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Abstract: In this study, the factors affecting the surface roughness of machined 7136 aluminum components 

were investigated. Principal component analysis (PCA) was used to assess the quality criteria and it was 

found that the first component explained most of the variation in the data. Surface roughness and cutting 

conditions were significantly related to the first component, while axial depth of cut and feed per tooth were 

mostly related to the second component. The first three components combined explained 90.995% of the 

variance. These findings suggest that surface roughness is significantly influenced by cutting conditions. 

The study demonstrates that PCA is a useful tool for analyzing large data sets to identify key factors 

influencing surface roughness.  

Key words: Surface quality, Al7136, end-milling, quality parameters, Principal Component Analysis, 

machining, surface roughness, cutting conditions. 
 

1. INTRODUCTION  
 

The effectiveness and longevity of machined 
components are significantly influenced by the 
relevance of surface roughness. Surface 
roughness is a term used to describe how the 
surface of a machined component looks, and it 
depends on how well the machining was done. 
A critical element that defines the part's 
mechanical properties and its capacity to resist 
wear is the surface roughness value, expressed 
as Ra. 

PCA is a statistical method for minimizing 
the number of variables in a dataset while 
keeping the most crucial data, which aids in the 
identification of patterns in data. The study seeks 
to pinpoint the major variables that affect the 
component quality by using PCA to the surface 
roughness analysis data of the machined 
components. The results of this research may be 
used to improve the performance and durability 
of the machined components overall and to 
optimize the machining process parameters to 
produce the required surface roughness. 

Surface roughness has a big impact on how 
well machined components operate [1]. One of 

the key elements that affects the mechanical 
characteristics and longevity of machined items 
is the surface roughness value. To obtain the 
appropriate surface roughness value, it is vital to 
adjust the machining process parameters. 
Considering this, the objective of this study is to 
examine the surface roughness (Ra) analysis of 
AL7136 parts produced by end milling and to 
assess the quality indicators using principal 
component analysis (PCA). 

In earlier research, the machining process 
parameters were optimized to lower the surface 
roughness value of machined items [2]. This 
demonstrates how surface roughness affects the 
durability and usability of machined 
components. To further improve the functioning 
and lifetime of machined components, it is still 
necessary to determine the primary factors that 
affect surface roughness. 

Researchers and engineers may be better able 
to comprehend the elements that affect surface 
roughness and how to optimize the machining 
process parameters because of identifying these 
key parameters. This can enhance the 
performance and longevity of machined 
components and assist obtain the correct surface 
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roughness values. In order to assure the best 
quality of machined components, it is 
highlighted the importance of ongoing research 
and development in the field of surface 
roughness optimization [3].  

Finding efficient ways to reduce the surface 
roughness of machined components has been the 
focus of recent study. The artificial neural 
networks [4], response surface approach [5], and 
Taguchi method [6], are some of the techniques 
that are most frequently utilized. By using these 
techniques, the machining process parameters 
are intended to be optimized to provide the 
required surface roughness value. Furthermore, 
several research have investigated how various 
machining parameters, including cutting speed 
(v), feed rate (fz), and depth of cut (ap), affect 
surface roughness (Ra). Notwithstanding these 
efforts, it is still critical to pinpoint the key 
elements that significantly affect surface 
roughness to enhance the performance and 
longevity of machined components. These 
factors may be identified to improve the surface 
roughness measurements and further optimize 
the machining process parameters [7,8]. 

Cryogenic machining [9], laser-assisted 
machining [10], and high-speed machining [11] 
are a few examples of innovative machining 
processes that have recently been studied for 
their potential to reduce the surface roughness of 
machined components.  

By using liquid nitrogen to chill the cutting 
tool and the workpiece to extremely low 
temperatures, a method known as cryogenic 
machining may be utilized to minimize cutting 
force and enhance surface smoothness. Prior to 
the cutting tool contacting the surface, the 
workpiece is heated locally by a laser beam 
during laser-assisted machining. This procedure 
aids in lowering cutting pressures and enhancing 
surface finish. When cutting speed is greatly 
raised, cutting forces are reduced, and surface 
smoothness is enhanced. This technique is 
known as high-speed machining. 

These cutting-edge methods have the 
potential to smooth down the surface of 
machined components. To fully explore their 
potential and establish their practical uses, more 
study is necessary. To assess the economic 
viability of adopting these procedures in 
industry, taking into consideration associated 

costs, equipment needs, and productivity, more 
research is also necessary. 

