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Abstract: Tool wear prediction has a crucial role for improving manufacturing quality and reliability due 

to optimizing tool replacement schedules, reducing downtime, and improving overall production efficiency. 

Deep learning models, having the ability to analyze large and complex datasets, can extract relevant 

information, and make accurate predictions about the condition of cutting tools.  We propose a smart 

detection methodology based on converting the available sensory data collected from a CNC milling 

machine into a visibility graph representation. Due to the high dimensionality of the data with 44 attributes 

related to machining, a multilayer visibility graph representation is achieved after this conversion 

procedure, resulting in a 44-layered 128x128 adjacency matrix formation. A novel data augmentation 

technique specifically applicable to graph representation is also employed to increase the data size 

originally composed of 18 experiments into 360, each one represented as a multilayer graph. Augmented 

graph representations are further input to a custom CNN deep learning architecture with a split of 70% 

train, 10% validation and 20% test instances. Results indicate that Augmented Graph-induced 

classification of CNC mill tool with custom CNN model (GA-CNN) yields full accuracy for detecting 

whether the tool is worn or not.  

 Key words: Tool wear prediction, time series classification, visibility graph, deep learning, data 

augmentation, smart manufacturing, Industry 4.0. 

 

1. PROBLEM DESCRIPTION  

  

Time series analysis and classification play a 

pivotal role in various domains, encompassing 

medical recordings [1], financial series [2], 

sound waves [3, 4], cybersecurity [5], and 

industrial sensor data such as manufacturing 

processes [6]. The emergence of artificial 

intelligence has led to significant advancements 

in time series classification, yet the utilization of 

Deep Neural Networks (DNNs) for this task 

remains relatively limited [7]. One potential 

reason for this disparity is the inherent nature of 

time series data as sequential values, which does 

not conform to the conventional input format 

expected by deep architectures designed for 

image classification. Despite this, attention-

based Long-Short Term Memory networks 

(LSTMs) [8], Recurrent Neural Networks 

(RNNs) [9], and Deep Neural Networks (DNNs) 

[7] have proven to be effective contenders 

among the deep architecture frameworks for 

time series classification. 

While traditional approaches such as the 

nearest neighbor (NN) classifier coupled with a 

distance function [10], often enhanced by 

Dynamic Time Warping (DTW) distance when 

combined with an NN classifier [11], and 

various machine learning techniques and their 

combinations [7] are still considered robust 

baselines for TSC, recent research efforts have 

focused on developing ensemble methods that 

surpass the performance of existing machine 

learning-based TSC models. Notably, these 

studies commonly involve a data transformation 

procedure that maps the original time series data 

into a new feature space. 

Graph-based representations of time series 

offer a promising approach for capturing the 

underlying patterns that characterize the series. 
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The process of converting the series into graphs 

can involve defining either the time points or the 

amplitude values as the vertices of the graph 

[12]. Both approaches require a sampling rate 

that is at least twice the highest frequency 

present in the signal, as dictated by the Nyquist 

theorem [13]. However, when the sampling rate 

greatly exceeds this requirement, downsampling 

becomes a viable method for reducing the 

dimensionality of the data [14]. The challenge 

then lies in determining which data points 

should be retained and which ones can be 

discarded during the downsampling procedure. 

This decision depends on the specific starting 

point chosen for the downsampling process and 

can result in multiple graph representations for a 

given signal, depending on the time intervals 

defined by the downsampling rate. Notably, this 

augmentation capability, corresponding to the 

downsampling rate, presents an opportunity, 

particularly when dealing with the need for large 

volumes of training data to effectively tune the 

numerous parameters within deep learning 

architectures.  

Accurately predicting tool wear is essential 

for optimizing milling operations in diverse 

industries. Deep learning techniques have 

emerged as promising tools for precise and 

reliable mill wear prediction [15]. By harnessing 

the capabilities of deep neural networks, these 

models can effectively analyze large amounts of 

sensor data collected from milling machines. 

