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Abstract: The analysis and allocation of dimensional tolerances is still an important subject because the 

closing dimensions of dimensional chains (LDs) have to meet the design requirements, respectively fall 

within the desired tolerance range in order to support the products quality requirements. This paper 

presents an initial analysis of a chain of 2D dimensions, next the tolerance fields of the 2D chain dimensions 

will be reallocated according to a transfer coefficient in relation to the closing dimension of 2D chain while 

minimizing the cost of these tolerance fields. To minimize the costs, the variation curves of the tolerance 

costs were used and finally, the assigned tolerances are verified using the Monte-Carlo method.  

Key words: tolerance field, closing dimension, tolerance allocation, cost optimization, Mote-Carlo 

method. 
 

1. INTRODUCTION  
 

 The efforts of manufacturing specialists are 
directed towards achieving products at a lower 
cost, high quality and a shorter time to market. 
Optimizing the cost of tolerances is a topic 
widely debated in the specialized literature, 
being a common topic both for industry and for 
academia and research because maintaining the 
costs attached to the manufacture of products as 
lower as possible, almost without exception, it 
also addresses this area of part’s allocated 
tolerances. Thus, the identification of a valid set 
of tolerance values creating a balance between 
quality and cost is a challenging task, because 
cost, quality, operation and behaviour depend on 
them [1, 2]. 
 Too small tolerances can cause a longer 
manufacturing process, more manufacturing 
operations, very well-trained operators or high 
precision machine tools and measuring devices. 
If tolerances are set too loose the manufacturing 
costs decrease but the surface and dimensional, 
positioning quality characteristics will decrease.  
In this note, of lowering the costs attached to the 
product development process and decreasing the 
time required for conception, embodiment 
design and layout design, manufacturing it is 

important that the tolerances attached to the 
part’s dimensions in a dimensional chain to be 
analysed and optimized from the early design 
stages. Tolerance-cost optimization is developed 
following a linear or non-linear regression 
analysis based on the data of the cost-tolerance 
experiment and to derive the correlation curve 
between the two. The concerns in this direction 
of the minimum cost of tolerances are presented 
in a multitude of specialized papers e.g. works 
that present an integrated method for tolerance 
analysis and cost evaluation [3, 4], the cost-
tolerance functions used in minimum-cost 
tolerance allocation on mechanical assemblies 
[5], optimal tolerance allocation using least-cost 
model by applying optimization techniques 
(GA) [6], neural networks [7], production cost-
tolerance models and a hybrid-model tolerance 
optimization formulation for tolerance synthesis 
are presented in [8], a model minimizes the 
combination of quality loss and manufacturing 
cost simultaneously in a single objective 
function by setting both process tolerances and 
design tolerances simultaneously [9], a holistic 
overview of tolerance-cost optimization; a 
comprehensive mind map covering all relevant 
aspects of tolerance-cost optimization was 
presented and discussed in detail in [10].  
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 The paper content is as follow: first a set of 
tolerances specifications are set for the analysed 
part, next a value for each tolerance is assigned 
and further this initially set tolerances will be 
analysed to see the effects of the allocated 
tolerances on part are fulfilling or not the 
primary set targets - the dimensional chain 
closing dimension allocated tolerance field. In 
case that this tolerance field is exceeded it will 
be reallocated other tolerance fields according to 
a transfer coefficient in relation to the closing 
dimension of 2D chain while minimizing the 
cost of these tolerance fields. To minimize the 
costs, the variation curves of the tolerance costs 
were used and finally, the assigned tolerances 
are verified using the Monte-Carlo method. In 
this paper a single cost type is considered. The 
paper finally presents the conclusions.  
 
2. PROBLEM PRESENTATION 
 
 The assembly is composed of 3 parts denoted 
on the drawing with R1, R2, R3. In the base part 
R1 will be inserted part R2 and pin R3 will be 
mounted in the part R2. The parts drawing and 
assembly is realised in Solidworks software 
program and is presented in figure 1. Both the 
R2 and R3 parts in order to be mounted have 
provided tolerated dimensions and which 
require the existence of loose fits between the R1 
and R2 part and between the R2 and R3 part. 

