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Abstract: In the present work, a prediction model of the surface roughness in the dry turning of UNS 

A97075 aeronautical aluminum alloy was developed using artificial neural network (ANN). Specifically, 

the cutting speed and feed rate influence on the maximum height of roughness profile has been analyzed, 

due to its influence in the fatigue behavior of machined parts. Furthermore, the effect of the network 

architecture, such as the optimal number of neurons in the hidden layer, and the selection of experimental 

results applied in the ANN’s training and validation was studied to determine the best fit, minimizing the 

root mean square error. The use of ANNs has been shown to be a useful tool for such regression task, 

obtaining a high level of fit, even higher than the existing models in the literature in this regard. 

Keywords: Surface Integrity, Surface Roughness, Artificial Neural Network, Optimization, Tuning 

Hyperparameters, Dry turning, Aluminum Alloys. 

 
1. INTRODUCTION  
 

Aircraft industry is well known for being 
characterized by high requirements based on the 
reliability, effectiveness, quality, and safety 
manufacturing processes conditions. In this 
regard, research and development works have 
become a key factor to optimize product cycles 
for maximum sustainability and economic 
performance of the production techniques. 
Traditionally, light alloys, mainly aluminum 
ones (2000 and 7000 series), are broadly used in 
the manufacture of airplanes structural 
components due to their excellent mechanical 
properties-weight ratio [1]. In particular, UNS 
A97075 (Al-Zn) alloy is involved in the 
production of wings, spar caps and the upper 
skins [2]. Machining operations are one of the 
most commonly used to manufacture these 
components. Despite the frequent use of cutting 
fluids to improve tool life and functionality of 
machined parts, the current trend is the 
application of alternative and more sustainable 
lubrication strategies, such as Minimum 

Quantity Lubrication (MQL) or the complete 
removal of these polluting agents from the 
production process (dry machining) [3]. 
Nonetheless, the total absence of cutting fluids 
in these operations leads to severe conditions 
which may negatively affects the surface 
requirements of the manufactured parts. In this 
sense, surface integrity has become a weighty 
quality property in aeronautical industry. In 
general, surface integrity may be referred to as 
the set of material properties developed or 
affected subsequently to any forming process. 
Three approaches may be taken into account for 
the evaluation of these properties, such as the 
geometric variables, both at the macroscale 
(dimensional and geometric deviations) and at 
the microscale (roughness profile), as well as the 
physical-chemical and mechanical properties 
(e.g., residual stresses, microhardness, corrosion 
resistance and fatigue behavior) [4]. Of the 
different properties mentioned above, related to 
surface integrity, fatigue behavior is particularly 
important due to safety reasons. Usually, fatigue 
fracture is caused by the sudden decrease of the 
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stress-bearing section due to the crack growth 
after the microcracks generation and nucleation 
[5]. Different studies have been focused on the 
analysis of the residual stresses, surface 
roughness, and microstructure influence on 
fatigue life. Thus, the surface integrity of 
manufactured components impact on the initial 
phase of the fatigue fracture is clearly proved 
[6]. A great variety of models (potential or 
exponential, among others) may be found in the 
literature. These models allow obtaining the 
dependence between the cutting parameters 
(cutting speed, vc; feed rate, f; depth of cut, ap) 
and several variables of the roughness profile 
(such as the maximum height of roughness 
profile, Rz, or the arithmetic average of 
roughness profile, Ra) [7-8]. Hence, significant 
research has evinced the feed rate as the most 
dominant variable on the maximum height of 
profile regardless the cutting speed and the depth 
of cut [9]. However, micro-geometric tolerance 
studies focused on this output estimation are less 
common as compared to average roughness [10-
12].  On the other hand, in the last decade, the 
rise of automatic learning and artificial 
intelligence techniques, combined with big data 
and cloud computing methods, have faced any 
machining process parameter forecasting 
efficiently. In this regard, Artificial Neural 
Networks (ANNs) has become one of the most 
used supervised machine-learning algorithms to 
model and predict output variables in machining 
operations [13-14].  In this regard, different 
works have tried to predict several properties 
related to surface roughness as a function of 
cutting parameters for turning operations using 
ANN-based models [15-16]. 

