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Abstract: This work explores the effect of laser power and laser speed as crucial selective laser melting 

(SLM) process-related parameters on surface finish indicators; average surface roughness, Ra, ten-point 

height, Rz, maximum roughness, Rt and mean spacing at mean line, Sm. A multi-level factorial design of 

experiments followed by a custom response surface design was established to generate 21 experiments with 

reference to the experimental levels determined for laser power and laser speed. Results were analyzed 

using analysis of variance (ANOVA) whereas full quadratic models were developed to correlate the selected 

SLS-related parameters with two out for the five roughness parameters studied; Ra and Rt. Contour plots 

for Ra and Rt roughness responses were examined for identifying laser power and laser speed effects as 

well as their variations. Several neural network architectures (ANNs) were examined to model the SLS 

process and obtain results for future research related to optimization approaches.  

Key words: Selective Laser Melting, surface roughness, multi-parameter analysis, neural networks.  

 

1. INTRODUCTION   
 

 Additive manufacturing (AM) is an ongoing 

technology which it serves both as rapid 

prototyping operation as well as typical 

manufacturing process. Its applications 

spectrum involves automobile, aerospace, 

medical and other important production fields 

where part accuracy, mechanical properties (i.e. 

part strength) and surface integrity [1-3] are key 

criteria to be met.  

 Among the different methods and 

technologies of AM, selective laser melting 

(SLM) is a quite promising end-use AM method 

where powder materials are selectively melted 

and then solidified “layer-by-layer”. As it occurs 

to all production methods and materials 

processing technologies, determining beneficial 

settings for process-related control parameters is 

essential in order to meet product requirements 

[4-7].  

 When it comes to SLM a number of 

parameters need to be examined and set to 

achieve requirements related to functionality 

and aesthetics of fabricated components [8-12]. 

The purpose of searching for a beneficial (or 

even optimal) range of process-related 

parameters is accomplished by designing 

experiments and applying the different 

optimization approaches reported in the broader 

literature [13-16]. Among the different 

optimization approaches implemented for 

modeling or optimizing the independent process 

parameters with regard to one or more 

optimization criteria, intelligent algorithms and 

neural networks are distinguished [17-20].  

 This work considers two main SLM-related 

control (input) parameters; namely laser power, 

LP (W) and laser speed, LS (mm/s) for study-ing 

and modeling their effect on surface finish with 

emphasis to major roughness indicators. The 

main scope of the work is to correlate surface 

finish with observations related to part strength 

referring to tensile properties σΒ (MPa) and 

elasticity modulus, E (MPa). Studies concerning 

this correlation are to be presented in future 

work. The main reason for this concept is that 

SLS/SLM components lack of high or even 
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acceptable surface quality whilst in the majority 

of cases is far away from achieving the required 

value. As a consequence the implementation of 

post-processing techniques is necessary and 

thus, the total manufacturing time is 

significantly increased. Stainless steel 316L 

powder was selected to fabricate experimental 

specimens as per the experimental design 

protocol adopted. Average surface roughness 

(Ra) and maximum rough-ness (Rt) where 

further investigated by performing statistical 

analysis and regression modeling. Simulations 

to test various neural network topologies were 

conducted to decide for the best network 

topology for Ra and Rt.   

 

2. EXPERIMENTAL 

 

Experimental specimens were manufactured 

using an iDEN® 160, Zrapid-Tech® SLM 

apparatus by maintaining the same part 

orientation (parallel to the machine’s X-axis). 

The spherical 316L stainless steel powder with 

an average particle size between 15 and 53 µm 

and 158 HB hardness was used to build the 

experimental dog-bone samples.  

