

� ∙ �� �36Z� 

Relations (36a) and (36b) are a reformulation 

of relation (18) that allows the evaluation of the 

deformation of the elastic curve in different 

cross-sections of the beam, whose position is 

specified by quantity x. It should be specified 

that these two relations are obtained by 

integrating the differential equation of the elastic 

curve and the integration constants C and D are 

determined by introducing the boundary 

conditions at the inflection points.  

The magnitude of these two integration 

constants are: 

X = 0; W = 3 ∙ � ∙ 
\
48              �362� 

In relation to (36a) and (36b), Young's 

modulus is 2.1e5 [MPa], and the axial moment 

of inertia about the main axis of inertia z is 

576[mm4]. 

Finite Element Analysis (FEA) was 

performed using RDM v.7.04 software, 

Ossatures module, using bar-type finite elements 

with three degrees of freedom.  

21 distinct sections located 10 mm from each 

other were considered. Figure 7 shows the 

variation diagrams of the elastic curve y(x). 

How should the eigenfunctions of the Euler–

Bernoulli model compare with finite element 

modeling and the trigonometric series? 

Considering the results given by relations (36a) 

and (36b) - the Euler-Bernoulli model - as 

reference values, the relative deviation (in 

percentage) is calculated based on the results 

obtained using finite element analysis (FEA) and 

using the relation (36) for n equal to 1, 3, and 5. 

 
Fig. 7. The variation of the elastic curve was evaluated 

utilizing relations (36a), (36b), (36) and FEA for the 

isotropic beam simply supported and loaded with a 

concentrated force F at the middle. 

Figure 8 shows the results obtained 

analytically and numerically (FEA). 

 
Fig. 8. Graphical representation of the relative 

deviation. 

Before studying the second case loading  

(C2), according to Figure 3, it is noted that for 

the calculation of the increase in internal 

mechanical work dLint [relation (32)], the type of 

applied load (nodal force, nodal moment, or load 

distributed on a certain unit of length) does not 

influence the variation of the displacement vn, 

provided that this parameter is integrated in the 

field of elastic deformations. 

Thus, for the second case of support and 

loading (C2), the variation of the external 

mechanical work dLext becomes: ���FO��H = ' D��� ∙ ��)
* ∙ 	
� � ∙ � ∙ �
 = 
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= ?D��� ∙ T− 
� ∙ �U ∙ 23	 � ∙ � ∙ �
 @*
) = 

= − D��� ∙ 
� ∙ � ∙ �23	� ∙ � − 1�        �37� 

Equating this relationship mathematically 

with the increase of the internal mechanical 

work dLint, expressed through equation (32), 

results: � ∙ �� ∙ ��
2 ∙ 
B ∙ �� ∙ �H = − D��� ∙ 
� ∙ � ∙ �23	� ∙ � − 1� 

�H = −2 ∙ D��� ∙ 
�
� ∙ �� ∙ �] ∙ �] ∙ �23	� ∙ � − 1�    �38� 

In this case, the equation of the elastic curve 

is: 

���� = − M 2 ∙ D��� ∙ 
�
� ∙ �� ∙ �] ∙ �] ∙ �23	� ∙ � − 1� ∙

∞

HN�
 

∙ 	
� � ∙ � ∙ �
                          �39� 

For n=1, 3, 5, ... 

�H = 4 ∙ D��� ∙ 
�
� ∙ �� ∙ �] ∙ �]               �40� 

and for n=2, 4, 6, ... �H = 0                           �41� 

The equation of the elastic curve is expressed 

in the following form: 

���� = 4 ∙ D��� ∙ 
�
� ∙ �� ∙ �] ∙ 

∙ T 11] ∙ 	
� 1 ∙ � ∙ �
 + 13] ∙ 	
� 3 ∙ � ∙ �
 + 15]
∙ 	
� 5 ∙ � ∙ �
 + ⋯ U �42� 

In this case, the maximum displacement of 

the center of gravity of the cross-section will 

occur at the point located in the middle of the 

distance between the two supports, for which the 

variable x has the value of l/2: 

