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Abstract: Composite materials, in the general case, are made up of two or more components distributed in 

complex ways within the resulting material. It has global elastic properties, determined by the values of the elastic 

constants of the component materials and their geometry. Determining the characteristics of the homogenized 

material represents a main concern in a first phase of the design. To determine how the resulting, homogenized 

composite behaves, numerous calculation procedures were developed to predict the engineering material 

coefficients. In general, such a method is laborious and requires significant calculation time. Experimental 

measurements, presuppose the manufacture of the new material. Boundary methods, which assume the use of 

relatively simple relationships, lead to errors that can sometimes be significant. The research presents a fast method 

to estimate the shear modulus values for a new material with a reduced volume of calculations, via Finite Element 

Method(FEM). The torsion of a composite bar is studied for which the natural frequencies are determined using the 

FEM and the values thus determined are compared with the values obtained using the classical theory of the bar. 

The elastic constants of the material phases together with the arrangement in the composite are known. Based on 

these values, a good estimate of the shear modulus can be made. To verify the theory, an example is provided. 
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1. INTRODUCTION   

 

Determining the engineering constants of a 
composite is a main stage in any new design 
process. There is a rich literature presenting 
theoretical or experimental methods for doing 
this. For composite materials widely used at the 
moment, numerous calculation formulas or 
results in the form of inequalities are proposed. 
The field of determining the elastic constants of 
a composite material is very researched and 
numerous calculation methods are offered. This 
is due to the fact that any designer needs to know 
these values in order to create a design that 
corresponds from all points of view, including 
that of calculating the resistance to different 
loads. The paper presents a method to obtain the 
shear modulus using FEM for analyzing the 
composite and obtaining the eigenvalues and 
comparing the results with those obtained by 
applying the classical theory for the bar . Since 
the eigenmodes for axial, transverse and 
torsional vibrations are obtained through the 

FEM, the calculations made considering the bar-
type composite element fixed at the ends provide 
a series of useless information. That is why the 
paper proposes the optimization of the 
calculation effort if only shear modulus is 
sought. This is done by introducing boundary 
conditions to eliminate unwanted vibrations. In 
the following, a brief presentation of the main 
ways to obtain the engineering coefficients for 
different two phase composite materials is 
given. For the composite materials that represent 
the subject of the work, the presentation will be 
wider. 

At the moment, many procedures are 
elaborated to obtain the elastic coefficients if a 
two-phases composite is studied. These values 
need to be known with a certain approximation 
from the design and dimensioning phase. To do 
this, many of the works involve the prior 
determination of the stress and strain field if an 
arbitrary (usually particular) loading of the 
material is considered. Many such methods, 
which use particular load cases, ultimately 
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provide only upper and lower bounds for these 
sought quantities. Obviously, for certain 
circumstances these limits offer totally 
unsatisfactory results [1]. In the mentioned 
paper, two cases are considered: first is an 
orthotropic material, second a transversally 
isotropic one. These values become disturbingly 
imprecise for certain ratios of the phases [2-5]. 
Another class of methods uses micromechanical 
models [6-8]. For the study of composites 
widely used today, those strengthen with 
cylindrical fibers, there are numerous researches 
[9-16]. These studies involve different and new 
aspects that must be taken into account [17-19]. 
Obviously, the most reliable are the 
experimental methods, but they are expensive 
and time-consuming. Modern calculation 
methods, widely verified and accepted in 
engineering such as FEM can present 
advantages for the study of particular 
phenomena such as the influence of temperature 
or moisture absorption [ 20-21]. The study of 
composites reinforced with graphite fibers is 
presented extensively in [ 22,29]. The model 
was adopted by other researchers [23,24] to 
determine the engineering constants. In the 
works I mentioned previously, the authors study 
composites with transverse isotropic behavior. 
In the paper [25], using system identification 
techniques, an experimental method for 
obtaining the Young's mode and its frequency 
dependence is determined. Some examples for 
materials as copper, brass, PVC or plexiglass 
illustrate the presentation. The method accepted 
almost unanimously by the studio is the 
consideration of a representative volume 
element (RVE) to determine the homogenized 
elastic coefficients. So, the material is 
considered a collection of such RVEs. At micro 
level, composite material is defined by 
individual structures and geometries, of great 
variety. A particular case is represented by the 
materials with short fibers [26,27 ] . Wood 
composite is a very special type of composite 
[28]. The study of the torsional vibration is made 
in [29]. If there is not enough data for the new 
and composite materials that we want to study, 
experimental vibration measurements become a 
n important way to determine the properties of 
the material [30-35]. There are a number of 
researches with more interesting applied results, 

such as concrete [36]. A study for a polymer 
composite, made up of a resin matrix is 
presented in [37]. 