Experimental samples were of a standard 

geometry and dimensions. The sequence of 

experiments was formulated by implementing a 

multi-level factorial design with two 

independent SLM process-related control 

parameters; laser power, LP (W) and laser speed, 

LS (mm/sec). Three discrete levels were 

assigned to laser power whereas seven levels 

were assigned to laser speed. As responses, four 

of the numerous surface roughness parameters 

were selected; namely average surface 

roughness (Ra), ten point height (Rz), maximum 

roughness (Rt) and mean spacing at mean line, 

(Sm). The definitions and the mathematical 

formulae of these parameters are well 

established; see for example Ref. [21]; therefore 

they are not presented here. 

Experimental runs were divided to three 

discrete groups according to laser power level 

implemented for their production. Group-A 

involved the experiments performed with 130 W 

(experiments from No.1 to No.7); group-B with 

140 W laser power (experiments from No.8 to 

No.14) and group-C with 150 W laser power 

(experiments from No.15 to No.21). Roughness 

measurements were obtained by using a Taylor 

Hobson® roughness tester with 0.8 mm cut-off 

length. To maintain rigorous results in term of 

roughness parameter results, five independent 

measurements were taken on each sample from 

top and bottom surfaces at different points. 

Finally the average value from each group of 

five roughness measurements was calculated to 

represent the final output. The three series of 

experimental specimens produced with SLM are 

tabulated in Table 1. 

 
Fig. 1. Groups of experimental SLM specimens: (a) LP: 

130 W; (b) LP: 140 W and (c) LP: 150 W. 
 

2.1 Results and analysis  

 

Table 1 and Table 2 summarize the 

experimental design and the results obtained for 

surface roughness measurements, respectively. 
Table 1.  

Design of SLM experiments. 

Exp.No. 
SLM parameters 

LP (W) LS (mm/s) 

1 130 800 

2 130 850 

3 130 900 

4 130 950 

5 130 1000 

6 130 1050 
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7 130 1100 

8 140 800 

9 140 850 

10 140 900 

11 140 950 

12 140 1000 

13 140 1050 

14 140 1100 

15 150 800 

16 150 850 

17 150 900 

18 150 950 

19 150 1000 

20 150 1050 

21 150 1100 

 

Table 2.  
Results for roughness parameters. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 shows the variation of roughness 

parameters, Ra (Fig. 2a); Rz (Fig. 2b); Rt (Fig. 

2c) and Sm (Fig. 2d) for the different levels of 

laser speed and laser power according to the 

multi-level factorial design. First observations 

indicate that the experiments performed using 

the lowest experimental level for laser power 

i.e., 130 W (experiments from 1 to 7) exhibit a 

constant trend with relatively low results for 

average surface roughness Ra (Fig. 2a). Next 

experiments yield variations in their results with 

the 14th experiment to exhibit the lowest output 

for mean surface roughness (laser power, 

LP=140 W; laser speed, LS=1100 mm/sec; 

Ra=7.92 μm). Mean surface roughness increases 

dramatically from 15th to 21st experiment; i.e., in 

group-C, where results lies in the range between 

8.44 μm and13.56 μm. 

The same trend is exhibited for the ten point 

height, Rz (Fig. 2b). However lowest results for 

Rz are shown in 8th and 14th experiments with 

55.8 μm and 59.6 μm respectively. A relatively 

stable behavior in terms of Rz are indicated in 4th 

up to 7th experiment (laser power, LP 130W; 

variable laser speed, LS from 950 to 1100 

mm/sec). The variation of the results obtained 

for maximum surface roughness Rt, is shown in 

Fig. 2c. It can be seen that Rt follows an irregular 

pattern whilst the lowest Rt result is reported in 

8th experiment (LP: 140 W, LS: 800 mm/sec, Rt: 

55.8 μm). 

Fig. 2d presents the observed trend of 

measured values for mean spacing at mean line, 

Sm (μm). It is evident that Sm variation is 

relatively low for the experiments conducted 

with the fist level for laser power, LP=130W 

(group-A). There is also a relatively stable 

variation for Sm in experiments no. 10; 11 and 

12. The lowest Sm value is measured in 16th 

experiment (Sm=101.6 μm, LP: 150 W, LS: 850 

mm/sec).  

