
17

Received: 29.01.25; Similarities: 05.03.25: Reviewed: 20.02./19.02.25: Accepted:06.03.25.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 68, Issue I, March, 2025

PYTHON IN THE PLANAR FOUR-BAR LINKAGE MECHANISM

SIMULATION

Tiberiu Alexandru ANTAL

Abstract: The Python programming language together with the object-oriented programming paradigm

are used to write an application using the Matplot library in Python. Using the quiver graphical concept a

vector representation of the mechanism is given while the trajectory results in a format that can be used

later in trajectory classifications of the four-bar linkage mechanism.

Key words: four-bar linkage, quiver, Java, Python, simulation, trajectory.

1. INTRODUCTION

The classical mechanics is the branch of

physics that studies the behavior of physical

bodies under the influence of forces,

displacements, and constraints. Mechanisms are

a subset of mechanics focused on the design and

analysis of machines and moving systems.

Mechanics provides the foundation, while

mechanisms are practical implementations [1],

[2]. The use of high level programming

languages in the study, simulation, and

implementation of mechanisms has evolved

over time. Each stage of development has been

influenced by computational capabilities of the

period, and the existing programming

paradigms. During the Early Era (1950s–1970s)

the focus was on numerical methods and basic

simulations (no GUIs) for mechanism analysis

using the procedural paradigm with the

FORTAN (1957) programming language. This

is followed by the CAD/CAE Tools Era (1980s–

1990s) where tools for computational design

integrated with graphical visualization (e.g.

SolidWorks, AutoCAD) were created and the

new high level languages as C (1972), C++

(1985) and Pascal (1970) used the structured,

modular and object oriented paradigms to create

reusable simulation software applied in

mechanism synthesis and early robotics. The

Modern Era (2000s–Present) is focusing on

high-performance computing, automation, and

integration with AI/ML using the object-

oriented, functional, and scripting paradigms in

advance robotics and AI integration [3], [4].

Some of the new key languages that emerged to

cover the mechanisms fields are: Python, Java,

Julia and Rust. Of these languages, the easiest

for a novice to approach is Python. Python's

syntax is simple, making it accessible for

engineers and researchers. Libraries like SymPy,

PyDy, NumPy, and Matplotlib provide tools for

symbolic calculations, numerical simulations,

and visualization. Python integrates well with

CAD tools and other simulation software

through APIs. This is why Python's versatility

and extensive ecosystem make it an excellent

choice for simulating mechanisms, robots and

gears. However, each language has its strengths

and weaknesses depending on the use case, for

Python the code execution is slower because it is

an interpreted language. From an educational

point of view, the language forms skills that are

not found in other languages, and when

switching to other languages, this can be an

inconvenience in understanding and applying

other languages, as follows: Python doesn’t

require explicit variable type declarations (like

Java); the dynamic typing specific to the

18

language can lead to runtime errors that static

typing (like Java) would catch during

compilation; the Object-Oriented Programming

(OOP) paradigm is supported but not enforced,

and this can lead to inconsistent practices for

beginners.

2. PYTHON and ANACONDA

The Python programming language can be

installed from the official Python website found

at python.org. Designed as a high-level, general-

purpose programming language it is known as

the core used for many types of software

development tools, including scripting, data

analysis, machine learning, and extensible with

third-party libraries (like NumPy, Pandas,

TensorFlow). The module [5] in Python is a file

containing Python code (functions, classes, and

variables) that can be reused in other Python

programs. The modules can be build-in

(preinstalled with Python as math, os, sys,

random), user-defined (creates by the

programmer and stored as .py files) and third-

party (developed by others, available via the

Python Package Index - PyPI and installed using

a package manager like pip). Modules help

organize and reuse Python code. Anaconda [6]

is a distribution of Python designed for data

science, machine learning, and scientific

computing. It simplifies the setup and

management of Python environments and

includes tools for working with data-heavy

applications. A package manager is a tool that

automates the process of installing, updating,

configuring, and managing software packages,

including libraries, dependencies, and tools. The

Conda [7] package manager that comes with the

Anaconda distribution allows creation of

Anaconda environments that are isolated being

self-contained spaces where you can install and

manage Python packages, dependencies, and

configurations without affecting other

environments or the system Python installations.