Nevertheless, the “black box” nature of ANNs 
constitutes a major weakness in contrast with 
traditional statistical approaches, involving 
multiples sources of randomness and, therefore, 
showing problems on the reproducibility of 
predictions. Thereby, the network performance 
depends on the heuristic adjustment of numerous 
hyperparameters (e.g., number of neurons 
considered in the input, hidden and output 
layers, activation functions, learning rate, batch 
size and momentum coefficients, among others). 
Taking these values adopted by similar works as 
a reference, an architecture with 1 to 3 hidden 
layers and a number of neurons between 1 and 

20 with a “purelin” function for output layer 
together with a batch size for training, 
validation, and test accounting for 70-15-15 (%) 
respectively of the total data set [17], may be 
considered initially for the response variable 
estimation. 

Several works have tried to increase the 
computational performance and accuracy of a 
predictive model for surface roughness through 
tuning hyperparameters [18]. In many of them, 
genetic and metaheuristic algorithms are used to 
optimize the hyperparameters specially for 
Convolutional Neural Networks [19]. Thus, 
maximum accuracy is achieved after modeling 
several architectures by varying the number of 
filters, kernel size and number of layers. In 
addition, some standard strategies rely on grid, 
random or Bayesian search for this task [20]. 
This involves, training models with all possible 
combinations of the selected hyperparameter 
values, training models with randomly samples 
hyperparameters values from the defined 
distribution or starting with an initial guess of 
values, using performance of the model to the 
values respectively. However, the approach 
suggested by many of whom to explore and 
analyze the influence of control 
hyperparameters does not study how it affects 
the distribution of data for each phase. 
Therefore, in the present work, an analysis of 
ANN application was aimed to predict suitable 
cutting parameters for maximum height of 
roughness profile, as a magnitude of surface 
quality, in the dry turning of UNS A97075 alloy. 
In this regard, the inputs considered in the 
regression model were the cutting speed and the 
feed rate. Additionally, an ANN optimization 
approach was presented to obtain optimal 
number of neurons in the hidden layer and the 
batches data ordering with minimal error 
associated, in order to achieve the best 
sequencing option. 
 
2. METHODOLOGY 
 

Several dry-turning experiments were carried 
out to study the cutting parameters effect on 
roughness profile of the UNS A97075-T6 (Al-
Zn) alloy. The specimen geometry is shown in 
Figure 1. This geometry was selected according 
to the ISO 1143:2010 standard, used to evaluate 
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the fatigue behavior. There are three different 
areas (fixed, calibrated and support zone) 
characterized by its length (Lz) and respective 
diameter (Dz). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 1. Zones distinguished in the parallel specimen-
single point loading geometry 

 
The selected specimen geometrical 

dimensions for the areas mentioned are specified 
in the Table 1. 

 
Table 1  

Parallel specimen geometry 
 

Zones Dz [mm] Lz [mm] 

Fixed 15 30 

Calibrated 7.5 25 

Support 15 65 

Total - 167 

 
The cutting conditions values employed in 

the tests are illustrated in the Table 2. The 
combination of these values gave rise to a 
finishing step for each turned sample. It is 
necessary to mention that is not often work with 
this alloy at low cutting speeds. Nevertheless, 
these values are very common when it is 
combined with other materials, such as Titanium 
alloys or Carbon Fiber Reinforced Polymers 
(CFRP), among others.  