 

Fig.1. Assembly drawing 
 

 The dimensional chain associated to the 
overall assembly drawing is a 2D planar chain 
(see figure 2). The closing dimension, C (figure 
2) is actually the distance between the Pf point 
and the inclined plane of the R1 frame. 
 In the 2D planar dimensional chain (DC), the 
following vectors will be introduced: the radius 

 

Fig.2. 2D Dimensional chain corresponding to assembly 

 
D4 of the bore R1 and respectively the radius D5 
of the R2 shaft, as well as the radius D7 of the 
R2 bore, respectively the radius D8 of the R3 
pin. These rays must provide the necessary 
clearances for the parts mounting {D1,..., D8}, 
respectively in the sense of increasing the 
closing dimension of the 2D dimensional chain. 
The clearances necessary to mount the R2 and 
R3 parts should be taken into account in 
calculating the closing dimension C of 2D 
dimensional chain. 
 The first time is considered DC1 composed 
of the dimensions DC1= {D1, ..., D8}. All these 
dimensions with the tolerance fields Tk= {T1, 
..., T8}, will define the coordinates of the 
endpoint Pf of dimensional chain. The position 
of this point Pf influences the closing dimension 
C, it defines the tip of the vector C. Since the DC 
assimilated to the overall drawing is a planar 2D 
chain (see figure 2), it is a question of 
determining the distance from the point Pf to the 
straight line pl that defines the R1 part inclined 
plane. This distance is calculated with the 
relation (1): 

  � � ��∗���	
�����
√����                      (1) 

in which: 
- m is the angular coefficient of the line 
equivalent to the part R1 inclined plane; 
- n is the coordinate at the origin of the line 
equivalent to the part R1 inclined plane, (n=0); 
- xPf, yPf are the coordinates of the Pf point.  
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3. DIMENSIONAL CHAIN ANALYSIS  
 
 DC from figure 2 is composed of two distinct 
kinds of the component dimensions: 
• DC1={D1, ...,D8}; 
• Dp on the inclined plane. 
DC1 by their dimensions and tolerances 
influences the position of the endpoint Pf, and 
the dimension Dp has the coordinates influenced 
by deviations from the inclination of the inclined 
plane. 
 It can be assumed that the Dp dimension 
induces on the direction of the closing 
dimension C a tolerance field TpC: 

��� � 2 ∙ ��� ∙ sin����/2�        (2) 

in which: 
- mDp is the modulus of the size vector Dp, 
which is calculated as the distance between the 
origin of O (0,0) and the point of intersection 
OLD of normal line to the average position of the 
inclined plane with the inclined plane (see figure 
2); 
- Tup - the tolerance field of the angle of the 
inclined plane (Tup = 2º). 
 For analysing the dimensional chain 
tolerances presented, the software module from 
Solidworks [11] can be used, but this has an 
inconvenience. One inconvenience is that the 
percentage of transfer of the variations in the 
component dimensions is presented, but it is not 
indicated how much they are modified in order 
to obtain the desired value of the tolerance field 
at the closing dimension C. The designer must 
modify the tolerance fields of the component 
dimensions until the Solidworks software will 
display a tolerance to closing dimension C that 
satisfies the initial requirements. Another 
drawback is the fact that the software in 
Solidworks calculates the tolerances using two 
statistical methods of calculation: 
• The worst-case method 
• SSR Method (Sum Square Root). 
 One possible method that is closer to real 
situations is the Monte-Carlo method. In this 
method randomly assigns values in the tolerance 
field of the component dimensions and is 
checked by calculating the closing dimension C. 
Thus, it can be determined the more real 
dispersion field of the closing dimension C and 

thus checks if it satisfies the desired tolerance 
field for this closing dimension C. 
 
4. INITIAL TOLERANCES ANALYSIS 

 
 The designer initially has the tolerance fields 
for the component dimensions of the 
dimensional chain DC. It is desired to check 
whether they induce at the closing dimension C 
a dispersion field smaller than a desired 
tolerance field Td=0.7 mm. Geogebra software 
[12] will be used to analyse the tolerances. In 
this software, a calculation program will be 
developed that allows the dimensional chain 
visualization, the verification of the initial 
tolerances, the allocation and verification of 
other tolerances, which will satisfy the tolerance 
field allowed at the closing dimension of 
dimensional chain.  
 The initial data for DC shall be entered into 
matrix m1 (see figure 3a). 
 

 
a) 

 
b) 