� = 4 ∙ D��� ∙ 
�
� ∙ �� ∙ �] ∙ 

∙ T 11] − 13] + 15] − 17] + ⋯ U        �43� 

Next, in a sequential form, the first term is 

taken into account, then the first two terms and, 

finally, the first three terms in the parenthesis, 

the following results are obtained: 

���� = 4 ∙ D��� ∙ 
�
306.019 ∙ � ∙ �� = 

= 0.013071 ∙ D��� ∙ 
�
� ∙ ��     �44� 

���� = 0.0130172 ∙ D��� ∙ 
�
� ∙ ��        �45� 

���� = 0.0130214 ∙ D��� ∙ 
�
� ∙ ��        �46� 

To determine the size y(x) in a cross-section, 

apply the relation (46a) obtained based on the 

model of the Euler-Bernoulli theory. 

���� = D��� ∙ 
�
24 ∙ � ∙ �� ∙ V�
 − 2 ∙ �B


B + ��

� Y �464� 

21 distinct sections located at a distance of 10 

millimeters from one another are considered. 

The same data is used as in the previous study 

case, specifying that the uniformly distributed 

load q(x) has a value of 1 [N/mm]. Figure 9 

shows the variation diagrams of the elastic curve 

y(x). 

Considering the results given by relation 

(43a) as reference values, the relative deviation 

(in percent) is calculated from the results 

obtained using finite element analysis (FEA) and 

using relation (42) for n equal to 1, 3, and 5. In 

Figure 10 the results are graphically represented. 

If a uniformly distributed load q(x) is applied 

to the beam that acts on the unit length l/2 from 

the origin of the coordinate axes (according to 

Figure 11), the amplitude y(x) is determined 

considering that the uniformly distributed load 

q(x ) represents a sum of elementary 

concentrated charges of the form q(x)·da. In 

Figure 11, the nodes where either the support 

elements are defined, or the length unit on which 

the uniformly distributed force q(x) is applied to 

the beam, are marked with 1 - 3.

 
Fig. 9. The variation of the elastic curve was evaluated 

using relations (43a), (42), and FEA for the isotropic 

beam simply supported and loaded with a uniformly 

distributed force, q(x), over the entire unit length. 
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Fig. 10. Graphical representation of the relative 

deviation. 

 
Fig. 11. Simply supported beam loaded with uniformly 

distributed load, q(x), acting per unit length l/2. 

Thus, the elastic curve y(x) can be expressed 

using the relation (36) in which the term F is 

replaced by the expression q(x)·da as follows: 

���� = 2 ∙ D��� ∙ �4 ∙ 
B
� ∙ �� ∙ �� ∙ 

∙ M 1�� ∙ 	
� � ∙ � ∙ 4
 ∙ 	
� � ∙ � ∙ �

∞

HN�
   �47� 

The maximum displacement y(x) is 

determined by integrating the series (47) about 

the unit length a from 0 to l/2: 

' 2 ∙ D��� ∙ �4 ∙ 
B
� ∙ �� ∙ �� ∙ 	
� � ∙ � ∙ 4
 ∙ 	
� � ∙ � ∙ �


)%
* = 

= 2 ∙ D��� ∙ 
B
� ∙ �� ∙ �� ∙ 1�� ∙ 	
� � ∙ � ∙ �
 ∙ 

∙ ' 	
� � ∙ � ∙ 4
 ∙ �4)/%
*       �48� 

where  

' 	
� � ∙ � ∙ 4
 ∙ �4 =)/%
*  

= − 
� ∙ � ∙ 23	 � ∙ � ∙ 2
 A
/20 = 

= 
� ∙ � ∙ <1 − 23	 � ∙ �2 =          �49� 

It is noted: 

<1 − 23	 � ∙ �2 = = 2 

and has the following values: 

_ = ` → 2 = 1;  _ = b → 2 = 2;  _ = c → 2= 1;  _ = d → 2 = 0 

Thus, the amplitude y(x), for x=l/2, will be 

expressed through the following relation: 

����)/% = 2 ∙ D��� ∙ 
�
� ∙ �� ∙ �] ∙ �] ∙ 

∙ 	
� � ∙ �2 ∙ <1 − 23	 � ∙ �2 =    �50� 

or 

����)/% = 2 ∙ D��� ∙ 
�
� ∙ �� ∙ �] ∙ 
∙ e M 1�] ∙ 	
� � ∙ � ∙ �
HN�,B,],…

+ M 2�] ∙ 	
� � ∙ � ∙ �
HN%,g,�*,…
h �51� 

For n=1 it follows: 