3. ENVIRONEMENT SETUP for PYTHON

A programming IDE (Integrated

Development Environment) is a software tool to

help developers write/edit, translate to machine

language, debug, and manage more efficiently

the code development process. Microsoft Visual

Studio Code (VS Code) is a free, cross platform,

highly extensible, customizable, source-code

editor developed by Microsoft that can be

downloaded from the following link:

https://code.visualstudio.com/. Once the Python

Extensions in VS Code are added Python

environments can be managed and Python code

can be executed and debugged from the editor.

As VS Code also supports the Jupyter Notebook

the .ipynb extension files can be used directly in

the editor. A Jupyter Notebook is an open-source

web-based application that allows users to create

and share documents containing live code,

equations, visualizations, and explanatory text.

The advantage of Jupiter Notebook is that a full

paper or report can be created containing the

text, the mathematical formulae and the code (in

Python) that implements the mathematics as

well together with any results produce by the

code (text, graphics or simulations) in a single

document that can be shared or use for

educational purposes easily. One document

contains everything, the problem description,

the solution (mathematics and code), and the

results. For this purpose the Jupyter Notebook is

using the cell which is a container where we

write content such as code, text, or

visualizations. Cells are the building blocks of

Jupyter Notebooks, allowing users to

interactively develop and document their code.

There are three main types of cells in Jupyter

Notebook:

1. Code Cell: to execute programming

code; when we run the cell, the code is

executed, and the output is displayed

directly below the cell.

2. Markdown Cell: to write formatted text

using Markdown (a lightweight markup

language for creating formatted text using

a plain-text editor that is described at

https://www.markdownguide.org/) to add

headings, lists, links, code snippets, or

mathematical equations using LaTeX.

3. Raw Cell: a piece of content that is not

executed or rendered being kept as-is

without processing.

The Cell has two modes:

19

1. Edit Mode: to edit the cell's content,

activated by pressing Enter or clicking

inside a cell.

2. Command Mode: to manage cells

(add, delete, run, etc.) without editing

their content, activated by pressing

Esc.

Some common Cell operations are:

1. Run a Cell: Press Shift+Enter to

execute a cell.

2. Add a New Cell: Use the + button in

the toolbar or press B (below) or A

(above) in command mode.

3. Change Cell Type:

a. From the toolbar dropdown.

b. Shortcut: M for Markdown or

Y for Code in command mode.

In Figure 1, VS Code is installed with most

Python extension with Jupyter Notebook and the

current Cell is in Edit Mode (Enter). This allows

viewing how the Markdown language is used to

provide explanation related to the problem and

the code.

Fig. 1. - VS Code with Extension View and in Edit Mode

Cell.

Fig. 2. - VS Code with Explorer View and in Stop

Editing Mode Cell.

In Figure 2, VS Code the Jupyter Notebook is in

Stop Editing Cell Mode (Ctrl+Alt+Enter), and

the document reveals it’s formatted view based

on Markdown.

4. JAVA vs PYTON

In [16] the Java programming language is used

to analyze the four-bar linkage mechanism and a

library is provided for this. This paper continues

with a Python implementation and Java vs

Python comparison to clarify why the Python

approach is better if ML should be applied to the

computed trajectories.
Table 1

A brief Java ([13], [14]) vs Python comparison.

Aspect Java Python

Typing

Statically typed

(variable types

must be declared).

Dynamically typed

(variable types are

inferred).

Syntax

Strict and detailed;

requires

semicolons and

braces.

Simple and concise;

no semicolons or

braces required.

Compilation

Compiled into

bytecode and run

on the Java Virtual

Machine (JVM) -

faster.

Interpreted,

although Python

code is compiled

into bytecode

before execution -

slower.

Performance

Faster for large-

scale applications

due to static typing

and optimization.

Slower compared to

Java due to dynamic

typing but sufficient

for most tasks.