Moreover, recent research has examined the 
impact of lubrication [12], tool coating [13], and 
cutting tool shape [14] on surface roughness 
measurements. Many studies have demonstrated 
that these elements may significantly alter 
surface roughness, which in turn can affect the 
functionality and durability of machined 
components. For example, lubrication can aid 
during machining to lessen friction and heat 
generation, which can minimize the risk of tool 
wear and enhance the surface quality of the 
machined component. Similar to this, tool 
coatings can improve the robustness and wear 
resistance of cutting tools, producing a surface 
finish with a better finish. 

Moreover, the cutting tool's shape may be 
extremely important in the machining process 
since it can influence elements including cutting 
forces, chip formation, and tool wear, all of 
which can affect surface roughness. 

So, investigating the consequences of these 
factors and figuring out how to make them better 
can result in better surface roughness readings 
and overall better performance of machined 
components. 

About the impact of cutting parameters on 
cutting forces and chip formation, the works 
[15,16 and 17] are worth noting. 

The study used Principal Component 
Analysis (PCA), a statistical method, to pinpoint 
the crucial factors that have a substantial 
influence on the surface roughness of machined 
components. The goal was to fill a gap in the 
existing literature by utilizing PCA to analyze 
the data and pinpoint the crucial factors 
influencing the results. In engineering and 
research, PCA is a widely used approach to 
extract the important facts from large data sets 
and find patterns in the data. According to the 
study's authors, employing PCA to evaluate the 
quality metrics of machined components was a 
unique method that may offer insightful data on 
the components' surface roughness. 

To get the right surface roughness value, it's 
crucial to optimize the machining process 
parameters to guarantee that machined 
components work as well as possible. The 
investigation of surface roughness on AL7136 
end-milled components is the main topic of this 
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work. The purpose of the study is to evaluate the 
quality attributes of the machined components 
using principal component analysis (PCA). 

This study set out to close this gap and show 
how well PCA analysis works for measuring the 
surface roughness of machined components. 

The two main goals of this work are to 
analyze the surface roughness of end milled 
AL7136 components and apply PCA to assess 
the quality attributes. It was attempted to use 
PCA analysis to determine the most important 
factors that influence the surface roughness of 
machined components in order to obtain the 
required surface roughness value. 

By identifying the important factors that 
influence the surface roughness of the 
components, PCA analysis is a cutting-edge 
method for evaluating the quality features of 
machined components. To attain the required 
surface roughness value and enhance the 
usability and durability of the machined 
components, engineers and researchers can 
discover these factors and optimize the 
machining process parameters. The study is 
unique in that it is the first to apply PCA analysis 
to evaluate machined component quality 
parameters. 

 
2. MATERIALS AND METHODS 

 
The experiments conducted in this study used 

a computer numerical control (CNC) machine, 
specifically a HAAS VF-2YT CNC. The carbide 
tools used were SECO R217.69-1616.0-09-
2AN. The parts that were machined were made 
of aluminum 7136 and were subjected to end-
milling. The cutting parameters, namely cutting 
speed, feed rate, and depth of cut, were varied to 
study their impact on the surface roughness of 
the machined components. 

To evaluate the surface roughness of the 
machined components, a surface roughness 
tester was used. Specifically, the Mitutoyo 
SURFTEST SJ-210 was used to measure the 
surface roughness Ra values. This instrument is 
widely used in manufacturing industries and 
research for its high precision and accuracy in 
measuring surface roughness values.  

The quality parameters, including cutting 
speed, feed rate, and depth of cut, were recorded 

during the experiments. The data obtained from 
the experiments were subjected to PCA analysis 
to identify the dominant parameters affecting the 
surface roughness of the machined parts. 

The surface roughness values of the 
machined parts were analyzed, and the results 
were presented in Table 1. The table showed the 
variations in Ra values for different cutting 
parameter settings. This data was used to 
identify the dominant parameters affecting 
surface roughness, and the results of the PCA 
analysis were presented in the study. 