����)/% = D��� ∙ 
�
153.009 ∙ � ∙ ��            �52� 

The final relation for calculating the 

displacement of the center of gravity of the cross 

section of the bar for this case of loading and 

support, according to the Euler-Bernoulli model, 

is of the form: 

����)/% = D��� ∙ 
�
153.6 ∙ � ∙ ��               �53� 

To determine the quantity y(x) in a certain 

cross-section, apply relations (53a) and (53b) – 

the Euler-Bernoulli model. 

�����B = 1384 ∙ � ∙ �� ∙ 
∙ /16 ∙ D��� ∙ �� − 24 ∙ D��� ∙ 
 ∙ �B + 9 ∙ D��� ∙ 
B

∙ �0 �534� 

����B% = 1384 ∙ � ∙ �� ∙ 
∙ I16 ∙ D��� ∙ �� − 16 ∙ D��� ∙ T� − 
2U� − 24 ∙ D���

∙ 
 ∙ �B + 9 ∙ D��� ∙ 
B ∙ �J �53Z� 

21 distinct sections located at a distance of 10 

millimeters from one another are considered. 

The same data are used as in the previous case 

study. Figure 12 shows the variation diagrams of 

the elastic curve y(x). 

Considering the results given by relations 

(53a) and (53b) as reference values, the relative 

deviation (in percent) is calculated about the 

results obtained using finite element analysis 

(FEA) and using relation (51) for n equal to 1, 3, 

and 5. 
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Fig. 12. The variation of the elastic curve was evaluated 

using relations (53a), (53b), (51), and FEA for the 

isotropic beam simply supported and loaded with a 

uniformly distributed load, q(x), over the first half unit 

length. 

Figure 13 shows the results obtained 

analytically and numerically (FEA).

 

Fig. 13. Graphical representation of the relative 

deviation. 

Figure 14 defines a beam loaded to bending 

using two nodal forces, F1 and F2. The beam is 

also simply supported and represents study case 

4 (C4). 

 
Fig. 14. A simply supported beam is subjected to 

bending using two concentrated forces, F1 and F2. 

If it is considered that a2=2·a1, l=3·a1, and 

F1=F2=F the evaluation of the variation of the 

external mechanical work (dLe) has as its 

starting point the determination of the external 

mechanical work Le performed by the two 

concentrated forces (according to Figure 15 ) as 

follows: 

-in the first stage, the beam is loaded with force 

F1 at point 3, generating at point 4 displacement 

v41 and at point 3 displacement v31, in which case 

the external mechanical work is of the form: 

��� = �� ∙ �B�2                        �54� 

- the next stage is the one in which the beam is 

additionally loaded, in point 4, with the force F2 

which generates in point 3 the displacement v32 

and in point 4 the displacement v42 in which case 

the external mechanical work is of the form: 

��% = �% ∙ ��%2 + �� ∙ �B%           �55� 

 
Fig. 15. Evaluation of the variation of the external 

mechanical work (dLe) in the case of a beam simply 

supported and subjected to bending using two 

concentrated forces, F1 and F2. 

Thus, the total external mechanical work Le is 

of the form: �� = ��� + ��% = 

= �� ∙ �B�2 + �% ∙ ��%2 + �� ∙ �B%      �56� 

The initially adopted boundary conditions 

lead to: �B = �B� + �B%, �� = ��� + ��%, �B = �� �B% = �B − �B� = ���, ��% = �B − ��� ⇒ 

��% = �B − ��B − �B�� = �B�       �57� 

From relations (56) and (57) it follows: 

�� = � ∙ �B�2 + � ∙ �B�2 + � ∙ �B% = 

= 2 ∙ � ∙ �B                        �58� 

The variation of the external mechanical 

work, dLext, produced by an elementary increase 

of the forces F1 and F2, based on the initially 

adopted boundary conditions, is of the form: 