 
Table 2 

 Cutting parameters 
 

f  [mm/rev] vc [m/min] ap [mm] 

0.05 40 

1 
0.10 

60 
0.15 

0.20 80 

 

The tool used was a rhombic uncoated WC-
Co insert, with ISO reference DCGT11T308-14 
IC20, in a neutral position (a cutting-edge angle 
of 62.5 degrees). Following the machining tests, 
a macro and micro geometrical deviations 
inspection was conducted. To evaluate surface 
quality, in terms of the mean roughness depth 
(Rz), a portable roughness tester (Mitutoyo 
SURFTEST SJ-210) was employed. For this 
purpose, four roughness measurements were 
conducted along four generatrix of the specimen 
(90º apart). Because of the geometry of the 
specimens themselves, and related accessibility 
issues, the roughness profile parameter 
concerned was measured in the support and 
fixed zone (Figure 2). 
 

 
 

Fig. 2. Roughness measurement system in the fixed zone 
 

A four specimens set was machined for each 
cutting parameter combination to guarantee a 
95% confidence level and a 50% probability of 
failure under the ISO 12107 standard. Hence, 4 
samples test, 12 combinations and 8 repetitions 
were carried out to assemble a 384 
measurements dataset. This sample size may be 
deemed adequate to define the ANN model. On 
the subject matter of this work, a Single Hidden 
Layer Feedforward Neural Network (SLFN) 
with two input variables (vc and f) and one output 
variable (Rz) was used. For that purpose, the 
MATLAB Neural Network Toolbox library 
have been used. Figure 3 shows the network 
architecture considered based on simple 
Perceptron, with N as the neurons number in the 
hidden layer.  
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Fig. 3. ANN structure used to predict maximum height of 
roughness profile (Rz) as a function of two features 

variables (cutting parameters vc and f ) 
 

On the other hand, the Root Mean Square 
Error (RMSE) and the Adjusted R squared (R2) 
have been used as ANN performance 
measurement as follows (Equations 1-2). 
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t
 and y� are the model computed, 

measured values of maximum height of 
roughness profile variable and the mean of y 
values respectively. In addition, T represents the 
total of observations. In terms of network 
topology hyperparameters, the sigmoid transfer 
function was used. Thus, linear output layer lets 
the ANN produce values inside the range 0 to 1. 
Furthermore, the Bayesian Regularization 
backpropagation algorithm was made use of 
since it is considerably accurate compared to 
others (e.g., such as Levenberg-Marquardt or 
Scaled Conjugate Gradient learning algorithms). 
Likewise, to provide access to each batch, i.e., 
controlling the amount and selection of data 
mining sets intended for training, validation and 
testing tasks, an index data division function was 
used. Moreover, by storing the weights and 
biases for the optimal configuration of the ANN 
model (whose configuration for training, 
validation, testing and number of neurons in the 
hidden layer minimizes the RMSE) makes 
possible to reduce the network random behavior. 
Therefore, if ANN is run again, similar results 
should be obtained. 

The 70% of the dataset was allocated to training 
task (267 data). The remaining 30% (117 data) 
was used to validate (58 data) and test (59 data) 
the ANN model, as well as carry out a final 
performance evaluation and stop training before 
overfitting occurs. Finally, according to the 
methodology proposed, the ANN behavior was 
studied for N from 1 to 20 neurons to choose the 
optimal number of neurons in the hidden layer. 
After 200 iterations performed, the final ANN 
was trained for a number of hidden layer neurons 
with minimal mean RMSE. The methodology 
described above may be summarized in the 
following flowchart. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Flowchart of the methodology used 
 
3. RESULTS AND DISCUSSION 
 

An initial analysis was carried out to 
determine if it is possible to find a certain 
correlation between number of the hidden layer 
neurons (N) and global minimum mean error 
(RMSE) data pattern, considering the respective 
splitting ratio for each phase. Of the total 4000 
ANNs runed, Figure 4 shows those combinations 
grouped by common number of hidden neurons 
(from 1 to 20) in which training phase was 
stopped due to the minimization of mean RMSE. 
The results revealed major performance 
enhancements for networks trained with 19 and 
20 hidden neurons, i.e., in 35% of cases (70 of 
200 iterations), such number of hidden neurons 
were submitted by the optimal networks (with 
minimal RMSE) tested. Probabilistically, the 
higher number of neurons, the lower the error 