 
Table 1 

Surface roughness values for different cutting 
parameters 
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1 495 2 0.04 0.186 

2 495 2 0.06 0.216 

3 495 2 0.08 0.219 

4 495 2 0.11 0.217 

5 495 2 0.14 0.286 

6 495 2.5 0.04 0.189 

7 495 2.5 0.06 0.173 

8 495 2.5 0.08 0.165 

9 495 2.5 0.11 0.215 

10 495 2.5 0.14 0.236 

11 495 3 0.04 0.197 

12 495 3 0.06 0.366 

13 495 3 0.08 0.180 

14 495 3 0.11 0.193 

15 495 3 0.14 0.464 

16 495 3.5 0.04 0.188 

17 495 3.5 0.06 0.183 

18 495 3.5 0.08 0.168 

19 495 3.5 0.11 0.239 

20 495 3.5 0.14 0.252 

21 495 4 0.04 0.191 

22 495 4 0.06 0.188 

23 495 4 0.08 0.176 

24 495 4 0.11 0.218 

25 495 4 0.14 0.179 

26 530 2 0.04 0.186 

27 530 2 0.06 0.219 
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28 530 2 0.08 0.183 

29 530 2 0.11 0.311 

30 530 2 0.14 0.586 

31 530 2.5 0.04 0.200 

32 530 2.5 0.06 0.219 

33 530 2.5 0.08 0.224 

34 530 2.5 0.11 0.277 

35 530 2.5 0.14 0.268 

36 530 3 0.04 0.206 

37 530 3 0.06 0.208 

38 530 3 0.08 0.417 

39 530 3 0.11 0.252 

40 530 3 0.14 0.246 

41 530 3.5 0.04 0.222 

42 530 3.5 0.06 0.241 

43 530 3.5 0.08 0.178 

44 530 3.5 0.11 0.234 

45 530 3.5 0.14 0.244 

46 530 4 0.04 0.236 

47 530 4 0.06 0.219 

48 530 4 0.08 0.199 

49 530 4 0.11 0.215 

50 530 4 0.14 0.271 

51 570 2 0.04 0.439 

52 570 2 0.06 0.514 

53 570 2 0.08 0.547 

54 570 2 0.11 0.434 

55 570 2 0.14 0.354 

56 570 2.5 0.04 0.473 

57 570 2.5 0.06 0.509 

58 570 2.5 0.08 0.529 

59 570 2.5 0.11 0.466 

60 570 2.5 0.14 0.393 

61 570 3 0.04 0.542 

62 570 3 0.06 0.497 

63 570 3 0.08 0.547 

64 570 3 0.11 0.441 

65 570 3 0.14 0.357 

66 570 3.5 0.04 1.719 

67 570 3.5 0.06 0.474 

68 570 3.5 0.08 0.487 
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69 570 3.5 0.11 0.442 

70 570 3.5 0.14 0.397 

71 570 4 0.04 0.666 

72 570 4 0.06 0.533 

73 570 4 0.08 0.606 

74 570 4 0.11 0.387 

75 570 4 0.14 0.528 

76 610 2 0.04 0.533 

77 610 2 0.06 0.475 

78 610 2 0.08 1.035 

79 610 2 0.11 0.554 

80 610 2 0.14 0.546 

81 610 2.5 0.04 0.547 

82 610 2.5 0.06 0.535 

83 610 2.5 0.08 0.696 

84 610 2.5 0.11 0.531 

85 610 2.5 0.14 0.481 

86 610 3 0.04 0.509 

87 610 3 0.06 0.553 

88 610 3 0.08 0.596 

89 610 3 0.11 0.520 

90 610 3 0.14 0.458 

91 610 3.5 0.04 0.679 

92 610 3.5 0.06 0.631 

93 610 3.5 0.08 0.543 

94 610 3.5 0.11 0.581 

95 610 3.5 0.14 0.614 

96 610 4 0.04 0.722 

97 610 4 0.06 0.970 

98 610 4 0.08 0.540 

99 610 4 0.11 0.498 

100 610 4 0.14 0.416 

101 660 2 0.04 0.503 

102 660 2 0.06 0.686 

103 660 2 0.08 0.667 

104 660 2 0.11 0.490 

105 660 2 0.14 0.740 

106 660 2.5 0.04 0.586 

107 660 2.5 0.06 0.644 

108 660 2.5 0.08 0.653 

109 660 2.5 0.11 0.613 
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110 660 2.5 0.14 0.674 