���FO = 2 ∙ � ∙ ��H ∙ 	
� � ∙ � ∙ 4
    �59� 

Equating relation (59) with relation (32) 

results: 

2 ∙ � ∙ ��H ∙ 	
� � ∙ � ∙ 4
 = 

= � ∙ �� ∙ ��
2 ∙ 
B ∙ �� ∙ �H ∙ ��H  �60� 
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Where to get: 

�H = 4 ∙ � ∙ 
B ∙ 	
� � ∙ � ∙ 4
� ∙ �� ∙ �� ∙ ��       �61� 

Next, the vn coefficients are replaced in 

relation (25), resulting: 

���� = 4 ∙ � ∙ 
B
� ∙ �� ∙ �� ∙ 

∙ T 11� ∙ 	
� � ∙ 4
 ∙ 	
� � ∙ �
 + 12� ∙ 	
� 2 ∙ � ∙ 4

∙ 	
� 2 ∙ � ∙ �
 + 13� ∙ 	
� 3 ∙ � ∙ 4

∙ 	
� 3 ∙ � ∙ �
 U  �62� 

or 

���� = 4 ∙ � ∙ 
B
� ∙ �� ∙ �� ∙ 

∙ M 1�� ∙ 	
� � ∙ � ∙ 4
 ∙ 	
� � ∙ � ∙ �

∞

HN�
        �63� 

where: a=l/3 and x=l/2. 

The exact solution for this case of loading and 

bearing, based on the Euler-Bernoulli model, is 

expressed using the following calculation 

relations:- for the first interval (bounded using 

points 1-3, according to Figure 15): 

�����B = 1� ∙ �� ∙ V− � ∙ �B
6 + W ∙ �Y �644� 

 - for the second interval (bounded using 

points 3-4, according to Figure 15): 

����B� = 1� ∙ �� ∙ I− � ∙ �B
6 + ��� − 4�B

6 + W ∙ �J 

�64Z� 

It is specified that the mathematical formulas 

(64a) and (64b) were derived by integrating the 

differential equation of the elastic curve and to 

establish the integration constant C the Clebsch 

method was used based on the condition of 

smoothness and continuity of the differential 

equation of the elastic curve but also by 

introducing boundary conditions at the points 

where the isotropic beam has canceled one 

degree of freedom - y(x)=0. The calculation 

relation for the integration constant C is of the 

form: 

W = �6 ∙ 
 ∙ /
B − �
 − 4�B − 4B0    �65� 

21 distinct sections located at a distance of 10 

millimeters from one another are considered. 

The same data are used as in case 1 of the study. 

Figure 16 shows the variation diagrams of the 

elastic curve y(x). 

 
Fig. 16. The variation of the elastic curve was evaluated 

using relations (64a), (64b), (64a)*, (62), and FEA for 

the isotropic beam simply supported and subjected to 

bending using two concentrated forces, F1 and F2. 

The relation (64a) can also be applied for the 

interval 4-2 if the origin of the coordinate axis 

system is at point 2. This aspect is highlighted 

by noting the relation (64a) with (64a)*. It is also 

stated that in relation (62) for n=2 and n=3, the 

same results are obtained because 

	
� 3 ∙ � ∙ 4
 = 0 63i 4 = 
3 

Considering the results given by relations 

(64a), (64a)*, and (64b) as reference values, the 

relative deviation (in percent) is calculated about 

the results obtained using finite element analysis 

(FEA) and using relation (62) for n equal to 1, 2, 

3 and 4 . Figure 17 shows the results. 

 

 
Fig. 17. Graphical representation of the relative 

deviation. 

Based on these studies, the relevance of the 

approximation of the differential equation of the 

elastic fiber using trigonometric series can be 

emphasized, highlighting the following 

conclusions. 
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 3. CONCLUSIONS  

 

This study aims to highlight and analyze the 

use of trigonometric series in the study of the 

elastic curve of isotropic beams with constant 

moments of inertia. The article aims to present a 

detailed approach to the method of using 

trigonometric series in the approximation of the 

elastic curve, starting from two examples of 

simple loading (case 1: a beam supported at both 

ends and loaded in the middle with a 

concentrated force; case 2: a beam supported at 

both ends and loaded along its entire length with 

a uniformly distributed load) and continuing 

with the presentation of two more examples of 

more complex loading (case 3: a beam supported 

at both ends and loaded over half a unit length 

with a uniformly distributed load; case 4: a beam 

supported at both ends symmetrically loaded 

with two concentrated forces) by the Euler - 

Bernoulli theory. 