In this work, the classical theory of bar 
vibrations is used, with FEM to determine the 
shear modulus. The novelty of the paper is the 
use of FEM to the eigenfrequencies of a straight 
beam, fixed at both ends. In our study this beam 
is manufactured by resin reinforced with 
cylindrical carbon fibers. Knowing the natural 
frequencies determined with the FEM, the shear 
modulus can be obtained using simple 
relationships. It can be considered too a 
composites composed of several phases. Several 
papers that present the methodology for 
determining these values using the vibrations of 
a bar clamped at both ends address this problem 
using FEM. However, the obtained results 
contain values for all types of vibrations. If it is 
desired to determine only certain elastic 
constants, the calculation effort is high and a 
series of useless information is obtained. As a 
result, it would be useful if only the information 
related to one of the elastic constants could be 
obtained directly. The aim of this paper is to 
obtain the shear modulus. As a result, boundary 
conditions are introduced that eliminate the 
possibility of vibration modes (transverse or 
longitudinal). in this way the required 
calculation effect decreases and the first 
vibration modes obtained are the pure torsion 
modes. A calculation obtained for a composite 
using a practice is presented in the paper. 

In this way, with relatively little effort, that 
of modeling a bar with a very simple structure 
and geometry, the natural frequencies of the 
torsional vibrations of a bar can be obtained. 
With these determined values, shear modulus 
can be calculated with simple mathematical 
operations. This method therefore offers a quick 
estimate for the design needs of a new structure 
or machine. In the second phase of the design, 
when the solution has been established and more 
detailed studies are done, these determined 
properties can be obtained and experimented, 
obviously something that requires longer time 
and higher expenses. 

Experimental results that prove the 
correctness of the results obtained by this 
method can be found in the previously cited 
references. Thus, the design engineer will have 
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a quick and cheap method to obtain a sufficiently 
precise estimate for these materials. 

 
2. MODELS AND METHODS 

 

In what follows, some necessary results from 
the theory of torsional vibrations of straight 
beam will be briefly presented. Our beam is 
clamped at both ends (boundary conditions). 
The relationships that give the eigenfrequencies 
of this beam make it possible to determine the 
shear modulus, a size that appears in the formula 
of these eigenfrequencies. To determine the 
shear modulus for the homogenized material of 
the bar, the FEM is applied to this beam, if its 
real composition is taken into account. Then 
comparing with the values obtained for the 
homogenized bar, the shear modulus can be 
obtained. 

Fig.1 shows this beam. The bar will be 
clamped at both ends. Using FEM, the 
eigenfrequencies can be obtained. As an 
application the calculations are performed and 
the numerical values obtained are presented in 
the Results section. 

 
         Fig.1. The clamped beam 

Considereing a reference frame with the 
origin at the left end of the bar, then the free 
torsional vibrations are described by a second-
order differential equation. At the distance x 
from the left end of the beam can be written [40-
48 ]: 
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Here G - shear modulus;  

pI  - the inertia moment of the area; 

J - the unitary mass moment of inertia; 
ϕ  - the rotation angle of the current area at the 

distance x.  

Considering a homogeneous, continuous 
beam, it possible to write: pIJ ρ=  and the Eq. 

(1) has a simpler form: 
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The solution can be obtained considering the 
initial and boundary conditions. The initial 
conditions at the moment 0=t  are:  
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These conditions define the liaison of the beam 
with the background. If it is considered a beam 
clamped at both ends we have: 

0),(;0),0( == tlt ϕϕ . (4) 

The classic way to solve the Eq.(2) is to choose 
a solution having the form: 

)sin()(),( θΦϕ += ptxtx . (5) 

Eq.(5) must verify the Eq.(2). It obtains a 
differential equation that offers the amplitude 

)(xΦ of the natural vibrations (eigenfunctions) of 
the torsion beam: 
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The function )(xΦ  represents the function 
amplitude to a moment t. It results: 

xCxCx ααΦ cossin)( 21 += . (7) 

The notation: 

G
p

ρα 22 = . (8) 

has been made. The boundary conditions (4) are, 
for a beam clamped at both ends: 

0)(;0)0( == lΦΦ . (9) 

 

and offer the conditions: 

0sin;0 12 == lCC α . (10) 

It obtains: 

,.....3,2,1; == n
l

nπα . (11) 
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Using the classic theory of beam, the natural 
frequencies can be written: 

,.....3,2,1;2 === n
G

l

n
p nn ρ

ππν . (12) 

Knowing an natural frequency, it is possible to 
obtain the shear in this case: 

,.....3,2,1;
4

2

22

22

22

=== n
n

l

n

lp
G nn ρν

π
ρ . (13) 

From Eq.(12), the different eigenfrequencies can 
be expressed in term of the lower 
eigenfrequency: 

,.....3,2,1;.......
32
32

1 ===== n
n
nνννν . (14) 

The Eq.(14) represents a verification relation for 
the obtained values.  