Fig.3. Initial data 

 
The matrix m1 comprises in rows: 
- Modules of dimensions D1, ..., D8; 
- Angles of dimensions D1, ..., D8 with Ox axis; 
- The Tk tolerance fields of the D1, ..., D8 
dimension modules; 
- The tolerance fields of the angles of the D1, ..., 
D8 dimensions vectors; 
- Acceptance / non-acceptance coefficient (1/0) 
for changing the tolerances of dimensions D1, 
..., D8. 
 The dimensional vectors of the DC are shown 
in figure 2. DC also includes dimensions that 
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assure J1 and J2 clearance. These clearances 
must be maintained at the same value, regarding 
constructive considerations, therefore the 
tolerance fields of the dimensions that make 
these clearances, cannot be modified (the case of 
D4, D5, D7, D8 dimensions). Figure 3b also 
shows other initial data required in the 
calculation program. Using the initial data, the 
average dimension values of DC1 were 
calculated and the vectors of these component 
dimensions were plotted. The modulus of the 
closing dimension mC=42.4228, and the angle 
of the closing dimensions C is uC=40º (figure 4). 

 
Fig.4. Initial dimensional chain data 

 
 The perpendicular line from the endpoint Pf 
on the plane pl (see figure 5) will intersect pl at 
the point Pp, which relative to the origin Op (0,0) 
will define the segment mDp. This mDp 
segment, taking into account the inclination 
tolerance of the plane pl (Tup=2º), will define 
the tolerance field Tpc=0.9458 (see relation (2) 
and figure 4). This Tpc value will fill in row 3 of 
the matrix m1, it is inserted on position 1. Thus, 
the vector of the initial tolerances Target will be: 

�� ! � "0.9458, 0.1, 0.1, 0.16, 0.04,0.02, 0.02, 0.02, 0.02 ,      (3) 

 The vectors of the DC dimensions will make 
with the direction of the closing vector vC the 
angles gk: 

-. � /90°, 40°, 310°, 220°, 40°, 220°, 130°, 0°, 180° 3         (4) 

The transfer coefficients of the variations in the 
component dimensions shall be: 

4! � cos�-.� � 7 0, 0.766, 0.6428,90.766, 0.766, 90.766,90.6428, 1, 91 :  (5) 

 
Fig.5. Initial Tolerances Big 

 
 The first Dimension Dp of the DC, however, 
does not transfer changes to the closing 
dimension C by changing its module, but rather 
by changing the position of the plane pl, because 
of the tolerance Tup, this being Tpc, previously 
calculated, but which propagates in the direction 
of the vector vC, so the first term of the vector 
(5) will be 1 and not 0. The vector of the 
modified transfer coefficients (ctt) will be:  

4!! � /1, 0.766, 0.6428, 90.766, 0.766,90.766, 90.6428, 1, 91 3   (6) 

 The Mote-Carlo method will be applied, 
constituting a matrix series sm of nc values for 
the dimension modules in CD1, which will be 
projected on the Ox and Oy axes constituting the 
matrixes series of values of the projections of the 
dimensions Dk, k=1, ..., 8, obtaining the 
matrices sDkxc and sDkyc (see figure 6). These 
series of projections will define the xPf and yPf 
coordinate series of the endpoint Pf respectively. 
Also it can be defined an mdPf medium endpoint 
(see figure 7). 
 In order to obtain series of values of the 
closing dimension C, a series of sUp values of 
the variation of the angle of inclination up = 130º 
of the plane pl in its tolerance field Tup = 2º is 
defined. This series will constitute a series of 
values of the scfm angular coefficient, which is 
used to calculate the series of values of the smC 
closing dimension modules. 
 The series of values of the smC closing 
dimension module allows to check the initial 
tolerances. The statistical analysis of the smC 
values is shown in figure 8. 
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Fig.6. Matrices sDkxc and sDkyc 

 

 
Fig.7. Coordinated series end point Pf 

 
The variation amplitude for the initial tolerances 
is Rci=1.03, so higher than the desired tolerance 
Td=0.7, at the initial fle and dispersion field 
Dci=1.6224, so greater than Td=0.7.  

 
Fig.8. Analysis of initial Tolerances 

 In the initial case it is obtained with a 
capability index Cpi = 0.43 (inadequate), which 
leads to obtaining a percentage of scraps of 
19.61%. The bottom line is that the initial 
tolerances are too high. It is necessary to 
decrease these tolerances by allocating new 
optimal, smaller tolerance fields, in close 
dependence with the transfer coefficients ctt and 
the price for obtaining the tolerance fields. 
 
5. ASSIGN NEW TOLERANCE FIELDS  

 
 The allocation of new tolerances for the DC 
described above must be made dependent on the 
transfer coefficients of the tolerances and the 
cost of obtaining the tolerance fields. Similarly, 
a method of allocating tolerances was described 
in [13], but that there the cost of tolerances was 
taken into account by means of wk weighting 
coefficients. In the following, the curves of the 
cost functions dependent on the values of the 
tolerance fields will be taken into account. The 
difference between the two variants is being 
shown in figure 9.  
 From figure 9 it can be seen that the method 
with the weighting coefficients of wk cost 
function makes a linear cost-tolerance 
dependence, but in real situations it is nonlinear. 
  

