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Abstract: This paper explores and details the application of the matrix exponentials algorithm in the direct 

kinematic analysis of a 2RTR-type multi-body system. With a meticulous and in-depth approach, the study develops an 

advanced mathematical model for describing the motion of the multi-body system in space. The proposed algorithm 

demonstrates efficiency and precision in determining the final position and orientation of the end effector in Cartesian 

space, considering the specific constraints of the structure. By employing advanced matrix analysis methods and 

mechanics-specific techniques, the paper contributes to a deeper understanding of the kinematic behavior of the 2RTR 

system. The data obtained in the kinematic study are crucial for investigating the dynamic characteristics of any multi-

body system 

Key words: kinematics modeling, matrix algorithm, matrix exponentials, robotics. 

 

1. INTRODUCTION 

 

 The kinematics of multi-body systems is 

addressed in specialized literature [1]-[9] as a 

discipline that focuses on studying the motion of 

material systems from a geometric perspective, 

without considering the influence of mass or the 

forces acting on them. Fundamental knowledge 

of space, time, velocity, and acceleration is 

essential to facilitate kinematic analysis. 

 As we delve into the kinematics of multi-

body systems, we progressively transition from 

the kinematics of a material point and a system 

of material points to rigid bodies and systems of 

rigid bodies. These concepts are closely 

interconnected and contribute to the study of 

body systems. Key elements that require 

attention include trajectory, velocity, and 

acceleration for material points, and in the case 

of rigid bodies or systems of rigid bodies, 

motion equations, velocity distribution, and 

acceleration distribution must be considered. 

 To conduct kinematic analysis, it is essential 

to have a reference system to whom motion is 

related, whether it is a fixed system (for absolute 

motion) or a mobile system (for relative 

motion). Additionally, to perform kinematic 

studies, it is important to examine the geometry 

of multi-body systems before analyzing them 

from a kinematic perspective. 

In the presented kinematic study, a 2TRT-type 

robot structure, specifically the Epson RS4-551 

robot, has been considered (figure 1). 

 
Fig. 1 Epson RS4-551 robot [13] 

 

2. ADVANCED KINEMATICS 
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 The kinematic structure of the 2RTR-type 

robot (rotation-rotation-translation-rotation) is 

considered in the initial configuration, denoted 

as ( ) [ ] .n1i;0q
T

i
0 →===θ  in figure 2. 

  

 
Fig. 2 The kinematic diagram of the 2RTR 

structure 

 

 By applying the matrix exponentials 

algorithm in direct kinematics developed in [1]-

[10], the Jacobian matrix (velocity transfer 

matrix) is determined. The Jacobian matrix 

consists of two components, namely the linear 

transfer matrix and the angular transfer matrix 

symbolized by ( )0
VJ θ  and ( )0J θΩ  respectively. 

 

2.1.  THE LINEAR VELOCITY TRANSFER 

MATRIX 

 

 In accordance with [1]-[6], it is understood 

that the linear velocity transfer matrix 

establishes the mathematical relationship 

between generalized velocities and operational 

velocities, with the latter being part of the 

unknowns. Furthermore, the algorithm for the 

matrix exponential of the Jacobian takes into 

account that operational velocities are the result 

of the first-order derivative with respect to time, 

applied to the last column of the pose matrix 

(homogeneous transformation) between the 

systems{ } { }n0 → . 

 To determine the linear velocity transfer 

matrices for the 2RTR structure, in accordance 

with [1]-[10], an outer loop is initiated, denoted 

by ( )1 4i = → , for the determination of the linear 

velocity transfer matrices. 

 For the application of the second or third 

variant of Jacobian matrix calculation, 

considering [1]-[10], first, the matrices and 

exponentials are determined using the 

generalized expressions: 
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Where: ( ){ }{ }0
1 exp

n

k kk
k i

k qσ
=

= × ⋅ ⋅ ∆∏  

 

Applying the previously mentioned expressions 

to the studied structure yields: 
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Further on, the linear velocity transfer matrices 

will be determined for i=2: 
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 Continuing, the linear velocity transfer 

matrices will be determined for i=3: 
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 Continuing, the linear velocity transfer 

matrices will be determined for the last 

kinematic pair of the multi-body system under 

study (i=4):  
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2.2.  THE ANGULAR VELOCITY 

TRANSFER MATRIX 

 

 To obtain the Jacobian matrix, it is necessary 

to determine both the linear and angular 

velocity transfer matrices. The general 

formulations of angular velocities, according to 

the matrix exponentials algorithm in direct 

kinematics from [1]-[10], are presented: 
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 Applying the previous expressions to the 

four kinematic pairs of the studied robot 

structure, we obtain: 

