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Abstract: The strong development of the industry in the last period has led to the strong diversification of the 

materials used in engineering applications and also to the increase of the forces and speeds that appear in these 

systems. As a result, numerous researches were undertaken that took into account the non-linear behavior of 

materials during the operation of mechanical systems. Constituent laws can no longer be considered linear laws. 

Numerous forms of constitutive laws have been proposed to cover the existing non-linearities. Among them, the power 

law type laws were noted, in which the dependence is of an exponential type. In the work, results were obtained 

regarding strain and stress appearing in standard elements used in engineering. Also, the possibility of using 

Castigliano's theorem was studied in the case of application to materials with non-linear behavior, with a power law 

constitutive law. The obtained results can be useful to engineers because they offer quick results and with good 

precision. 
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1. INTRODUCTION  

 

The theory of elasticity, in its classic form, uses 

as the main hypothesis in a good part of its 

developments, the hypothesis of linearity that 

exists between stress and strain. Steel and other 

materials frequently used in engineering have, in 

most applications, this behavior and the results 

obtained using this hypothesis are generally 

good. There are still materials such as cast iron, 

copper, brass, lead, rubber, certain plastics and 

composite materials frequently used in modern 

technology, but for which this linear law no 

longer works. One of the most used models for 

the study of nonlinear materials is the power law. 

Non-linear constitutive models have started to 

be used more often recently due to the numerous 

and varied engineering applications in which 

such materials appear. 

Traditional results from continuum media 

mechanics are used to present the main problems 

involved in the use of nonlinear materials are 

presented in [1]. Some types of materials with 

nonlinear behavior such as boron/aluminum 

fiber composite with metal matrix are described 

in [2,3]. In the paper [4], probabilistic models are 

used for the analysis of nonlinear systems. 

Micromechanical models remain very powerful 

models for the analysis of porous materials with 

phases with nonlinear behavior. In [6,7], a 

technique is developed that automatically 

adjusts the Jacobian based on the nonlinear 

constitutive law. In [8], nonlinear isotropic 

materials are studied. The paper [9] presents a 

method for the elastodynamic analysis of a one-

dimensional nonlinear system. In [10], a useful 

study for post-buckling analysis is provided. The 

finite element method also offers in this case an 

important support for solving non-linear 

problems [11]. The technique is taken over by 

other authors in different versions [12-16]. 

Fiber-reinforced polymer composites, used 

more and more in real-world applications, 

present nonlinearities studied in [17,18]. 
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Models for hyperelastic materials are 

presented in [19,20]. 

More complex phenomena involving 

nonlinear materials are studied in [21]. Different 

types of constitutive laws are analyzed in 

[22,23]. Large, non-linear deformations are 

presented in [24]. Constitutive laws represent 

the starting point in the study of such problems 

[25-27]. The use of FEM has been used by 

numerous researchers [28–35]. 

Biomechanics problems where living 

materials are strongly nonlinear [36–40]. 

Numerous engineering applications involving 

nonlinear materials have been studied and the 

results communicated in interesting papers [41-

50], while theoretical advances in the field of 

nonlinear materials are presented in papers [51-

60].  

In this paper, the authors aim to make a 

contribution to the development of methods for 

the study of non-linear materials, whose 

dependence on stress can be conveniently 

described with a constitutive law of the power 

law type. 

 
2.  POWER LAW STRAIN-STRESS 

MODEL 

 

The description of the power low type 

constitutive law is made through the relations: 

[61]: 

n









=

0σ
σε  , (1)

respectively, 

                          

n









=

0τ
τγ   . (2)

In these relationships, n is denoted by a real 

number that represents the exponent of the 

power-law,  ε  is the normal strain, γ  is shear 

strain, σ  is denoted the normal stress, τ
represents the shear stress. The constants of 

material 0σ and 0τ have the same Young's 

modulus physical dimension [21]. These 

constants and the exponent n can be determined 

experimentally for every material considered. 

Hooke's law is a particular case when n = 1. 

When n = 0 the material is totally rigid whereas 

when n = ∞ we are in the plastic domain. 