Deep learning algorithms automatically extract 

pertinent features and construct robust 

predictive models that can accurately estimate 

tool wear [16]. These models consider various 

factors such as rotational speed, feed rate, 

material properties, and environmental 

conditions to provide real-time wear predictions. 

Incorporating deep learning into tool wear 

prediction enhances overall productivity, 

facilitates proactive maintenance planning, and 

optimizes costs by enabling timely replacements 

and repairs [17]. 

Tool wear prediction is essential in industries 

like metalworking, machining, and 

manufacturing because it helps optimize tool 

replacement schedules, reduce downtime, and 

improve overall production efficiency [18]. The 

connection between deep learning procedures 

and tool wear prediction lies in the ability of 

these models to analyze large and complex 

datasets, extract relevant information, and make 

accurate predictions about the condition of 

cutting tools. This predictive maintenance 

approach can significantly reduce operational 

costs and improve the efficiency and reliability 

of manufacturing processes [17]. 

The current study focuses on presenting a 

methodology for tool wear prediction by 

converting the multidimensional sensor data into 

visibility graph representations, also applying a 

novel time-hop data augmentation technique to 

improve the number of available instances to 

feed deep learning architectures. This technique 

depends on slight variations of graph 

representations of sensory data after time-hop 

slices extracted, without the need for synthetic 

data generation or data distortion techniques. By 

the way, a data transformation method that 

converts time series into a graph-based feature 

space with realistic augmentation is achieved. 

The resulting data structure is an adjacency 

matrix that can be readily input into deep 

architectures that are ideally suited for image-

based inputs. 

  

2. APLICATION FIELD 

 

The proposed model for graph-representative 

prediction of tool wear with the aid of its highly 

augmentable nature is applicable to any kind of 

time series data, specifically to 

multidimensional sensory data thanks to its 

availability as a multilayer representation [19, 

20]. Univariate time series data such as sound 

waves or financial series are also applicable 

fields with the limitation that sampling rates 

should be sufficiently high to facilitate the 

proposed augmentation methodology that 

employs downsampling at a rate equal to the 

augmentation rate. Multidimensional sensory 

data sampled at high frequency are the natural 

application field of the proposed method.  

  

3. RESEARCH STAGES  

 

Stages to investigate the efficiency of the 

proposed model and implementing it with a 

suitable CNC milling dataset includes 

following: 
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i. Problem definition: Tool wear prediction 

using multivariate sensory data is the core 

of the study, requiring a suitable time 

series recording from CNC milling 

machine. 

ii. Literature review: Evaluating how the 

problem is handled by the researchers, and 

the availability of visibility graph 

approach within this scope. 

iii. Data retrieval: Finding a dataset which 

includes labels as worn and unworn 

cutting pieces, also being in time series 

format composed of attributes such as feed 

rate, clamping pressure, positioning of the 

part, etc.  

iv. Data processing: Implementation of the 

visibility graph conversion for the 

available time series data. 

v. Data augmentation: Development and 

implementation of the time-hop 

augmentation strategy for the graph-

formatted data. 

vi. Model selection: Designating a 

moderately structured deep learning 

model to classify the augmented and 

graph-formatted data. 

vii. Evaluating the results in comparison with 

the recent studies carried out with the same 

dataset. 

 