Characterization of aluminum 
alloy UNS A97075-T6 

Specimen geometry (Table 1) 

Dry machining (Table 2) 

Rz Data collection and 
processing 

Configuration of SLFN architecture 
Cutting conditions variables: vc, f 
Performance measure variable: Rz  

Random data selection for 
training, validation, and test 

ANN optimization  

Selection of batch experiments for 
training and respective parameters 

with the best RMSE to obtain 
optimal ANN forecasting model 

…
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value, since an excessively low number lead to 
underfitting and high statistical bias. This is 
consistent with ANNs learning method, the more 
hidden neurons, the more accurate the weighs 
quantity fitting. Notwithstanding, by increasing 
the number of neurons further, overfitting and 
significant execution time may be evidenced, 
and no improvement is observed in the reduction 
of error. For the limit of 20 neurons as depicted 
in Figure 6, this phenomenon does not appear to 
occur. Besides that, a similar approach was 
proposed to optimize the number of data values 
for training, validation, and test. However, no 
value was clearly found to minimize the error 
rate and 70-15-15 (%) combination was adopted. 

 
Fig. 5. Root Mean Square Error (RMSE) evolution as 

function of the neurons number in the hidden layer (N) 
 

As it can be observed in Figure 5, the RMSE 

curves reach simultaneously a minimum peak 
mean error of 0.846 μm for 20 hidden layer 
neurons, according to the neurons pattern 
distribution shown in Figure 6. In addition, the 
validation phase error is lower than the training 
one and, in turn, this value is less than test task 
one. Therefore, considering the highest RMSE 
value during the test is achieved for 20 neurons 
(very close to the validation error), the results 
obtained shows a good generalization of the 
model, as the 70% of the randomly selected data 
for neural network training are considered 
sufficiently representative of the ANN behavior 
and it may be considered valid for inference. 

The representation of this performance metric 
provides a simple physical interpretation of the 
machining target forecasting problem, in 
accordance with roughness profile 

 

 
Fig. 6. Histogram for the optimal number of neurons 

considered in the hidden layer (Nopt) to minimize RMS 

 

 Subsequently, the aim was to store the 
greatest combinations of data values for training, 
validation, and test. To that effect, as shown in 
Table 3, the RMSE parameter in each phase is 
compared for the optimal and worst sets orders. 
 

Table 3 

Minimum and maximum values of RMSE in the 
training (RMSEtr), validation (RMSEv), and test 

(RMSEt) phases [�m] with the corresponding number 
of hidden layer neurons (N) 

 

N RMSEtr RMSEval RMSEt 

2 0.7295 1.2285 0.8024 

6 0.8784 0.9096 0.8984 

 
Thus, the minimum value of total mean 

RMSE, considering the ratios for each task 
previously mentioned, is 0.8153 μm (for 2 
hidden layer neurons) compared with the 
maximum of 0.8861 μm (for 6 hidden layer 
neurons). However, this number of hidden 
neurons (N) contrasts with the value for the 
highest probabilistic success shown in Figures 5-
6 (Nopt = 20 neurons). In this context, the need 
for conducting a thorough analysis seems to be 
justified. Therefore, the degree of performance 
is around 8.68% for all networks tested 
regarding the worst case. On the other hand, 
Figure 7 shows the RMSE results during the 
ANN training (RMSEtr). According to Table 3, 
the level of error concerned with training phase 
for the lowest total RMSE obtained is 
considerably smaller than the lowest histogram 
limit shown in Figure 7. According to this figure, 



- 322 - 
 

 

the most repeatable RMSE value (about 13% of 
networks trained) coincides with the upper limit. 
Similarly, Figure 8 reveals the RMSE 
distribution for the validation phase (RMSEval). 
Particularly, the error parameter in validation, 
corresponding to the minimum global mean 
error (RMSEtot), is higher than that associated 
with maxim total mean one (Table 3). 