In the classical theory of elasticity, it is 

considered, for most of the developments made, 

that the strain-stress relationship is a linear 

relationship. In reality, the linearity hypothesis 

is an approximation that describes very well 

most materials and their behavior within 

reasonable loading limits. However, in reality, 

materials are generally non-linear. Certain 

materials are strongly non-linear and for this 

reason it was found that special non-linear 

models must be developed for some of them. 

Among the multitude of models that were used 

in the study of these unusual materials, the 

constitutive law of the power-law type is 

counted. Although there are some studies on the 

behavior of these materials [21], an organized 

and systematic study has not been done until 

now. We mention the contribution [61] that 

completes the analysis of such systems. In the 

current work, we will deal with the possibility of 

using Castigliano's theorem to solve such 

problems. 

3. STANDARD LOADING CASES 

In previous papers and book the basic loading 
cases are studied and basic results are obtained 
considering the hypothesis of linear dependence 
strain-stress (Hook’s law) [61]. In the following 
we will adapt the main results to the case when 
we work with a power law dependency. We 
present these results [61]. 

3.1. Tension. Compression 

The simplest load and frequently encountered in 

practice is tension (pulling)/compression 

(squashing).Some real-world scenarios 

frequently encountered in engineering practice 

will be presented next, form an isotropic, 

homogeneous, with constant section beam.  

a) In the study will be used the Bernoulli's 

hypothesis. This means that  ct=ε  for a single, 

arbitrary section at each point of the middle 

average fiber. As a consequence, taking into 

account the Eq.(1), the stress is constant for all 

of the section's points:  

( )nct
1

0σσ = . (3)

If is written the equilibrium equation of the 

stresses acting on the section, it obtains: 
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AdAN
A

σσ ==  . (4)

N is normal load in the section. So, the stress can 

be determined with the relation:    

,
A

N=σ  (5)

and the beam's lengthening/shortening is:  

l
A

N
lll

nn









=








=⋅=∆

00 σσ
σε     ; (6)

where l is the length of the beam and A the area 

of its section. 

3.2. Torsion 

The precedent hypothesis for the material are the 

same, that is a beam with a circular section and 

the length l. We denote with R the section's 

radius and ρ the radius of the elementary element 

dA, on which the stress τ  is applied due to the 

torsional moment Mr. The equilibrium equation 

offer us: 

=
A

r dAM τρ . (7)

The sliding angle is: 

ρθγ = , (8)

It results: 

n

1

0γττ = . (9)

 

Using Eqs. (8) and (9) in Eq. (7), the moment 

becomes: 

r
n

A

n

n

n
r IdAM

1

0

11

0 θτρθτ == 
+

 
, (10)

It is denoted: 


+

=
A

n

n

r dAI

1

ρ
, 

(11)

the cross-section's generalized polar moment. 

So, the stress is:  

r

n
r

I

M

1

ρτ = , (12)

and the rotation angle: 

l
I

M
l

n

r

r








==

0τ
θϕ , (13)

3.3. Bending 
 

The basics of the bending in Strength of 

Materials in the hypothesis of the linear 

elasticity are considered known. Using the 

Bernoulli's assumption, the elongation of a fiber 

situated at a distance y from the neutral axis can 

be expressed by: 

ρ
ε

y
= , (14)

It is denoted with ρ  the average fiber's radius of 

curvature. The expression of stress is (see 

Eq.(1)): 

ny
1

0 







=

ρ
σσ . (15)

Considering equilibrium equation it results: 

n

z

A

n

n

n
A

i

I
dAyydAM

1
0

1

1
0

ρ

σ

ρ

σσ === 
+

 
, (16)

It is denoted:  


+

=
A

n

n

z dAyI

1

 
. (17)

the generalized axial moment of the cross 

section. Using Eq.(16) it results: 

n

z

i

I

M








=

0

1

σρ
. (18)

From Eq.(15) and Eq. (18) it is obtained the 

stress: 

z

n
i

I

yM

1

=σ . (19)

or: 

z

i

W

M
=σ

 
, (20)

In Eq.(20) it is noted: 

n

z
z

y

I
W

1
= . 

(21)
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(the generalized axial strength modulus). 