4. METHODS USED 
 

4.1. Dataset 
This study focuses on time-hop augmentation 

of graph representations of time series related to 

manufacturing process, applicable for both 

univariate and multivariate series. Therefore, we 

need a time series data to demonstrate the graph-

converted output of the series and its augmented 

versions. In this regard, we use a multivariate 

sensory dataset labeled as CNC Mill Tool Wear, 

a series of machining experiments run on a CNC 

milling machine in the System-level 

Manufacturing and Automation Research 

Testbed (SMART), performed in the University 

of Michigan. The extraction of the data in time 

series format have been performed using the 

Rockwell Cloud Collector Agent Elastic 

software [21]. Collection of the machining data 

was performed on a CNC machine recording the 

variations of tool condition, feed rate, and 

clamping pressure. The purpose of each 

experiment was producing a finished wax part 

with an "S" shape as presented in Fig. 1. The 

dataset is composed of 18 files in csv format, 

each one recorded for a separate experiment 

performed with a worn or unworn tool. Records 

include various attributes forming the 

multivariate nature of the series, such as the 

experiment number, material (wax), feed rate, 

and clamp pressure. Additionally, output of each 

experiment (file) is also given in a separate file 

(train.csv) including the necessary metadata for 

each experiment such as tool condition (worn or 

unworn) and qualifying condition after visual 

inspection (yes or no).  
 

 
Fig.1. The shape aimed to be produced in the CNC 

milling experiments, sourcing the dataset in Ref [21] 

 

Each file of the dataset (experiments 01 to 18) 

has measurements from the 4 available motors 

in the CNC, listed as X, Y, Z axes and spindle 

(S), recorded with a sampling rate of 100 ms. All 

available data from these parameters result in a 

collection of 48 attributes (44 of them available 

as sensory data) provided for each csv file. These 

attributes are available as the dimensions of a 

multivariate time series. The dataset can be 

primarily used for tool wear detection or 

inadequate clamping detection.  

 

4.2. Method 
This study; (i) applies visibility graph method 

to a time series sensory data of machining 

experiments run on a CNC milling machine (ii) 

proposes a graph-level augmentation technique 

by handling the data in signal level and 

introduces the augmentation methodology into 

the graph conversion strategy. By the way, a 

graph-specific augmentation technique is 
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proposed that is applicable to univariate or 

multivariate time series format.  

Data augmentation is a crucial part of deep 

learning tasks due to the demand on high volume 

of data which determines the quality of the 

learning process of deep architectures. The main 

reason for this demand is the necessity of 

optimizing a huge number of hyperparameters 

introduced by the deep architecture that most of 

the concurrent deep learning models are 

featuring [22]. Availability of big data also 

avoids overfitting, a phenomenon referring that 

a model perfectly fits the training data but may 

fail to propagate this for unseen data. Data 

augmentation techniques propose data-space 

solutions to overcome the problem of limited 

data by various techniques to increase the 

number of available data instances. These 

techniques include variations of geometric 

transformations, color space augmentations, 

kernel filters, image mixing, random erasing, 

augmentation of feature space, adversarial 

training, generative adversarial networks 

(GANs), neural style transfer, and meta-learning 

[23].  

Graph representative learning deals with 

smart conversion strategies of unstructured data 

into graphs, those are available as adjacency 

matrices. These matrices have two dimensions 

of equal size, easily evaluated as grayscale 

images of square format. Therefore, some of the 

data augmentation techniques expressed above, 

especially proposed as image conversion 

techniques, are applicable for graph 

representations as well. However, augmentation 

techniques specific for graph representations are 

not sufficiently studied by the researchers. The 

current study converts the time series data 

collected from machining experiments run on a 

CNC milling machine, employing the visibility 

graph intension. 

 

4.2.1. Conversion strategy from time series 
to visibility graph 

The visibility graph strategy is a 

computational technique used in the field of 

computational geometry. It involves 

constructing a graph representation of the 

visibility between a set of points in a given 

geometric space. In this approach, each point is 

treated as a node in the graph, and edges are 

added between nodes if there is a direct line of 

sight or "visibility" between them, as illustrated 

in Fig. 2. By connecting all visible points, the 

visibility graph provides a comprehensive view 

of the accessible paths within the space, enabling 

efficient path-finding algorithms to be applied. 

This strategy proves particularly useful in 

various applications, such as time series 

classification, robot motion planning, and 

network optimization, where determining the 

visibility relationships between points is crucial 

for making informed decisions. 
 