 
Fig. 7. Frequency distribution of mean Root Mean 

Square Error for ANN training (RMSEtr) 
 

In this instance, RMSEval related with 
minimum RMSEtot is above the upper limit, 
whereas RMSEval for maximum RMSEtot is close 
to the most repeated value (about 11% of 
networks validated). In accordance with this 
distribution, the most common RMSEval value 
(14% of all cases) is over 65% of the RMSEval 
with optimal RMSEtot and a 10% lower than the 
RMSEval with worst RMSEtot. 

 
Fig. 8. Frequency distribution of mean Root Mean 

Square Error for ANN validation (RMSEv) 
Likewise, Figure 9 illustrates the mean RMSE 

distribution for the test phase (RMSEt). By 

analyzing the results, values below the minimum 
RMSEt are reached on average in 25% of the 
networks studied, however, errors above the 
maximum RMSEt threshold were exceeded at 
40% of the total number or ANNs. 

 
Fig. 9. Frequency distribution of mean Root Mean 

Square Error for ANN test (RMSEt) 
 

Hence, there are certain dataset values 
combination for test with an error less than 
minimal RMSEt. Moreover, the most likely 
RMSE at test (20% of all networks solved) is 
occurred for an amount higher than the 
minimum RMSEt by 5%. As a weighted sum, 
Figure 10 shows the mean frequency distribution 
of total mean root mean square (RMSEtot).  

 
Fig. 10. Frequency distribution of total mean Root Mean 

Square Error (RMSEtot) 
 

Considering the most favorable RMSEtot 
result obtained from Table 3, it is far below the 
lower limit exposed in Figure 10. Furthermore, 
the maximum RMSEtot value exceeds frequency 
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Fig. 11. ANN regression-model results. (a) Training data. (b) Validation data. (c) Test data. 
(d) Complete dataset 

 
histogram limits. Additionally, a considerable 
part of the results (around 60%) has shown an 
error value of less than 3% of most the frequent 
one, while only 5% of data showed an error 
higher than 0.5%. Consequently, the 
optimization approach proposed in this work 
may be considered to improve RMSE metric for 
approximate values constrained between upper 
and lower graphic bounds. Once the ANN 
topological hyperparameters optimization were 
carried out, the optimal ANN is intended to be 
worked on. For that purpose, it has been 
collected the data batches indexes with best 
RMSE performance and the optimal number of 
neurons in the hidden layer (Nopt), previously 
reported, as well the best weights, and biases 
values. On the other hand, Figure 10 indicates 
the best ANN based-linear regression for the 
training, validation, test, and the complete 
dataset. The adjusted R-squared (R2) in the 
training phase was 0.836 which is slightly higher 
than the test one, 0.829, whereas the validation 
 
 

error is the maximum with respect to the above 
phases, 0.752. This behavior is consistently in 
good agreement with the Figure 5. Additionally, 
the R2 for the complete dataset was 0.823 (Figure  
11 (d)). The results reached contrast with other 
regression models, such as the potential one 
(R2= 0.711) and the Response Surface 
Methodology (RSM) analysis (R2= 0.680). In 
consequence, an acceptable fit has been obtained 
by the ANN model shown in Figure 3.  

As a final result, if the ANN is intended to be 
rerun, its variability behavior is reduced and 
close output values may be predicted, achieving 
an enhanced level of accuracy compared with 
the results obtained probabilistically in most 
cases. In such a way, the ANN optimization has 
been evidenced to be a valid approach for the 
micro-geometric variable forecast studied. In 
addition, Figure 12 shows the predicted values 
of the maximum height of roughness profile 
dependent on f, for each vc. From f = 0.05 to 0.10 
mm/rev a slightly variation in Rz was observed 
for both f and vc parameters. 