Further analysis concerning ANOVA and 

modeling by applying different ANN 

architectures is conducted for average surface 

roughness Ra and maximum roughness Rt, as 

the most important and often-adopted indicators 

to characterize surface finish [21], while the rest 

of roughness parameters discussed are yet to be 

statistically analyzed and modeled under the 

same methodology adopted for examining Ra 

and Rt roughness parameters. 
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Fig. 2. Experimental results for roughness parameters: 

(a) average surface roughness Ra; (b) ten-point height 

Rz; (c) maximum roughness Rt and (d) mean spacing at 

mean line, Sm.  

 
2.2 Statistical analysis and regression 
modeling for Ra and Rt. 
 
To acquire a meaningful understanding 

concerning the effect of laser power, LP (W) and 

laser speed, LS (mm/sec) in surface finish 

referring to the selective laser melting of 316L 

stainless steel, a statistical analysis was 

conducted using MINITAB® 17 software. As 

response representation model, the full-

quadratic mathematical expression was 

implemented (Eq.1). 

 

0
1 1

k k

i i ii i i ij i j
i i i j

y x x x x xβ β β β
= = <

= + + +   
   

(1) 

 

The above mathematical expression involves 

the linear terms (process-related variables as 

independent control parameters), the quadratic 

terms of independent control parameters and 

their two-way interactions whose number 

depends on the number of independent variables 

in the experiment. With “Y” the responses of 

average surface roughness Ra (μm) and 

maximum roughness, Rt (μm) are represented 

whereas the number of independent variables 

(LP and LS) is depicted as xi (i
th variable). The 

model’s adequacy in terms of response 

prediction is validated by either F or p-values. 

Increased F values should normally correspond 

to reduced p-values and vice-versa. Low p-

values (p<0.05) found in analysis of variance 

(ANOVA) suggest that their corresponding 

variables hold significant influence on the 

responses under question. As far as lack-of-fit is 

concerned, it should be insignificant enough for 

the model to well-fit the experimental results, 

therefore large p-values are preferred. The 

results obtained by the analysis of variance 

(ANOVA) with reference to the experimental 

outputs for Ra and Rt, indicated that both 

regression models can adequately explain 

variation with calculated values R2=90.37 % and 

R2=89.68 significance.  

According to ANOVA’s p-values, it was 

shown that average surface roughness Ra, is 

primarily affected by linear and square terms 

(30.31 %, 21.48 % contributions respectively) 

followed by their interactions (2-way interaction 

between LP and LS, with 18.19 % contribution 

to the experiment). Individual significance of 

each term is computed by t-test at 95 % 

confidence level. This implies the significance 

of terms with p-value lower than 0.05. 

Coefficient of determination (R2) shows the total 

variation percentage in the studied response 

explained by the terms in the model. Results 

concerning the analysis of this non-linear 

problem referring to SLM of 316L metallic 

powder, involve the representation of 2D 

graphical regions known as contour plots. These 

plots illustrate the beneficial sub-regions where 

independent variables favor the response under 
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interest through their proper settings. Moreover 

contour plots reveal the resulting trend of the 

response examined owing to the interaction 

existing between the two independent variables 

(X and Y axes). Fig. 3a and Fig. 3b illustrate the 

experimental regions and the effects of laser 

power LP (W) and laser speed, LS (mm/sec) on 

the responses of average surface roughness, Ra 

(μm) and maximum roughness Rt (μm) 

respectively. 

 

 

 
Fig. 3. Contour plots for LP and LS independent 

parameter effects on: (a) average surface roughness Ra;  

(b) maximum roughness, Rt. 

 

Anderson-Darling normality test can evaluate 

the model’s suitability and justify its usage for 

practical applications. If the resulting p-value 

referring to residuals is found lower than the 

confidence interval’s (CI) pre-specified value; 

i.e. 0.05, then residuals won’t follow normality 

and will question the regression model’s 

reliability. Therefore p-value for this test should 

occur away beyond 0.05 to justify insignificance 

of residuals’ effect. In the current experiment, 

ANOVA reveals that regression models created 

for predicting mean surface roughness Ra and 

ten points height, Rt are adequate enough; 

having p-value for Ra residuals equal to 0.189 

(Fig. 4a) and for Rt residuals equal to 0.682 (Fig. 