 
Fig.2. Conversion of a time series into graph using 

visibility graph method [24] 

 

The visibility graph strategy can be leveraged 

in the classification of manufacturing data to 

uncover valuable insights and facilitate effective 

decision-making processes. In this context, the 

visibility graph represents the relationships and 

connectivity between different data points in the 

time series dataset related to manufacturing. By 

constructing a visibility graph, the connections 

between consecutive data points in time become 

apparent, enabling the identification of distinct 

patterns within the series. This approach allows 

for the creation of a comprehensive 

representation of the data's underlying structure, 

making it easier to discern patterns, anomalies, 

and trends. With the visibility graph, 

classification algorithms can be applied to assign 

appropriate labels or categories to data points 

based on their proximity and connectivity in the 

graph, specifically for tool wear prediction in the 

current study. By employing the visibility graph 

strategy, manufacturers can gain a deeper 

understanding of their data and make informed 



- 561 - 

 

 

decisions to optimize processes, improve quality 

control, and enhance overall productivity. 

The visibility graph methodology follows the 

connection criteria between data points in series 

format such as: (ta,ya) and (tb,yb) will have 

visibility, and correspondingly will become two 

connected nodes of the related graph, if any 

other data point (tc,yc) placed between them 

satisfies the condition in Eq. 1. 

Time series data points are expressed as pairs 

(t,y) in Eq. 1, where t denotes time and y denotes 

amplitude values. The amplitudes of two data 

points that are being checked for a connection 

are represented by the values of ya and yb, while 

yc indicates the amplitude of a third point that is 

located between these two points. A direct line 

drawn between the values of ya and yb cannot 

connect the places a and b if the yc value forms 

an obstacle between the others. This approach is 

proven to inherit some specific properties of the 

relevant time series and produces a graph that 

depicts the visibility patterns across time. By the 

way, random series are transformed into random 

graphs, while periodic series are transformed 

into regular graphs and so on [25].  

The dataset converted into an adjacency 

matrix format, demonstrates the graph 

representation of sensory data from CNC milling 

machine. Since each experiment consists of 44 

available dimensions, each dimension (column) 

can be converted into a separate graph, resulting 

in a 44-layer graph representation (illustrated in 

Fig.3 for 3 dimensions). As a result, this section 

of the study generates 18 multilayer graph 

representations for 18 available experiments, 

each one consisting of 44 layers, which can be 

treated as a visual input to deep learning 

architectures. 

 
Fig.3. Conversion from multivariate time series to multilayer visibility graph 

 

4.2.2. Graph-based augmentation strategy 
Data augmentation plays a crucial role in 

deep learning by addressing the challenge of 

limited labeled training data. Deep learning 

models typically require large amounts of 

labeled data to achieve high performance and 

generalization. However, obtaining such 

extensive and diverse labeled datasets can be 

impractical or expensive. Data augmentation 

offers a solution to this problem by artificially 

expanding the training dataset through various 

transformations and modifications. By applying 

techniques like rotation, scaling, cropping, 

flipping, or adding noise to the existing data, 

data augmentation creates new instances that 

retain the original label information. This 

augmented dataset introduces greater variability, 

enabling the deep learning model to learn robust 

and generalized representations. Data 

augmentation helps prevent overfitting by 

exposing the model to a wider range of scenarios 

and variations it might encounter during 

inference. It also enhances the model's ability to 

handle diverse data sources, lighting conditions, 

orientations, and other real-world factors. 

Therefore, data augmentation is a vital technique 

in deep learning that effectively leverages 

existing labeled data to improve model 

performance, increase generalization, and 

ultimately, enhance the model's ability to handle 

real-world challenges. 

�� < �� + ��� − ��	

� − 
�


� − 
�
 (1)
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In this regard, the data available for the 

current study, having 18 experiments needs a 

high rate of augmentation to feed a deep learning 

architecture. Since the above-mentioned 

augmentation strategies have a limited capacity 

to increase the number of instances, a more 

structural and robust augmentation technique is 

highly needed. Consequently, we propose a 

novel time-hop data augmentation technique to 

improve the number of available instances to 

feed deep learning architectures. This technique 

depends on slight variations of graph 

representations of sensory data after time-hop 

slices extracted, without the need for synthetic 

data generation or data distortion techniques. By 

the way, a data transformation method that 

converts time series into a graph-based feature 

space with realistic augmentation is achieved. 