 
 

 
     (a) 

 

 
      (b) 

 
     (c) 

 
     (d) 
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4. CONCLUSIONS 
 

Fig. 12. Mean ANN predicted values of the of the 
maximum height of roughness profile (Rz) as a function 

of the feed rate (f), for each cutting speed (vc) 
 
Specifically, for f = 0.05 mm/rev, the set of Rz 

curves obtained for different vc, are almost 
identical in Rz forecast. Nevertheless, a major Rz 
increase was recognized from f = 0.10 to 0.20 
mm/rev. In addition, for the high level of cutting 
speed (vc) considered (80 m/min), the Rz target 
variable was increased 2.7 times (from 2.8 to 7.6 μm). In contrast, the increment was lower for 
medium and low range (40-60 m/min), where 
the Rz target variable was increased 2.5 times 
(from 2.8-2.9 to 6.9-7.3 μm). Besides that, there 
is an observed trend indicating that higher 
cutting speeds correspond to reduced Rz values. 
Thus, according to the literature [9], f feature 
appears to be the most influential cutting 
parameter. Besides this, the Rz value showed a 
consistent trend to grow with f, mostly from f = 
0.10 mm/rev. Notwithstanding, vc showed a 
lighter influence, becoming most appreciable for 
high values of f (from f = 0.10 mm/rev). As it 
could be expected, all of these observations are 
consistent with literature works about dry 
machining of aluminum alloys [10-12]. 
Moreover, according to the error bars 
corresponding to the standard deviation for each 
predictive ANN point, a robust behavior is 
observed for f values ranging from 0.07 to 0.17 
mm/rev (bigger dataset size is available) 
compared to the upper and lower extremes, 
where the prediction error tends to increase. 

In this work, a sigmoid transfer function in 
the hidden layer and the Bayesian 
Regularization training algorithm were used as 
SLFN hypermeters to predict maximum height 
of roughness profile of UNS A97075 dry turned 
specimens. Among the ANNs executed with 
random combinations of data batches intended 
for training (70%), validation (15%) and test 
(15%), the optimal number of neurons in the 
hidden layer (Nopt) was 20, which resulted in the 
lowest RMSE level.  

The mean RMSE for all data set was about �15%. This translates into an enhancement level 
of 8.68% regarding the network with the highest 
error. Although the improvement in predictive 
quality is relatively low, it can be increased with 
the number of neural networks tested. In terms 
of RMSE magnitude for the most desirable ANN 
during the training and test phases, the results 
obtained were considerably smaller than the 
lower limits for the mean value in both cases. 
However, the RMSE determined for validation 
task exceeded even the upper limit of the 
corresponding mean error, therefore, there is 
scope for accuracy improvement by increasing 
the number of ANNs implemented and exploring 
other combinations.  

Consequently, the model training gave rise to 
acceptable fit, showing a coefficient of 
determination (R2) for all dataset of 0.823. This 
goodness-of-fit has been compared with other 
regression models like potential and RSM 
analysis by evidencing the best fit for both of 
them. Thus, the application of a shallow ANN 
has proved to be a useful instrument for 
obtaining a Rz predictive model, as a function of 
vc and f under the cutting conditions described 
above.  

Furthermore, the network optimization 
approach presented in this work, improves the 
prediction performance, provide insight into the 
ANN architecture parameters, and limits the 
random behavior of the algorithm. 
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Optimizarea rețelei neurale artificiale pentru predicția rugozității suprafeței la strunjirea 
uscată a aliajului de aluminiu A97075   

Lucrarea prezintă modelul de predicție a rugozității suprafeței la strunjirea uscată a aliajului de aluminiu aeronautic UNS 
A97075 utilizând rețeaua neuronală artificială (ANN). În mod specific, impactul vitezei de tăiere și al vitezei de avans 
asupra înălțimii maxime a profilului de rugozitate au fost analizate în raport cu influența sale asupra comportamentului la 
oboseală a pieselor prelucrate. Efectul arhitecturii rețelei, cum ar fi numărul optim de neuroni din stratul limită și numărul 
de rezultate experimentale aplicate pentru validarea experimentelor, a fost studiat pentru a determina modelul de regresie 
cu cea mai mare acuratețe de predicție și minimizarea erorilor. Rezultatele raportate au arătat o potrivire bună în modelul 
prelucrat.  
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