111 660 3 0.04 0.544 

112 660 3 0.06 0.544 

113 660 3 0.08 0.541 

114 660 3 0.11 0.577 

115 660 3 0.14 0.606 

116 660 3.5 0.04 0.529 

117 660 3.5 0.06 0.652 

118 660 3.5 0.08 0.630 

119 660 3.5 0.11 0.456 

120 660 3.5 0.14 0.604 

121 660 4 0.04 0.602 

122 660 4 0.06 0.528 

123 660 4 0.08 0.499 

124 660 4 0.11 0.601 

125 660 4 0.14 0.504 

126 710 2 0.04 0.538 

127 710 2 0.06 0.538 

128 710 2 0.08 0.579 

129 710 2 0.11 0.501 

130 710 2 0.14 0.565 

131 710 2.5 0.04 0.554 

132 710 2.5 0.06 0.544 

133 710 2.5 0.08 0.595 

134 710 2.5 0.11 0.543 

135 710 2.5 0.14 0.503 

136 710 3 0.04 0.539 

137 710 3 0.06 0.506 

138 710 3 0.08 0.505 

139 710 3 0.11 0.616 

140 710 3 0.14 0.678 

141 710 3.5 0.04 0.537 

142 710 3.5 0.06 0.571 

143 710 3.5 0.08 0.653 

144 710 3.5 0.11 0.633 

145 710 3.5 0.14 0.515 

146 710 4 0.04 0.529 

147 710 4 0.06 0.555 

148 710 4 0.08 0.571 

149 710 4 0.11 0.623 

150 710 4 0.14 0.539 

3. RESULTS AND DISCUSSION 
 
A statistical method called principal 

component analysis (PCA) is used to minimize 
the number of dimensions in a big dataset while 
preserving as much variation as feasible. A table 
that contains the findings of a PCA analysis 
frequently gives crucial details about the 
components that were taken from the data [18-
22]. The results of the Principal Components 
Analysis (PCA) for the end-milling process 
quality parameters used to fabricate Al7136 
components are shown in table 2. The findings 
of a four-component PCA analysis are displayed 
in the table. The component numbers are listed 
in the first column, and each component's 
eigenvalue is displayed in the second column. 
The variation explained by the component is 
indicated by the eigenvalue. 

 
Table 2 

Principal Components Analysis 
Component  Percent of Cumulative 

Number Eigenvalue Variance Percentage 

1 1.6398 40.995 40.995 

2 1.0 25.000 65.995 

3 1.0 25.000 90.995 

4 0.360196 9.005 100.000 

 
The first component in this scenario has a 

greater eigenvalue (1.6398) than the other 
components' eigenvalues. This suggests that the 
first component explains a bigger share of the 
overall variation in the data. More specifically, 
the first component, which is likewise included 
in the third column of the table, explains 
40.995% of the data's variation. The cumulative 
proportion of variation explained by each 
component is displayed in the fourth column of 
the table. One can see that the cumulative 
percentage rises as you scroll down the table.  
The first two components, for instance, account 
for 65.995% of the variation in the data, but the 
first three components account for 90.995% of 
the variance. The table's last column displays the 
proportion of variation that each component 
contributes to the overall variance in the data. 
For instance, the fourth component explains 
9.005% of the variation, whereas the second 
component accounts for 25.000% of the 
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variance in the data. Overall, the PCA table 
shows that the first component, followed by the 
second and third components, is crucial for 
explaining the variation in the data. The fourth 
component may not be as significant for 
comprehending the underlying structure of the 
data because it explains a lesser percentage of 
the variation. The component weights table 
(table 3) displays the weights assigned to each 
variable in the two extracted dataset 
components. 

Table 3 

Table of Component Weights 
 Component Component 

 1 2 

Cutting speed 
v [m/min] 

0.704363 0.0858234 

Cutting depth 
ap [mm] 

0.0148533 -0.0171041 

Feed per tooth 
fz [mm/tooth] 

-0.0604286 0.996164 

Surface roughness 
Ra [µm] 

0.707107 -6.25606E-17 

 
The contribution of each variable to the 

underlying structure of the component is 
represented by the component weights. This data 
are presented in figure 1. This figure represents 
a plot of component weights. It illustrates the 
distribution and relative importance of different 
components, specifically Weights, in the context 
of the analysis. Each point on the plot 
corresponds to a data point and is positioned 
based on the corresponding weights of the two 
components, C1 and C2. This visualization 
offers insights into the relationships and 
contributions of these components to the overall 
analysis. 