 

3.4. Shear 

We consider that Juravski's [62,63] assumption 

are used (Figure 4). The section is considered 

divide in two parts. The part between sections I 

and II and the section across a plane parallel to 

the neutral plane is separated by the distance y, 

and the equilibrium equation is: 

( ) 0

1

=−−+  dxdAdAd xy

AA yy

τσσσ . 
(22)

Considering the expression of stresses: 

z

n
i

I

yM

1

=σ
. 

(23)

and: 

( )
z

n
ii

I

ydMM
d

1

+
=+ σσ

. 

(24)

it obtains: 

bdxdA
I

ydM
xy

A z

n
i

y

τ=

1

 
. (25)

With the notation: 

=
yA

n
z dAyS

1

 
, (26)

it obtains: 

z

z
xy

bI

TS
=τ

 
. (27)

4. CASTIGLIANO’S THEOREM 

4.1. DEFORMATION ENERGY  

a) Internal energy. According to the nature of 

the request, the internal energy is given by the 

expressions:
 
 

=
σ

εσ
0
ddVL

V
i , (28)

or: 

=
τ

γτ
0
ddVL

V
i . (29)

Considering the constitutive power law it 

obtains: 

σ
σ

σε dnd
n

0

1−

= , (30)

and:
 
 

τ
τ

τγ dnd
n

0

1−

= , (31)

Using Eq.(30) and (31), the expressions of the 

internal energy are obtained:
 
 

( ) 
+

+
=

V

n

ni dV
n

n
L 1

01
σ

σ
, (32)

and:  

( ) 
+

+
=

V

n

ni dV
n

n
L 1

01
τ

τ , 
(33)

For tension/compression, if Eq. (5) is taken into 

account, we obtain: 

( ) 
+

+
=

l
n

nni dlN
An

n
L

0

1

01 σ
, (34)

where, if we consider constant the external 

tension/compression force N, we get: 

( ) nn

n

i
An

lnN
L

0

1

1 σ+
=

+

, (35)

For pure bending it results: 

( ) 
+

+
=

l
n
in

z
ni dlM
In

n
L

0

1

01 σ
, (36)

and, if the bending moment is considered 

constant: 

( ) n
z

n

n
i

i
In

lnM
L

0

1

1 σ+
=

+

, (37)

Finally, for the torsion of beams with a circular 

section, we obtain: 

( ) 
+

+
=

l
n
rn

r
ni dlM
In

n
L

0

1

01 τ
, (38)
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and, if the twisting moment is constant: 

( ) n
r

n

n
r

i
In

lnM
L

0

1

1 τ+
=

+

, (39)

b) Complementary energy. Analogously, if the 

nature of the loads is taken into account, the 

relationships are obtained, respectively: 

σε
σ

=
0
ddVL

V
c , (40)

=
τ

τγ
0
ddVL

V
c

, 
(41)

If Eq.(1) and Eq.(2) are taken into account, the 

relationships are obtained:

 

.)( kjPj ≠
 

 

( ) +
=

Vnc dV
n

L σ
σ 01

1
, (42)

and: 

( ) +
=

Vni dV
n

L τ
τ 01

1
. (43)

Thus, if we are dealing with 

tension/compression, it can be written:  

( ) 
+

+
=

l
n

nnc dlN
An

L
0

1

01

1

σ
, (44)

where, if we consider constant the external 

tension/compression force N, we get: 

( ) nn

n

c
An

lN
L

0

1

1 σ+
=

+

, (45)

If we are dealing with pure bending, then: 

( ) 
+

+
=

l
n
in

z
nc dlM
In

L
0

1

01

1

σ
, (46)

and, if the bending moment is considered 

constant: 

( ) n
z

n

n
i

c
In

lM
L

0

1

1 σ+
=

+

, (47)

When twisting the beams with a circular section, 

you get: 

( ) 
+

+
=

l
n
rn

r
nc dlM
In

L
0

1

01

1

τ
, (48)

and, if the twisting moment is constant: 

( ) n
r

n

n
r

c
In

lM
L

0

1

1 τ+
=

+

, (49)

In the case of compound loads, the sum of the 

energies is made. 