The proposed augmentation technique is 

specific for an available graph conversion 

strategy, having the only limitation of sampling 

rate that should be sufficiently greater than the 

Nyquist rate for the given signal. Assuming that 

a downsampling rate of D times preserves the 

main characteristics of the given series, an 

augmentation rate of D times will potentially 

generate D slightly different graph 

representations of the original signal. Each 

version of augmented signals is generated after 

a one time-hop is applied to the original series 

and starting from this shifted (s) point, a 

downsampling rate of D is applied to pick a slice 

from the original series. Visibility graph 

conversion is later applied to this extracted 

(down sampled) data slice to achieve a graph 

representation. Since the time-hop procedure is 

applied to all available (44) columns, the 

resulting multilayer graph representation 

satisfies the condition to be at least slightly 

different from the sibling augmented graphs 

from the same original signal, for all available 

layers (generated from separate columns). The 

proposed methodology is illustrated in Fig. 4. 

 

 
Fig.4. Time-hop augmentation strategy for the visibility graph conversion for time series data
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4.2.3. Deep learning model 
Since the converted data is in graph format 

represented with adjacency square-matrices, a 

moderately structured CNN model should 

successfully classify the instances. We 

customized a CNN model, summary given in 

Table 1. In combination with the visibility graph 

conversion and the applied augmentation 

technique, this new approach is labeled as 

Graph-Augmented CNN (GA-CNN) classifier 

by the authors. 

 

Table 1.  

The architecture of the GA-CNN model used for tool wear classification of graph-converted time-series data. 
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d_4 (Conv2D)            (None, 128, 128, 64)      640        

_________________________________________________________________ 

activation_6 (Activation)    (None, 128, 128, 64)      0          

_________________________________________________________________ 

conv2d_5 (Conv2D)            (None, 126, 126, 64)      36928      

_________________________________________________________________ 

activation_7 (Activation)    (None, 126, 126, 64)      0          

_________________________________________________________________ 

max_pooling2d_2 (MaxPooling2 (None, 63, 63, 64)        0          

_________________________________________________________________ 

dropout_3 (Dropout)          (None, 63, 63, 64)        0          

_________________________________________________________________ 

conv2d_6 (Conv2D)            (None, 61, 61, 64)        36928      

_________________________________________________________________ 

activation_8 (Activation)    (None, 61, 61, 64)        0          

_________________________________________________________________ 

conv2d_7 (Conv2D)            (None, 59, 59, 64)        36928      

_________________________________________________________________ 

activation_9 (Activation)    (None, 59, 59, 64)        0          

_________________________________________________________________ 

max_pooling2d_3 (MaxPooling2 (None, 29, 29, 64)        0          

_________________________________________________________________ 

dropout_4 (Dropout)          (None, 29, 29, 64)        0          

_________________________________________________________________ 

flatten_1 (Flatten)          (None, 53824)             0          

_________________________________________________________________ 

dense_2 (Dense)              (None, 128)               6889600    

_________________________________________________________________ 

activation_10 (Activation)   (None, 128)               0          

_________________________________________________________________ 

dropout_5 (Dropout)          (None, 128)               0          

_________________________________________________________________ 

dense_3 (Dense)              (None, 2)                 258        

_________________________________________________________________ 

activation_11 (Activation)   (None, 2)                 0          

================================================================= 

Total params: 7,001,282 

Trainable params: 7,001,282 

Non-trainable params: 0 

5. RESULTS 

 

We applied an aggressive augmentation rate as 

D=20 for the 18 available experiments, each 

having 44 dimensions. No additional 

augmentation strategy such as rotation, zoom, 

distortion etc. are applied, in order to observe the 

success of the proposed augmentation method. 