4b) verifying that the regression model’s validity 

despite its lower R2 value when compared to that 

of Ra regression model. 

 

 
Fig. 4. Normality plots of residuals using Anderson-

Darling test: (a) residuals for average surface roughness 

Ra; (b) residuals for maximum roughness, Rt. 

 

3. PREDICTION OF RESPONSES USING 
NEURAL NETWORKS 
 
It has been shown that SLM of 316L stainless 

steel powder exhibits high complexity despite 

the fact that only two independent variables have 

been considered (laser power and laser speed). 

This complexity may introduce difficulties in 

accurate response predictions using 

conventional approaches.  

To further examine the potentials of accurate 

response prediction at least for Ra and Rt 

roughness indicators, several neural network 

architectures were tested in order to select a 

reliable neural network model capable of 

predicting both responses. Laser power LP and 

laser speed LS were the two input parameters 

whilst Ra and Rt were the two outputs. Each of 

the parameters is represented by a single neuron 

and consequently the input layer in the neural 

network structure comprises two neurons. The 
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neural network architecture and topology finally 

adopted is depicted in Fig. 5. 

 

 
Fig. 5. ANN architecture and topology for modeling Ra 

and Rt roughness parameters. 

 

To introduce a reliable database to the 

network the experimental results were 

considered referring to the outputs and the 

independent variables along with their limit 

ranges. Results for Ra and Rt were used for 

training the network and further examining 

input-output correlation. The database has been 

divided to three discrete datasets, namely the 

training, testing and validation (random 

selection of data division; 70 % for training, 15 

% for validating and 15 % for testing). Training 

set has been thoroughly used for adjusting the 

weights, testing set was used for examining the 

network’s accuracy in its predictions and 

validation set was used for validating the results 

according to the training procedure. 

Consequently, the experiments were divided 

into three sets; 15 for training, 3 for validation 

and 3 for testing. Neural network training deals 

with the update in its connected weights so that 

the error among predicted and actual 

experimental outputs is minimized. The neural 

network architectures examined were tested 

using the standard back propagation algorithm 

found in Mathworks® MATLAB® R2014b. In 

order to decide the final number of neurons 

referring to the hidden layer, several structures 

under a varying number of neurons were tested. 

Activation level for neurons was determined by 

the tan-sigmoid transfer function while 

“TRAINLM” was the training function. An 

important aspect for designing neural network 

models model to predict responses with 

reference to the independent process 

parameters-inputs is overfitting. Overfitting 

occurs when neural network topologies exceed a 

reasonable accuracy on training data; however a 

lack of adequate predictability is exhibited on 

testing data. In general when overfitting occurs, 

the neural network model adopts the training 

data noise instead of the actual relation among 

process parameters and responses (inputs and 

outputs). To avoid overfitting, several methods 

are implemented i.e., the “weight decay 

regularization” and the “dropout” [22-25]. Such 

methods were considered and employed to the 

neural network topologies examined in this 

research to ensure that the final topology is 

capable of reliably predicting surface roughness 

parameters Ra and Rt with reference to the two 

input variables; laser power LP and laser speed 

LS. Note that a neural network topology should 

successfully be able to generalize the results 

predicted beyond the experimental domain from 

which training, testing and validation operations 

have been applied. Understanding the 

generalization process of neural network models 

on unexplored results is imperative for designing 

trustworthy and reliable topologies among 

inputs hidden layers and outputs.   

It was found that 2-10-2 network topology 

was the most beneficial among others examined. 

Fig. 6 depicts the best validation performance 

for topology giving the best output equal to 

6.8905 at epoch 3 after 200 iterative evaluations. 