Learning

Requires more

effort due to its

strict syntax and

broadness.

Easier for beginners

because of its

simplicity and

readability.

Paradigms

Primarily Object-

Oriented, with

support for generic,

procedural and

functional

programming.

Multi-paradigm:

supports object-

oriented,

procedural, and

functional

programming.

Readability

Detailed, requires

additional

repetitive code.

High readability,

concise syntax, and

clean code

structure.

Community

and

Libraries

Large community

with extensive

libraries for

enterprise

applications.

Large community

with extensive

libraries for data

science, machine

learning, and more.

As the application provided to solve the problem

in Python is Object-Oriented (OO) a comparison

between the two languages from this point of

view would also be welcomed. OO

Programming (OOP) is a paradigm that

organizes code around data using the concept of

objects and their interactions. Both Java and

Python have language constructs to cover the

20

OOP paradigm, however they have notable

differences in syntax, implementation, and

features. The following table (Table 2) is

covering the key differences related to OOP in

Java vs. Python.
Table 2

Key differences: OOP Java ([9], [10]) vs Python.

Feature Java Python

Class

Definition

Must explicitly

define the class

and its members.

Similar but more

flexible and

requires less

code.

Inheritance

Supports single

and multilevel

inheritance but

not multiple

inheritance (uses

interfaces).

Supports single,

multilevel, and

multiple

inheritance

directly.

Access

Modifiers

Uses public,

protected, and

private for

encapsulation.

No strict access

modifiers; uses

naming

conventions (e.g.,

_ for protected).

Constructors

Special method

with the same

name as the

class.

Uses __init__ as

the constructor

method.

Abstract

Classes

Supported via

the abstract

keyword.

Supported using

the abc module.

Interfaces

Separate

keyword

(interface),

multiple

interfaces can be

implemented.

Achieved using

abstract base

classes or

multiple

inheritance.

Method

Overloading

Supported

through different

parameter lists.

Not natively

supported but can

be simulated with

default or

variable-length

arguments.

Method

Overriding

Explicitly

defined using

@Override

annotation.

Implicitly

allowed without

special syntax.

Polymorphism

Enforced strictly

with defined

types.

Dynamically

typed, allowing

more flexibility.

5. THE FOUR-BLINKAGE MECHANISM

OOP IMPLENENTATION in PYTON

Based on the mathematical model from [16] the

following code is using the Python quiver

concept to draw and simulate de mechanism.

Many researches [8], [10], [11] and public codes

[9] are available on this subject; some are made

in Python [8], while others are in Java [14], [16]

or AutoLISP [15]. This research is based on

quiver which is plot type that displays vectors as

arrows. It is often used in scientific computing

and data visualization to represent vector fields.

The Matplotlib library provides a function called

quiver() to create quiver plots. The simplest

signature of the function is:

quiver([X, Y], U, V, [C])

where, X, Y - are the coordinates of the origins;

U, V - the components of the vector field,

representing the direction and magnitude of the

arrows and C (Optional) - a color map to

represent additional data (e.g., magnitude).

The computation and the simulation are based

on the Vector2D class that implements all the

required methods. The constructor of the

Vector2D class is:

def __init__(self, id, x1:float, y1:float,

x2:float, y2:float):

 self.id = id ; self.p1 = np.array([x1,

y1], dtype=np.float64)

 self.p2 = np.array([x2, y2],

dtype=np.float64); self.midpoint()

 self.direction = None; self.mag =

self.Mag(); self.ang = self.Ang()

 self.q = plt.quiver(self.p1[0],

self.p1[1], -self.p1[0] + self.p2[0], -

self.p1[1] + self.p2[1], angles="xy",

scale_units="xy", scale=1)

The instantiations of the vectors that make up the

mechanism are:

v1 = Vector2D("a", 0, 0, -2, 0)

v2 = Vector2D("b", -2, 0, 2, 3.5)

v3 = Vector2D("c", 4,0, 2, 3.5)

v4 = Vector2D("d", v2.midpoint[0],

v2.midpoint[1], 5.5, 6.5)

v4.setBase(v2)

This will create the mechanism representation

from Figure 3.