 
Fig.9. Difference between linear and non-linear cost-

tolerance dependence 
 
If the linear dependence for the same cost 
difference ∆Kl results in the same difference in 
the tolerance field ∆Tl, in the case of nonlinear 
at the same difference ∆Kn results in different 
values ∆Tn. For this reason, it is recommended 
to use cost curves instead of wk cost weightings. 
Obviously, obtaining cost-field tolerance curves 
is more laborious, but it is more correct. In order 
to take account of the cost of achieving the 
tolerances, the function K(t)=f(t) must be 
known, where t represents the tolerance field of 
each dimension Dk in the DC. This cost function 
can be estimated using the Excel software, but 
the costs of achieving at least four tolerance 
fields of each dimension Dk must be known. It is 
good to know the extreme tolerances of the 
range of the Dk tolerance fields and at least two 
between these extremes (see figure 9). 
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 By graphically representing some points that 
have the coordinates (t, K) it is possible to 
choose an exponential function of the form 
which will approximate the dependence of the 
cost on the tolerance chosen for the Dk 
dimension. 

; � <=>? ∙ !@��A                          �7�                                            

With the expression of the costs of tolerances, 
the expression of cost derivatives is easily 
obtained (see figure 10). 
 

 
Fig.10. Tolerances cost curves, their derivatives and 

optimisation steps 
 
 Next comes the optimization of the values of 
the dimension tolerances Dk depending on the 
transfer coefficient ct and the achievement price 
of the tolerances. This optimization is done 
starting from a value of the tolerances 
(preferably their initial value (or a fraction of 
them) see pci point in figure 10) and creating 
optimization steps. 
 It will be considered a step of increase in the 
cost ∆K. The cost derivatives for each Dk 
dimension are known, on each axis of the 
graphical representation of the area K=f(tk) for 
k=1,...,5 a diagram will appear as in the figure  
11. Depending on the growth step of the ∆K cost, 
can calculate the decrease step of the ∆tkp 
tolerance, which is the tolerance of the Dk 
dimension projected in the direction of the 
closing dimension C. The calculation will be 
made for each Dk dimension and after that the T 
tolerance of the closing dimension C for this 
iterative step will be calculated. 
 

                       ∆!�. � ∆?tan EF                            �8�  

 
Fig.11. Calculation of the decrease in tolerances 

depending on the step ∆K 
 
The summation of the tolerance projections ∆!�. will be done according to the worst-case 
method. 

                         � � G ∆!�.
�H

FI�
                         �9� 

 They were considered 5 iterative steps, 
following that by adjusting the sizes mT1 and 
∆K, at the 5th step a tolerance to the closing 
dimension T ≤ Tdc will be obtained, in which 
case "Optimally Achieved" will be displayed, or 
if this case has not been reached, "Continue 
Optimization" will be displayed, (see figure 10). 
In figure 10 can observe that starting 
approximately with the point obtained in step 4, 
Pp4, the field of tolerance to the closing 
dimension cannot be obtained less, it increases 
(see Figure 10-point Pp5). 
 All intermediary values of the Dk dimension 
tolerances will be stored in the mT5 matrix. 
These intermediate and final tolerances will 
allow the calculation of their costs and the 
graphical representation of the cost curves K 
according to the value of the tolerances K=f(Tk), 
(see figure 8). Also calculated the total cost for 
all steps Kp1, Kp2, ..., Kp5. Pp coordinate points 
Pp (Dim. Close tolerance, Cost of tolerances), 
for all optimization steps (see figure 10 and 
figure 12) will describe a conic cA (ellipse 
passing through all points Ppi). 
 Recalculating the individual costs of all 
component dimensions for all 5 optimization 
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steps, the cost points on each cost curve were 
represented (see the yellow dots in figure 10 and 
figure 12). On the approximation curve you can 
define a point Pa, which is placed at the lowest 
value of the tolerance. The coordinates of this 
point Pa, constitute the Adjusted Optimum for 
the considered DC case. 