 

 
Fig.1. Plot of component Weights 

 

Positive weights for v and Ra in the first 
component show that these variables have a 
positive relationship with the first component.  
While considerably lower in size than the 
weights for v and Ra, the weight for ap is 
likewise positive. Given that fz has a negative 
weight, the first component and fz are not 
positively correlated. A positive weight for fz in 
the second component means that fz is closely 
related to the second component. Even though it 
is lower in size than the weight for fz, the weight 
for v is positive. Ap has a negative weight, which 
means that it is adversely correlated with the 
second component. Ra's weight is almost equal 
to zero, which suggests that Ra has little to no 
relationship to the second component. The first 
component is mostly connected to the cutting 
circumstances (v, ap, and fz) and surface 
roughness (Ra), with v and Ra being the most 
significant factors, according to the component 
weights. The axial depth of cut ap and tooth feed 
fz are the main factors in the second component. 
It is significant to note that these interpretations 
may not accurately represent the real underlying 
connections between the variables in the data 
since they are dependent on the weights of each 
variable in each component. Table 4, titled 
"Table of Principal Components," serves as a 
crucial component in the presentation of the 
Principal Component Analysis (PCA) results. It 
encapsulates the information about the principal 
components derived from the analysis and their 
corresponding values. The values presented in 
Table 4 represent the coefficients of the original 
variables (features) in the context of the 
principal components. Each row corresponds to 
a principal component, and the columns 
represent the original variables. The values 
within the table signify the weights or 
contributions of the original variables to each 
principal component. 

To clarify further, each principal component 
is a linear combination of the original variables. 
The values in Table 4 indicate the strength and 
direction of influence of each original variable 
on a specific principal component. These 
coefficients play a pivotal role in understanding 
the underlying structure and significance of each 
principal component. 

In essence, Table 4 acts as a bridge between 
the original data space and the reduced-
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dimensional principal component space. It aids 
in deciphering the relationship between the 
original features and the extracted principal 
components, thus enabling a comprehensive 
interpretation of the PCA outcomes. 

 
Table 4 

Table of Principal Components 
 Component 

 1 2 

1 -1.83393 -1.37763 

2 -1.76477 -0.819114 

3 -1.78835 -0.260599 

4 -1.84604 0.577173 

5 -1.65988 1.41495 

6 -1.81316 -1.38968 

7 -1.90199 -0.831168 

8 -1.96335 -0.272653 

9 -1.84244 0.565119 

10 -1.82114 1.40289 

11 -1.77521 -1.40174 

12 -1.22866 -0.843222 

13 -1.90136 -0.284707 

14 -1.90753 0.553065 

15 -1.02759 1.39084 

16 -1.79566 -1.41379 

17 -1.84671 -0.855276 

18 -1.93211 -0.296761 

19 -1.73908 0.541011 

20 -1.74525 1.37878 

21 -1.77489 -1.42584 

22 -1.81907 -0.86733 

23 -1.89416 -0.308815 

24 -1.80073 0.528957 

25 -1.9855 1.36673 

…
 

…
 

…
 

50 -1.33578 1.40739 

51 -0.249836 -1.29049 

52 -0.0261258 -0.731975 

53 0.0533338 -0.173461 

54 -0.38559 0.664311 

55 -0.711173 1.50208 

56 -0.122594 -1.30254 

57 -0.0328306 -0.744029 

58 0.00197991 -0.185515 

59 -0.265216 0.652257 

60 -0.566758 1.49003 

61 0.124857 -1.3146 

 Component 

 1 2 

62 -0.0635773 -0.756083 

63 0.0742694 -0.197569 

64 -0.340612 0.640203 

65 -0.679934 1.47798 

66 4.17778 -1.32665 

67 -0.132104 -0.768137 

68 -0.121335 -0.209623 

69 -0.32671 0.628149 

70 -0.532084 1.46592 

 
In figure 2 these data are plotted. The second 

figure is a 2D scatter plot. It visualizes the 
relationship between two variables in a two-
dimensional space. In this case, the scatter plot 
helps depict the distribution and correlation 
between two relevant variables. The positions of 
data points on the plot provide information about 
the patterns and trends that might exist between 
these variables. 

 

 
Fig.2. 2D Scatter plot 

 
Whereas the second principal component 

(PC2) has a range of around -1.5 to 1.5, the first 
principal component (PC1) has a range of 
roughly -2 to 4. When we examine the scatter 
plot of the data, we can see that it is roughly 
elliptical in form, with most of the dots grouped 
together in the center. To make visualization and 
analysis easier in this situation, the data has been 
translated into a lower-dimensional space. It is 
possible to get insights into the original data set 
by recognizing patterns and correlations 
between the two primary components using the 
scatter plot of the converted data figure 3. 
 