While the numerical simulation of the

mechanism is done by running the following for

loop:

21

Fig. 3. - Quiver representation of the four-bar linkage

mechanism in Python.

for i in range(0,360,10):

 fi = start+ i

 if (fi >= 360):

 fi-=360

 v1.rotateP1(math.radians(fi))

 v2.setP1(v1.getP2())

 v3.p2=v2.p2=v2.SolveInt(v3)

 v4.setToBase(v2)

The graphical simulation is based on the

following animation function named ani(fi)

that removes the previous drawn vectors and

plots them for a new position given by fi

parameter and draws the trajectory of the

mechanism from xdata,ydata.

def ani(fi):

 global v1,v2,v3,v4

 v1.remove();v2.remove();v3.remove();

 v4.remove();v1.rotateP1(math.radians(fi))

 v2.setP1(v1.getP2());

v3.p2=v2.p2=v2.SolveInt(v3);v4.setToBase(v

2); v1.draw(plt);v2.draw(plt);

v3.draw(plt); v4.draw(plt);

 xdata.append(v4.p2[0]);

ydata.append(v4.p2[1])

 line.set_data(xdata,ydata); return line,

While the simulation code, running in different

Cell is :

figure, ax =

plt.subplots(figsize=(10,5), dpi=100)

ax.set_aspect(1)

ax.set_xlim(-3, 11);ax.set_ylim(-3, 11)

plt.grid(); v1.draw(plt); v2.draw(plt)

;v3.draw(plt); v4.draw(plt);

v4.setBase(v2)

line, = ax.plot([], [])

line.set_data([], []) ;xdata, ydata =

[], []

from IPython.display import HTML

anim = FuncAnimation(figure,

 func = ani, frames =

np.arange(math.degrees(v1.ang),

math.degrees(v1.ang)+361, 10),

 interval = 100, repeat = False, blit =

True)

HTML(anim.to_html5_video())

Fig. 4. - Movie of the simulation of the four-bar linkage

mechanism in Python.

As visible in Figure 4 the trajectory generated by

the mechanism can be a subject to classification.

AI can be used to classify sections from the

generated trajectories and to provide

intelligently selected geometrical dimensions to

achieve certain subsection as lines, circles or

other curves. This approach can be used in the

early development stages of different

mechanisms, like flexible surgical instruments

[17], to special, reconfigurable architectures

[18], [19].

6. REFERENCES

[1] Plitea, N.; Hesselbach, J.; Pisla, D.; Raatz, A.;

Vaida, C.; Wrege, J.; Burisch, A. Innovative

Development of Parallel Robots and

Microrobots. Acta Teh. Napoc. Ser. Appl. Math.

Mec. 2006, 49, 5–26.

[2] Vaida, C.; Pisla, D.; Schadlbauer, J.; Husty, M.;

Plitea, N. Kinematic analysis of an innovative

medical parallel robot using study parameters. In

New Trends in Medical and Service Robots.

Mechanisms and Machine Science; Wenger, P.,

Chevallereau, C., Pisla, D., Bleuler, H., Rodić, A.,

Eds.; Springer: Cham, Switzerland, 2016;

Volume 39.

[3] Tucan, P.; Vaida, C.; Horvath, D.; Caprariu, A.;

Burz, A.; Gherman, B.; Iakab, S.; Pisla, D. Design

22

and Experimental Setup of a Robotic Medical

Instrument for Brachytherapy in Non-Resectable

Liver Tumors. Cancers 2022, 14, 5841.

https://doi.org/10.3390/cancers14235841

[4] Rus, G.; Andras, I.; Vaida, C.; Crisan, N.;

Gherman, B.; Radu, C.; Tucan, P.; Iakab, S.;

Hajjar, N.A.; Pisla, D. Artificial Intelligence-

Based Hazard Detection in Robotic-Assisted

Single-Incision Oncologic

Surgery. Cancers 2023, 15, 3387.

https://doi.org/10.3390/cancers15133387

[5] https://www.python.org/

[6] https://docs.anaconda.com/

[7] https://docs.sympy.org/latest/modules/

physics/mechanics/examples/four_bar_linkage_e

xample.html

[8] Sun M. Design and Kinematic Analysis of Planar

Four-Bar Linkages with an Object Oriented

Python Program. AMR 2014;1046:174–6.

https://doi.org/10.4028/

www.scientific.net/amr.1046.174.