With the augmented size of 20x18=360, a split 

of 70% train, 10% validation and 20% test is 

applied with a batch size of 8 and 20 epochs. 
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(a) (b) 

 

Fig.5. Model accuracy and loss for tool wear prediction performed by the custom CNN model 

 

Table 2.  

Comparison of the results with the recent studies handling the same dataset. 
Ref Year Model Accuracy 
[26] 2021 Logistic Regression 72% 

[27] 2021 Ensemble (XGBoost, Random 

Forest, and AdaBoost) 

99.52%  

[28] 2021 Random Forest 

J48 

Multilayer Perceptron 

99.7% 

99.2% 

96.9% 

[29] 2022 CNN 

AE-LSTM (AutoEncoder-LSTM) 

k-NN 

92%  

77% 

85% 

[30] 2022 BCNN (Bayesian CNN) 99% 

Our method 2023 GA-CNN 100% 

Experimental results indicate that full 

accuracy (100%) is swiftly achieved in the initial 

epochs, with the learning curves given in Fig. 5. 

No overfitting is observed in the learning and 

error curves those are very consistent for train 

and validation data.  

The proposed GA-CNN model overperforms 

the recently proposed classifiers as given in 

Table 2. This is an indicator that the proposed 

augmentation technique has a potential to 

increase the data amount even in aggressive 

rates.  

 

6. FURTHER RESEARCH 
 

The proposed graph-augmentation model is 

successful for the tool wear prediction task 

performed with a multidimensional sensor data, 

which encourages its adoption for other time 

series classification tasks in multidimensional 

nature with limited instances. Therefore, 

classification of Electroencephalograms 

(EEGs), Electrocardiograms (ECGs), Human 

Activity Recognition tasks (HAR) etc. are the 

potential application fields for the proposed 

model.  

Specific to industrial applications, the 

proposed model presents a flexible framework 

especially for the time series data for high 

sampling rates, potentially applicable to 

automated event/fault detection from process 

monitoring data. Predictive maintenance 

applications generally rely on features from 

principal component analysis, which require a 

moderate level of preprocessing. The proposed 

framework can replace these steps as a whole, 

facilitating detection of potential events from 

streaming multidimensional time series data. 

 
7. CONCLUSIONS 
 

The current study handles the data collected 

from a CNC milling machine in an innovative 

way to facilitate accurate tool wear detection. 

Instead of handling the raw data as it is, it 

constructs graph representations from the series 

from each sensor separately, resulting in a 

multilayer graph representation for each 
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experiment. Moreover, due to the need for high 

number of instances in deep learning tasks, a 

graph-induced augmentation technique is 

proposed. By the way, tool wear prediction for a 

CNC milling task is facilitated by the proposed 

augmentable deep learning framework.  

Results indicating full accuracy show the 

potential of the approach, that deserves 

application to other time series classification 

tasks, especially with multivariate and limited 

data scenarios. The proposed GA-CNN model 

also shows the potential of graph representative 

learning for industrial applications, capturing the 

higher order patterns in the multidimensional 

signal activity.  
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Predicția uzurii sculei prin reprezentarea graficului multistrat 
Predicția uzurii sculei are un rol crucial pentru îmbunătățirea calității și fiabilității procesului de fabricație. Propunem o 

metodologie de detectare inteligentă bazată pe conversia datelor senzoriale disponibile colectate de la o mașină de frezat 

CNC într-o reprezentare grafică multistrat. După preluarea datelor experimentale din timpul procesului de fabricație se 

realizează o reprezentare grafică de vizibilitate multistrat, rezultând o matrice de adiacență de 44 de straturi 128x128. O 

nouă tehnică de creștere a datelor aplicabilă în mod specific reprezentării grafice este, de asemenea, utilizată pentru a 

crește mărimea datelor prelucrate de la 18 la 360, cu o repartizare  70% testare, 10% validare și 20% simulare. Rezultatele 

indică faptul că metodologia propusă oferă o acuratețe deplină pentru a detecta dacă scula este uzată sau nu.  
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