4.2. GENERALIZED CASTIGLIANO’S 

THEOREM  

It is considered a non-linear elastic system 

actuated by independent forces mPPP ,,..., 21 . 

By giving to a force kP

 

an elementary increase 

dPk, keeping the other forces constant, the 

complementary energy increases by: 

.dP
P

L
dL k

k

c
c ∂

∂
= (50) 

The complementary energy increases only 

due to the displacement of the Pi force, being 

equal to: 

.dPdL kkc δ= (51) 

The other forces )( kjPj ≠
 

by their 

displacement do not produce complementary 

mechanical work. Castigliano's generalized 

theorem results: 

.
P

L

k

c
k ∂

∂
=δ (52) 

Therefore, if the complementary energy of 

a certain elastic system (therefore also 

nonlinear) is expressed as a function of external 

(independent) forces, then the derivative of this 

energy in relation to one of the forces is equal to 

the displacement projected on the force at the 

point of its application . 

The theorem is demonstrated analogously 

in the case of the rotations that are produced by 

an externally applied couple. The theorem 

applies to: 

- calculation of displacements of nonlinear 

and linear systems; 
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- raising the undeterminacy of systems in 

the form of: 

.0
X

Lc =
∂
∂

(53) 

where X is the statically undeterminate reaction. 

 

5. RESULTS  

 

5.1. THE DEFORMATION TO BASIC LOAD 

a) For tension/compresion it can be written: 

( )

( )
.

1

1

1

1

0
0

0

1

0

dl
P

N
N

An

dlN
AnPP

L
l

l
n

nn

l
n

nn

c

∂
∂

+
=










+∂
∂=

∂
∂

=∆




+

σ

σ (54

) 

For N = P = ct, it results: 

.
0

nn

n

A

lN
l

σ
=∆ (55) 

For bending, if the bending moment M = Mi = 

ct is considered, we obtain, in the same way: 

.
2

1 2

0
0

0

l

I

M
dl

P

M
M

I

P

L
f

n

ii
l

n
in

z
n

c









=

∂
∂=

∂
∂=

 σσ

(56) 

and: 

.
1

0
0

0

l
I

M
dl

M

M
M

I

M

L

n

ii
l

n
in

z
n

c









=

∂
∂=

∂
∂=

 σσ

ϕ

(57) 

For the torsional stress, it is obtained, 

analogously: 

.
1

0
0

0

l
I

M
dl

M

M
M

I

M

L

n

r

rr
l

n
rn

r
n

c









=

∂
∂=

∂
∂=

 ττ

ϕ

(58) 

 

5.2. DEFORMATION OF A BEAM LOADED 

WITH A CONCENTRATED FORCE  

Using the presented method, the displacement 

in the middle of the beam will be calculated: 

.
2

2

0
0

dl
P

M
M

IP

L
f i

l
n
in

z
n

c

∂
∂

=
∂
∂

= σ (59) 

 
Figure 1. Beam loaded with a concentrated 

force 

Because: 

.
2
x

P
M i = (60) 

it results: 

.
2

x

P

M i =
∂

∂
(61) 

and: 

( )
.

22

22

2

22

0

2

2

0
0

+

+

+
=








= 

nn
z

n

nn

l n

n
z

n

In

xlP

dx
xPx

I
f

σ

σ
(62) 

If we consider n = 1, we find the well-known 

relationship from the Strength of Materials 

course: 

.
48

3

n
zEI

Pl
f = (63) 

 

5.3. DEFORMATION OF AN ANGLED 

BEAM  

The vertical (v) and horizontal (u) displacement 

of the free end is calculated. 