 
Fig.12. The points of the optimisation steps on the cost 
curves 
 
6. ANALYSIS OF ALLOCATED 

TOLERANCES  

 
 This adjusted optimum must be verified by 
the Monte-Carlo method. Similar to the initial 
tolerances, the adjusted optimum will be 
checked by the Monte-Carlo method. Since the 
first coordinate of the Pa point indicates only the 
estimated tolerance field of the closing 
dimension, it is necessary to define which 
tolerance fields are assigned to the component 
dimensions of the DC. For this purpose, the 
point Ppi of the optimization steps that provided 
a minimum for the tolerance field of the closing 
dimension will be used (point Pp4 in this case, 
see figure 12). So Pp4 has the component 
dimension tolerances (in row 4) of the matrices 
mT4 and mT5, respectively (not presented in 
this paper). All this point Pp4 resulted by 
calculating in the case of the worst the value of 
the closing size tolerance StTpr4=0.812. The 
correction coefficients ka will be calculated: 

ka = {8.0017, 75.3652, 126.6547, 66.9066, 1.8226,   
 719.3427, 14.1138, 69.316, 27.9394}      (10) 

With this correction coefficient ka, the tolerance 
fields for the adjusted optimal dimensions will 
be defined (11) and shown in figure 12. 

�.J � K�LJ�.J � 70.2934, 0.0996, 0.1028, 0.1938, 0.0436, 0.0218,0.1974, 0.0218, 0.0218 :  �11� 

These tolerance fields will be checked by the 
Monte-Carlo method, similar to the initial 
tolerances. The verification revealed that the 
capability indices of the adjusted tolerances is 
only Cpa=1.09 (Cpa<1.33), but is estimated to 
be only 0.105% scraps. 
In example the initial tolerances were: 

M �!�JN �=N. �  /2°, 0.1, 0.1, 0.16, 0.04,0.02, 0.02, 0.02, 0.02 3   (12) 

They have an initial cost of Initial_Cost = 494.72 
lei and providing a tolerance field of Tinit = 
1,622 at the closing dimension, higher than the 
desired one Td = 0.7. 
 Through allocation of tolerances, one shall 
consider those tolerances that are optimal (13): 

O�!��JN �=N. � 70.6204°, 0.0996, 0.1028,0.1938, 0.0436, 0.0218,0.1974, 0.0218, 0.0218 :  (13)  

They have an Optimal_Cost=479.46 lei and 
provide a tolerance field of Topt=0.641 at the 
closing dimension, lower than the desired one 
Td=0.7. If the difference between the initial cost 
and allocation cost are small (e.g., 3.08%) that 
means that the first designer has a very good 
experience in tolerance allocation - a desired 
situation. For many practitioners this approach 
and mathematical formulation are useful, using 
GeoGebra software it is easy to apply in 
conditions of solving problems related to the 
assignment of tolerances depending on the 
transfer coefficient and the cost of tolerance 
fields. 
 
7. CONCLUSIONS  

 
 The objective of this paper was to minimize 
manufacturing costs, taking into account 
compliance with the requirements related to the 
values of the tolerance fields in a 2D 
dimensional chain. Potential applications and 
practical benefits of the research are that allows 
a quick and easy way to verify if tolerances of 
different Dimensional Chains are satisfying or 
not. Observing the cost of tolerances in 
production, it can be improved the form of costs 
curves used for tolerance allocation and in the 
same time could offer a solid way to recompute 
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some tolerance, by optimizing the production 
costs. A limitation is given by the fact that more 
information about the costs of different 
tolerances obtained by different production 
operations should be known. A future research 
direction will be to find a better way to sum all 
the tolerances (modules, directions, forms and 
asperity) to have a single tolerance objective to 
optimize.  
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Optimizarea costului toleranțelor alocate unui lanț de dimensiuni 2D utilizând softul 

GeoGebra 
Analiza şi alocarea toleranțelor dimensionale ale lanțurilor de dimensiuni sunt analizate în literatura de specialitate prin 
diferite metode. În această lucrare se prezintă o analiză inițială a unui lanț de dimensiuni 2D iar în cazul în care câmpurile 
de toleranță nu satisfac cerințele impuse, câmpurile de toleranță ale dimensiunilor lanțului 2D vor fi realocate ȋn funcție 
de un coeficient de transfer în raport cu dimensiunea de închidere a lanțului de dimensiuni totodată minimizând costul 
acestor câmpuri de toleranță. Pentru minimizarea costurilor au fost folosite curbele de variație a costurilor toleranțelor și 
nu coeficienți (constanți) de pondere relativă a costurilor toleranțelor. În final toleranțele alocate sunt verificate folosind 
metoda Monte-Carlo.  
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