3. RESULTS 

 
In this study, the eigenfrequencies of a straight 
beam clamped at the two ends, were determined, 
manufactured from a resin reinforced with 
cylindrical carbon fibers. In order to separate 
and calculate with precision the natural 
frequencies due to the torsional vibrations, the 
symmetry axis of the beam is fixed. In this way, 
the possibilities of bending and the possibilities 
of tension/compression of the bar as a whole are 
eliminated. 
In section 2, the classic beam model was briefly 
subjected to torsion and the eigenfrequencies of 
a beam clamped at the ends were determined. 
Using FEM, the torsional vibrations of the 
respective beam were considered based on a 
complex model, in which the real structure of the 
fiber composite is considered. The 
eigenfrequencies were thus calculated and the 
values obtained were compared with those 
determined with the classic model, if the bar is 
considered to be made of a homogenized 
material. By comparing the values calculated on 
the complex model, with the values obtained 
analytically on the beam model made of the 
considered phases, it was possible to determine 
the shear modulus for the resulting material. 
This way of calculating the shear modulus 
facilitates the calculation of this engineering 
constant, avoiding laborious calculations and 
procedures to obtain it [49]. 

For the studied bar, the eigenfrequencies 
were calculated and the eigenmodes were 

determined. The pure torsional vibrations of the 
bar were analyzed. FEM offered numerical 
results and comparing with the values obtained 
from the exact formulas, the shear modulus was 
determined [50-52]. For the calculation with 
finite elements, the beam with three-dimensional 
hexahedral finite elements was discretized. Each 
node of this type of element has 3 degrees of 
freedom (DOF) represented by the 
displacements along the X, Y and Z directions 
(in the considered global coordinate system). A 
finite element will thus have 24 DOF. For such 
an element, details can be found in references 
[51]. 
To remove unwanted vibration modes, the axis 
of symmetry of the bar is fixed. Thus we remove 
the pure axial and transverse modes of vibration. 
We analyze the torsional vibration modes in 
order to determine the shear modulus. Figure 2 
shows the bar specimen that we took into 
account to analyze with FEM. It is a simplified 
epoxy matrix beam reinforced with four carbon 
parallel fibers The dimensions of this material 
specimen are shown in Figure 3. For the carbon 
fiber used we have: Young's modulus= 86.960 
GPa. For the matrix there is Young's modulus= 
4.140 GPa. The density of is 1850 kg/m3 for the 
matrix and 2000 kg/m3 for the carbon fiber, 
respectively. Poisson's ratio will be for matrix 
and carbon, respectively 0.22 and 0.34. These 
material properties will define the specimen 
shown in Figure 2. Analyzing the results of the 
calculations, the torsional vibration modes can 
be easily identified. Six modes of vibration are 
presented in our paper.. 

    
 

Fig. 2. The composite material 
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Fig.3. A section through beam 

 
Fig.4. Properties of the matrix 

 
Fig.5. Properties of the fiber 

The first 6 eigenmodes are torsional modes of 
vibration. Table 1 shows l eigenfrequencies nν  (

nnp πν2= ) and the corresponding eigenmodes. 
Based on Eq. (13) presented before, the shear 
modulus can be now obtained. Eq.(13) give us: 

,.....3,2,1;
4

22

22

== n
n

l
G n

π
ρν

. (15) 

So, if we know eigenfrequency, and the 
properties of the homogenized material (the 
length and the density in our case), it is possible 
to obtain the shear modulus. The density of the 
homogenized material is: 

mmff ρνρνρ += . (16) 

useful in the following. 
 
Table 1. Eigenfrequencies  

Mode No. 