 

 
Fig.6. Regression analysis for the results obtained by 2-

10-2 ANN topology. 

 

To verify the prominence of this trained ANN 

architecture, the training set was presented to the 

ANN. Fig. 7 depicts the regression analysis for 

the ANN implemented.  
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Fig.7. Regression analysis results obtained by the ANN 

architecture adopted, based on its validation performance. 

 

It can be stated that the high correlation 

coefficient (R2) among outputs (predicted 

results) and targets (Ra and Rt) verify the 

sufficient ANN’s performance. 

 

4. CONCLUSION  

 

This work examined the effect of laser power 

and laser speed on surface finish of SLM 316L 

stainless steel fabricated specimens. The 

roughness parameters investigated were average 

surface roughness Ra, ten-point height Rz, 

maximum roughness Rt and mean spacing at 

mean line, Sm. Experimental runs were 

determined by following a multi-level factorial 

response surface design involving 21 

experiments according the number of levels for 

each independent SLM parameter. The results 

obtained were analyzed for Ra and Rt roughness 

parameters for which regression and neural 

network modeling were applied. The 

conclusions of this work are summarized as 

follows:  

 

• Maintaining surface finish in SLM additive 

manufacturing is a challenging process 

where irregularities and large variations 

among roughness outputs occur. This 

conclusion is in line with latest findings and 

observations of the scientific literature. 

• Although the SLM process exhibits a highly 

non-linear behavior concerning laser power 
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LP (W) and laser speed LS (mm/s) as the 

major independent process-related 

parameters, Ra and Rt roughness 

parameters can be adequately correlated 

when applying regression analysis with 

emphasis to full quadratic models. 

• Successive modeling of Ra and Rt 

parameters through regression and neural 

networks is an encouraging outcome, 

however; more surface roughness indicators 

should be extensively investigated to come 

up with reliable outputs and guarantee a 

solid characterization of SLS-manufactured 

components in terms of their surface 

quality.    

 

As a future perspective the authors plan to look 

further ahead on examining and providing a 

distinct link between surface finish parameters 

and tribological behavior of SLM-fabricated 

316L stainless steel components.  
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MODELLIERUNG DER OBERFLÄCHENBESCHICHTUNG BEIM SELEKTIVEN 
LASERSCHMELZEN VON EDELSTAHL 316L DURCH ANWENDUNG 

STATISTISCHER MULTIPARAMETERANALYSE UND KÜNSTLICHER 
NEURONALER NETZWERKE 

 
bstrakt: Diese Studie untersucht den Einfluss von Laserleistung und Lasergeschwindigkeit als 

entscheidende Parameter des Selective Laser Melting (SLM) auf Oberflächenqualitätsindikatoren; 
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mittlere Oberflächenrauheit, Ra, Zehn-Punkt-Höhe, Rz, maximale Rauheit, Rt und mittlerer Abstand 

bei der mittleren Linie, Sm. Ein mehrstufiges faktorielles Versuchsdesign, gefolgt von einem 

maßgeschneiderten Response-Surface-Design, wurde erstellt, um 21 Experimente in Bezug auf die 

für die Laserleistung und Lasergeschwindigkeit bestimmten experimentellen Stufen durchzuführen. 

Die Ergebnisse wurden mittels Varianzanalyse (ANOVA) analysiert, während vollständige 

quadratische Modelle entwickelt wurden, um die ausgewählten SLS-bezogenen Parameter mit zwei 

der fünf untersuchten Rauheitsparameter zu korrelieren; Ra und Rt. Konturdiagramme für die Ra- 

und Rt-Rauheitsreaktionen wurden untersucht, um die Auswirkungen von Laserleistung und 

Lasergeschwindigkeit sowie deren Variationen zu identifizieren. Mehrere Architekturen neuronaler 

Netze (ANNs) wurden untersucht, um den SLS-Prozess zu modellieren und Ergebnisse für zukünftige 

Forschungen im Zusammenhang mit Optimierungsansätzen zu erhalten. 
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