The following can be concluded from the 

examples presented in this study: 

The analysis of the relative deviations 

obtained in the two models with simple support 

and loading (in case 1 it is 1.445% and in the 

second case 21.19%) shows that the method of 

replacing the elastic curve with a single sinusoid 

does not give a satisfactory result. For this 

reason, the elastic curve for the four support and 

load cases was additionally expressed by 

trigonometric series. 

To understand the influence of the type of 

load applied to the bar on the approximation of 

the differential equation of the elastic curve - 

relation (2) – using trigonometric series - 

relation (25) - (over the whole unit length, but 

also for l/2), the 4 cases studied are divided into 

two categories: group 1 formed by case 1 and 

case 4 in which the simply supported beam is 

loaded using concentrated force/forces 

(according to Figure 18) and group 2 formed by 

case 2 and case 3 in which the simply supported 

beam is loaded using a uniformly distributed 

load, q(x) (according to Figure 19). 

 
Fig. 18. A comparative representation of the variation diagrams of the relative deviations 

 for the cases of support and loading from group 1. 

 
Fig. 19. A comparative representation of the variation diagrams of the relative deviations 
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 for the leaning and loading cases from group 2. 

Thus, for study group 1 (Figure 18), it can be 

seen that in case 1 (C1), the approximation is 

relevant for n=3 and n=5 for the total unit length 

and for l/2 in the case of n=3 (0.029 %). When 

more concentrated forces are applied, as in load 

case 4 (C4), the best approximation is for n=1 

for the entire unit length and for l/2, n=1, 2, 3 

and 4 give the same result, with an allowable 

convergence of 0.394%. 

In the situation of study group 2 (Figure 19), 

it can be observed that in case 2 (C2), the 

approximation is relevant for n=3 and n=5 for 

the whole length unit and for l/2 in the case of 

n=5, for which there is a perfect convergence. In 

case 3 (C3), a good convergence of the results 

for n=3 is allowed for both the total length unit 

and for l/2 with a relative deviation of 0.22%. 

Trigonometric series can quickly converge to 

the original function, meaning that even a 

truncated approximation with a finite number of 

terms can provide an accurate representation of 

the elastic curve under certain conditions. 
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APROXIMAREA ECUAŢIEI DIFERENŢIALE A FIBREI MEDII DEFORMATE PRIN 
SERII TRIGONOMETRICE PENTRU BARE IZOTROPE CU MOMENT DE INERŢIE 

CONSTANT, ÎNCĂRCATE COMPLEX, ÎN ACORD CU TEORIA EULER – BERNOULLI 

Rezumat: Studiul fibrei medii deformate a reprezentat o preocupare continuă în domeniul ingineriei mecanice obţinându-se o 
serie de metode analitice, grafice şi grafo-analitice de analiză. În această lucrare se prezintă o metodă analitică de studiu care 
poate fi clasificată ca făcând parte din metodele energetice de calcul a săgeţii prin prisma faptului că se utilizează expresia 
energiei potenţiale de deformare în cazul barelor solicitate la încovoiere simplă, în domeniul deformaţiilor elastice, utilizând 
materiale izotrope. Fibra medie deformată, care este exprimată printr-o ecuaţie diferenţială de ordinul patru, poate fi 
reprezentată şi prin intermediul unei serii trigonometirice infinite care conduce spre o convergenţă bună în raport cu 
rezultatele obţinute cu ajutorul metodelor clasice. Pornind de la o serie de cazuri simple de încărcare cu ajutorul cărora se 
exemplifică modul de rezolvare a problemei, în această lucrare sunt studiate două cazuri cu un grad de complexitate mai ridicat: 
în primul caz bara este încărcată pe prima jumătate de unitate de lungime cu o sarcină uniform distribuită q(x) iar în al doilea 
caz bara este încărcată prin intermediul a două forţe concentrate dispuse simetric în raport cu punctele de sprijin. 
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