For the first kinematic pair (i=1): 
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 Continuing, the matrices for the second 

kinematic pair will be determined as follows: 
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The matrices for i=3 are determined as follows: 
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 The matrices for the last kinematic pair, 

where i=4, are determined as follows: 
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2.3. THE JACOBIAN MATRIX 

 

 In the matrix exponentials algorithm 

presented in [1]-[8], the Jacobian matrix 

contains both the component ( )0
VJ θ  and 

the ( )0J θΩ . Further, the transfer matrix 

corresponding to the first column of the Jacobian 

matrix is determined: 
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 The column vector corresponding to the 

linear component of the Jacobian matrix is 

determined using the expression: 
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By substituting and performing the calculation, 

the column vector is obtained as follows: 
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 By matrix multiplication of the last two 

matrix functions mentioned earlier (56 and 58), 

the first column of the Jacobian matrix is 

generated, and its expression is as follows: 
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 Performing the necessary calculations 

according to the matrix exponentials algorithm 

in [1]-[10],, the transfer matrix corresponding to 

the second column of the Jacobian matrix is 

further determined: 
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 The column vector corresponding to the 

linear component of the Jacobian matrix is 

determined using the expression described in 

[N03]: 
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 Performing the calculation yields the column 

vector: 
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 By matrix multiplication of the last two 

matrix functions presented above (61) and (63), 

the second column of the Jacobian matrix is 

obtained, and its expression is as follows: 
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  The transfer matrix included in the third 

column of the Jacobian matrix is obtained as 

follows: 
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=  
 
 
 
  

 (66) 

 

 The column vector corresponding to the 

linear component of the Jacobian matrix is 

determined using the expression described in 

[1]:   

{ }
( ) ( ) ( )0 0 0

3 33 3 3
12 1

;

3 3

T
T

T T Tk
v

b k
M v p kω

×

  = = ∆ ⋅ 
 = →  

(67) 

 

Performing the specific calculation yields the 

following column vector: 

 

{ }
[ ]3 1 3 0 2

12 1

0 0 1 0 0 0 0 0 0 0
T

vM l l l lω
×

= + +

                       (68) 

 

 By matrix multiplication of the last two 

matrix functions presented above (65) and (68), 

the third column of the Jacobian matrix is 

obtained, and its expression is: 

 

{ } { } { }0
3 31 32 33 3

(6 1)
vJ ME J ME J ME J M ω

×
= ⋅ ⋅ ⋅               (69) 

 

[ ]0
3

(6 1)

0 0 1 0 0 0
T

J
×

=                                   (70) 

 

 Furthermore, the transfer matrix included in 

the fourth column of the Jacobian matrix is 

obtained: 

           

( ){ } { } { } { }0
4 41 42 43

6 12
ME J ME J ME J ME J
×

= ⋅ ⋅               (71) 

 

( ){ }0
4

6 12

4 4 4 4 4 4

4 4 4 4 4 4

4 4

4 4

0 0 (2 ) (2 ) 0 0 0 0

0 0 (2 ) (2 ) 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

ME J

cq sq sq cq s q c q

sq cq cq sq c q s q

cq sq

sq cq

×
=

− − − − ⋅ − ⋅ 
 − ⋅ − ⋅ 
 

=  − 
 
 
  

 

(72) 
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 The column vector corresponding to the 

linear component of the Jacobian matrix is 

determined using the expression described in 

[1]-[8]: 

{ }

( ) ( ) ( )0 0 0
4 44 4 4

12 1

;

4 4

T
T

T T Tk
v

b k
M v p kω

×

  =
 = ∆ ⋅ 
 = →  

     (73) 

 

Performing the calculation, the column vector is 

obtained as follows: 

 

{ }
[

]

4 1 3 1 3 4 4 1 3
12 1

1 3 0 2

0 0 ( ) ( 1) ( )

0 0 0 0 1

v

T

M l l l l cq sq l l

l l l l

ω
×

= − − − + ⋅ − − ⋅ +

+ +

(74) 

 

 By matrix multiplication of the last two 

matrix functions presented above (72) and (74), 

the fourth column of the Jacobian matrix is 

obtained, and its expression is as follows: 

 

 { }0 0
4 4 4

(6 1)
vJ ME J M ω

×
= ⋅                                      (75) 

 

[ ]0
4

(6 1)

0 0 0 0 0 1
T

J
×

=                                (76)             

 

 Therefore, by substituting the four column 

matrices (59), (64), (70), and (76) into the 

definition expression, the final form of the 

Jacobian matrix is obtained, written in expanded 

form, according to [1]-[10], as follows: 

 

( )
( )

0 0 0 0 0
1 2 3 4

6 4

J J J J Jθ
×

 =
 

                        (77) 

 

( )
( )

1 1 3 1 2 3 1 2

1 1 3 1 2 3 1 2

0

6 4

( ) ( ) 0 0

( ) ( ) 0 0

0 0 1 0

... ... ... ...