Eigen 

frequency 

nν [Hz]  

Representation 

,..3,2,1
1

=n

n

ν
ν

 

Transverse 

shear 

modulus

2

224

n

l
G n ρν

=

[GPa]

 

1 82,288.62 

 

1.0000 5.1463 

2 16,475.72 

 

2.0022 5.1575 



156 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

4. DISCUSSION 

 

To determine the engineering coefficients of 
a composite material, developed calculation 
procedures are proposed in the specialized 
literature. They generally require the 
determination of the stress and strain field for a 
certain state of loading of the considered 
specimen. Experimental methods give reliable 
values but with high costs and time. In this 
paper, the natural frequencies are determined 
using a FEM model, then using simple formulas 
provided by the classical theory of the bar, the 
shear modulus is determined. This method has 
the advantage of simplicity and the possibility of 
obtaining quick and accurate estimates within a 
current design process [40-42]. The method 
described in the work is accurate if we are in the 
assumptions made for the right beam. Any errors 
can be mainly due to the usual errors in the FEM. 
It can be considered that the method is precise 
enough to satisfy the needs of engineering 
design. The continuous increase in the use of 
polymer composite materials in most industries 
has required the development of methods for 

calculating elastic constants. Different methods 
have been developed, using different approaches 
such as homogenization theory (applied in the 
case of materials with a periodic structure), 
micromechanical methods or variational 
methods. There are various results of analytical 
relationships for determining the elastic 
constants of the material, which, however, 
involve a rather important calculation effort. All 
methods involve the knowledge of the field of 
stresses and deformations, which is generally 
difficult to do. If a particular state of stress is 
considered, upper and lower bounds are 
obtained for the elastic constants, which can 
sometimes lead to significant errors [7-13]. As a 
result, the proposed method can be considered as 
an acceptable method for determining the shear 
modulus, which is done relatively quickly and 
with minimal costs. In the design phase of a 
material, the estimates given by the method can 
be relatively accurate. 
 

5. CONCLUSIONS  

  
With the help of the described method, a 

precise estimate of the shear modulus is 
obtained. For this, the FEM is used to calculate 

3 247,584.1 

 

3.0087 5.1763 

4 330,944.5 

 

4.0218 

5.2024 

5 415.008.4 

 

5.0433 

5.2359 

6 499,938.3 

 

6.0754 

5.2765 

Average shear modulus [GPa]           5.226834 
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the natural frequencies of a beam fixed at both 
ends, made of a polymeric material reinforced 
with cylindrical carbon fibers. For the 
calculation of these natural frequencies, the 
mechanical properties of the constituent phases 
and their distribution and geometry are 
considered known. Using the classical theory of 
the beam, the natural frequencies can be 
expressed as a function of the shear modulus of 
the homogenized material. Using the two 
formulas to determine the natural frequencies, it 
is easy to obtain the shear modulus from simple 
calculations. It is a relatively simple and easy to 
apply method, and the time required to apply the 
procedure is reduced. The estimator can only be 
affected by the approximations that are made in 
the classic beam theory and by the errors 
inherent in the FEM application. The described 
procedure can be a very good solution in the 
design phase of a composite, when 
homogenization, variational or micromechanical 
methods involve a large volume of calculation 
and long necessary time. Obviously, the method 
can be adapted to more complex situations. The 
use of the FEM must be adapted to take into 
account these additional factors. 
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ESTIMAREA MODULULUI DE FORFECARE A COMPOZITELOR DE FIBRE 

FOLOSIND METODA ELEMENTULUI FINIT 

 

Rezumat. Materialele compozite, in cazul general, sunt alcatuite din doua sau mai multe componente 

distribuite in moduri complexe in cadrul materialului rezultant. Acesta are proprietati globale, 

determinate de proprietatile fazelor componente si de distributia lor. Determinarea proprietăților 

materialului omogenizat reprezinta o preocupare principala in faza de proiectare a materialului. 

Pentru a determina cum se comporta materialul rezultant, omogenizat, au fost dezvoltate  numeroase 

metode de calcul pentru predictia constantele elastice. In general o astfel de metoda este laborioase 

și necesită timp de calcul semnificativ. Măsurători experimentale, metoda cea sigura pentru a 

determina proprietatile mecanice, presupun fabricarea compozitului. Metodele de marginile, care 

presupun utilizarea unor relatii relativ simple duc la erori care pot fi uneori insemnate.  Lucrarea 

propune o metoda rapidă pentru a estima valorile omogenizate ale shear modulus pentru un material 

nou cu un volum redus de calcule, utilizand Finite Element Method. Este studiata torsiunea unei bare 

compozite pentru care utilizand FEM se determina frecventele proprii iar valorile astfel determinate 

se compara cu valorile obtinute utilizand teoria clasica a barei. Proprietățile mecanice ale fazelor 

materiale si modul de dispunere in compozit sunt cunoscute. Pe baza acestor valori se poate face o 

estimarea rapidă a valorii modulului de forfecare. Un exemplu pentru un material compozit polimer 

ranforsat cu fibre este prezentat în lucrare. 
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