[9] https://github.com/kevin-hannegan/4-Bar-

Linkage-Simulator

[10] Wang B, Du X, Ding J, Dong Y, Wang C, Liu

X. The Synthesis of Planar Four-Bar Linkage for

Mixed Motion and Function Generation. Sensors.

2021; 21(10):3504.

https://doi.org/10.3390/s21103504.

[11] G. Asaeikheybari, A. S. Lafmejani, A. Kalhor

and M. T. Masouleh, Dimensional synthesis of a

four-bar linkage mechanism via a PSO-based

Cooperative Neural Network approach, 2017

Iranian Conference on Electrical Engineering

(ICEE), Tehran, Iran, 2017, pp. 906-911, doi:

10.1109/IranianCEE.2017.7985168.

[12] ANTAL, T .A., Programming AutoCAD using

JAWIN from Java in JDeveloper, Acta Technica

Napocensis, Series: Applied Mathemathics and

Mechanics, ISSN 1221-5872, 53(3), p.481-486,

Cluj-Napoca, 2010.

[13] ANTAL, T. A., Java - Iniţiere - îndrumător de

laborator, Editura UTPRE, ediţia a II-a, Editura

RISOPRINT, 2006, p.264, ISBN 973-751-349-5.

[14] ANTAL, T. A., Elemente de Java cu JDeveloper

- îndrumător de laborator, Editura UTPRES,

2013, p.150, ISBN: 978-973-662-827-6.

[15] ANTAL, T. A., Mechanism displacement

analysis with AutoLisp in AutoCAD. Acta

Technica Napocensis, Series: Applied

Mathematics and Mechanics, ISSN 1221-5872,

45, p. 19-24, Cluj-Napoca, 2002.

[16] ANTAL, Tiberiu Alexandru. About the

transformation of a structured code to a library

in Java. ACTA TECHNICA NAPOCENSIS -

Series: Applied Mathematics, Mechanics, and

Engineering, v. 67, n. 1, mar. 2024. ISSN 2393–

2988.

[17] Vaida, C.; Plitea, N.; Pisla, D.; Gherman, B.

Orientation module for surgical instruments—A

systematical approach. Meccanica 2013, 48,

145–158.

[18] Nurahmi, L.; Caro, S.; Wenger, P.; Schadlbauer,

J.; Husty, M. Reconfiguration analysis of a 4-

RUU parallel manipulator. Mech. Mach. Theory

2015, 96, 269–289.

[19] Pisla, D.; Plitea, N.; Videan, A.; Prodan, B.;

Gherman, B.; Lese, D. Kinematics and design of

two variants of a reconfigurable parallel robot.

In Proceedings of the ASME/IFToMM

International Conference on Reconfigurable

Mechanisms and Robots, London, UK, 24 July

2009.

Utilizarea limbajului de programare Python în simularea mecanismului patrulater

Rezumat: Limbajul de programare Python împreună cu paradigma de programare orientată pe

obiecte sunt folosite pentru a scrie o aplicație de simulare utilizând biblioteca Matplot din Python.

Folosirea implementării Python a conceptului de vector oferă o reprezentare grafică vectorială a

mecanismului și produce traiectoria într-un format care poate fi utilizat ulterior în problema

clasificării traiectoriilor generate de mecanismul patrulater.

Cuvinte cheie: legătură cu patru bare, tolbă, Java, Python, simulare, traiectorie.

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca, Department

of Mechanical System Engineering, antaljr@mail.utcluj.ro, 0264-401667, B-dul Muncii, Nr.

103-105, Cluj-Napoca, ROMANIA.