0 0 0 0

0 0 0 0

1 1 0 1

l sq l s q q l s q q

l cq l c q q l c q q

J θ
×

− ⋅ − ⋅ + − ⋅ + 
 ⋅ + ⋅ + ⋅ + 
 
 =  
 
 
 
 
 

  (78)   

 

 Taking into account expression (78), the 

corresponding matrix equation for the 

generalized (operational) absolute velocities of 

the end effector, projected onto the fixed system, 

is determined further in accordance with [1]-[6]: 

                                        (79) 

 

Where: . 

Replacing in expression (80), results: 

 

(80) 

 

 Continuing, the matrix equation 

corresponding to the generalized (operational) 

absolute accelerations of the end effector, 

projected onto the fixed system, is determined 

through the following expression in accordance 

with [1]-[6]:: 

 

              (81) 

Where: . 

 

  To obtain the derivative form of the Jacobian 

matrix, the determinant of ( )0J θ  determined by 

expression (79) is derived, thus yielding: 

 

 

(82) 

 

By substituting (78), (82), , and  into 

expression (81), the corresponding matrix 

equation for the generalized (operational) 

absolute accelerations of the end effector is 

obtained: 
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(83) 

 
3. CONCLUSIONS 

 

 In conclusion, the implementation of the 

matrix exponentials algorithm in the direct 

kinematic analysis of a 2RTR-type structure 

represents a significant contribution to the fields 

of mechanics and robotics. This algorithm stands 

as an essential tool for describing the complex 

motion of multi-body systems, providing 

remarkable precision and efficiency in 

determining the final position and orientation of 

the end effector in Cartesian space. 

 Compared to traditional methods, matrix 

exponentials highlight significant advantages. 

Their compact form, ease of geometric 

visualization, and notably, the avoidance of 

specific frames for each cinematic element 

constitute essential features. Thus, matrix 

exponentials become fundamental in defining 

linear and angular transfer matrices for the 

2RTR structure. 

 Through the application of the algorithm and 

matrix exponentials, all relevant kinematic 

parameters for the 2RTR structure have been 

successfully determined. These parameters play 

a crucial role in characterizing the equations of 

direct kinematics and control for this specific 

robot structure. Regardless of the construction's 

complexity, matrix exponentials provide a 

robust foundation for defining and 

understanding the detailed cinematic behavior of 

the 2RTR structure, highlighting their utility and 

effectiveness in the field of mechanical research 

and robotics. 

 The matrix exponentials algorithm 

underscores significant advantages, including a 

concise and clear formulation, as well as the 

ability to handle specific constraints of the 

2RTR structure. This research not only 

demonstrates the viability and effectiveness of 

the proposed algorithm but also opens new 

directions for the further development of 

complex multi-body systems. 

 Overall, the integration of this algorithm into 

kinematic analysis brings significant 

contributions to advancing knowledge in the 

field of mechanics, with the potential to 

influence the future development of robots or 

any multi-body system with similar structures. 
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Modelarea cinematică avansată a structurii de robot de tipul 2RTR 
 

 Această lucrare explorează și detaliază aplicarea algoritmului exponențialelor de matrice în analiza 

cinematică directă a unui sistem multi-corp de tipul 2RTR. Cu o abordare meticuloasă și în 

profunzime, studiul dezvoltă un model matematic avansat pentru descrierea mișcării sistemului multi-

corp în spațiu. Algoritmul propus demonstrează eficiență și precizie în determinarea poziției finale și a 

orientării end-effectuatorului în spațiul cartezian, având în vedere constrângerile particulare ale acestei 

structuri. Prin utilizarea metodelor avansate de analiză matriceală și tehnici specifice mecanicii, 

lucrarea contribuie la înțelegerea mai profundă a comportamentului cinematic al sistemului 2RTR. 

Datele obținute în studiul cinematic, sunt cruciale pentru investigarea caracteristicilor dinamice ale 

oricărui sistem multi-corp. 
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