- 252 - 
 

 

 
Fig.3. Biplot representation 

 
Tests for factorability are statistical 

techniques that determine whether a collection 
of variables may be effectively combined into a 
smaller set of latent variables, or factors. The 
Kaiser-Meyer-Olkin (KMO) measure of sample 
adequacy and the Bartlett's test of sphericity are 
the two most used factorability tests [20]. The 
KMO sampling adequacy metric evaluates the 
suitability of the correlation matrix between 
variables for factor analysis. A KMO value 
nearer to 1 denotes a correlation matrix that is 
more suited for factor analysis. The KMO value 
in this instance is 0.496578, which is under the 
suggested cutoff point of 0.5 and indicates that 
the variables might not be appropriate for factor 
analysis [21]. If the correlation matrix is an 
identity matrix, which denotes that the variables 
are unrelated to one another and hence 
inappropriate for component analysis, Bartlett's 
test of sphericity will determine if the correlation 
matrix is spherical. The variables may be 
eligible for component analysis if the correlation 
matrix is not an identity matrix, which is 
suggested by a significant chi-square value with 
a low p-value. With six degrees of freedom and 
a relatively low p-value of 1.27676E-14, the chi-
square value in this instance is 77.3123, 
demonstrating that the correlation matrix is not 
an identity matrix, and the variables are 
appropriate for factor analysis [22]. 

 
4. CONCLUSIONS 

 
The goal of this study is to pinpoint the 

critical elements that affect the surface 
roughness of AL7136 end-milled components 
and to tweak the machining parameters to get the 
surface roughness value that is desired. Surface 
roughness and cutting parameters, tool 
geometry, tool coating, and lubrication have all 

been examined in previous research, as well as a 
variety of strategies for machining parameter 
optimization. There is still a void in the 
literature, nonetheless, concerning the 
application of PCA analysis to evaluating the 
quality attributes of machined components. 
Consequently, our study provides a novel 
strategy for filling this gap and boosting the 
performance and robustness of machined 
components. The primary study objectives were 
to assess the quality parameters using PCA, 
examine the surface roughness (Ra) of Al7136 
components machined by end-milling, and 
optimize the machining process parameters to 
produce the required surface. A statistical 
technique called principal component analysis 
(PCA) is used to minimize the number of 
dimensions in a big dataset while preserving as 
much diversity as feasible. The output of a PCA 
analysis is often displayed as a table with key 
information about the components that were 
taken from the data. A four-component PCA 
analysis was performed in relation to the end-
milling process quality parameters utilized to 
create Al7136 components. The first 
component's eigenvalue is greater than that of 
the other components, suggesting that it 
accounts for a greater proportion of the total 
variance in the data. 90.995% of the variance is 
accounted for by the first three components' 
combined percentage of variance explained. 
Cutting conditions (v, ap, and fz) and surface 
roughness (Ra) are the main elements affecting 
the first component, with v and Ra being the 
most crucial ones. The cutting depth of cut (ap) 
and tooth feed (fz) are mostly related to the 
second component. The first and second 
principal components of PCA were used to 
convert the data into a two-dimensional space, 
with the first principal component accounting 
for most of the variation. The transformed data's 
scatter plot displays an elliptical shape, with 
most of the dots congregating in the middle. 
While Bartlett's test of sphericity implies that the 
correlation matrix is not an identity matrix and 
is therefore acceptable for component analysis, 
the KMO value in this study is below the 
suggested cutoff limit of 0.5, suggesting that the 
variables may not be viable for factor analysis. 
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Analiza calității suprafeței pieselor din Al7136 prelucrate prin frezare cilindro-frontală și 

evaluarea parametrilor de calitate folosind Analiza Componentelor Principale 
În această lucrare științifică s-au modelat factorii care influențează rugozitatea suprafeței pieselor prelucrate din Al7136. 
S-a folosit analiza componentelor principale (PCA) pentru a evalua criteriile de calitate și s-a descoperit că prima 
componentă a influențat cea mai mare parte a variației datelor. Rugozitatea suprafeței și condițiile de așchiere a fost legată 
semnificativ de prima componentă, în timp ce adâncimea axială de așchiere și avansul pe dinte au fost în mare parte legate 
de a doua componentă. Primele trei componente combinate au avut un aport de 90,995% din varianță. Aceste constatări 
sugerează că rugozitatea suprafeței este influențată substanțial de condițiile de așchiere. Studiul demonstrează că PCA 
este un instrument util pentru analiza seturilor mari de date pentru a identifica factorii cheie care influențează rugozitatea 
suprafeței.  
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