P

L
v c

∂
∂

= (64) 

where: 

( )
( ) ( ) 



 +

+
=  

++l h nn

n
z

c dyPldxPx
In

L
0 0

11

01

1

σ
(65

) 

 

Figure 2. Angled beam 
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It obtains: 

.
2

2
2

0

hl
n

l

I

P
v n

n

n
z

n

n








 +
+

= +
+

σ (66) 

 

0P

L
u c

∂
∂

= (67) 

where:

 

 

( )
( ) ( ) 



 −+

+
=  

++l h nn

n
z

nc dyPlyPdxPx
In

L
0 0

1

0

1

01

1

σ (68) 

After performing the calculations, you will get: 

( )

( )
( ) ( )[ ]22

0

00

21

0

1

1

1

1

++

++

−−−
+

+
+

=

nn

n
z

n

nn

n
z

nc

PlPlhP
PIn

lP
In

L

σ

σ
(69) 

Then it results for u: 

( ) ( )[ ]
( )( )

( )( )[ ]
( )

.
1

2

21

2

00

2

00

2

00

22

0

PIn

hPlhPnP

PInn

PlPlhP
u

n
z

n

n

n
z

n

nn

σ

σ

+
−+

+

+
++

−+−−
=

+

++

(70) 

If 00 =P , Eq. (70) is undetermined. Using 

l'Hospitales' rule, we get: 

.
2 0

2

I

hlP
v

n
z

n

nn

σ
−= (71) 

5.5 THE UNDETERMINATION OF A 

BEAM  

Let X be an undeterminate static reaction 

(Fig.3). The bending moments in the two regions 

of the bar are: 

.
42

; 21

Px
x

l
XMXxM −







 +== (72) 

 
Fig. 3. Undetermined beam 

Write the zero displacement condition in 

support 2: 

( )

0
242

1

1

2

0
0

2

0
0

=






 +






 −






 ++ 



dxx
lPx

x
l

X
I

xdxXx
I

l n

n
z

n

nl

n
z

n

σ

σ

  (73)

 

If the integration is done, it results after 

elementary transformations: 

 

0
1

2

1

32
2121

1

12
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







+
+−






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
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


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+−







 −+






 −




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

+

+

n

n

P

X

P

X

n

n

P

X

P

X

P

X

P

X

n

nn

(74) 

Introducing the new variable: 

.
P

X
t = (75) 

the following equation is obtained: 

( ) ( )

0
1

2

1

32
2121

1

12

=







+
+−−









+
+−−+−

+

+

n

n
tt

n

n
tttt

n

nn

(76) 

which will give the unknown force X, after 

solving the algebraic equation using a numerical 

method. 

6. DISCUSSION AND CONCLUSIONS  

In the classic theory of elasticity, a basic 

hypothesis is the linearity of the dependence 

between strain and stress, the hypothesis on 

which a large part of this theory is built. Of 

course, in the real world this hypothesis is only 

a very convenient approximation for the 

development of the theory. In reality, practically 

all materials are non-linear, but for materials 

mainly used in engineering applications, the 

hypothesis of small deformations and Hooke's 

law work excellently. However, there are also 

materials that are strongly non-linear (cooper) or 

that are subjected to loads high enough for the 

non-linearity to develop significant negative 

effects. The need to use these materials, for 

various reasons, as well as the development of 

the industry through the appearance of structures 

of high complexity or with large dimensions and 

loaded with great forces, led to the need to study 

such non-linear materials. Different nonlinearity 
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models were considered and used. Among them, 

the models that use a constitutive power law type 

law stand out. Some applications using this law 

are shown in the references used. In the current 

work, we were concerned with the possibility of 

using Castigliano's theorem for materials whose 

constitutive law is of the power law type. Some 

examples illustrate the possibility of using this 

theorem in the specific conditions given by 

leaving the linear law and replacing it with an 

exponential law. Some differences are 

highlighted that appear by comparison with the 

classical calculation when the strain-stress 

dependence is linear. The cases presented in this 

paper can provide a starting point for future 

research on the behavior of such materials. The 

results can be extended to other types of 

constitutive laws, in the case of some 

engineering applications that claim this. These 

applications become extremely necessary in the 

contemporary context of the development of 

new and composite materials. The obtained 

results can be easily used in future applications, 

being able to offer quick and simple solutions, 

desired by any designer. 
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Teorema lui Castigliano în studiul elementelor structurale elastice neliniare cu modelul 

constitutiv al legii puterii   

 
Rezumat. Dezvoltarea puternica a industriei in ultima perioada a dus la diversificarea puternica a materialelor utilizate 

in aplicatii ingineresti si, de asemenea la cresterea fortelor si vitezelor care apar in aceste sisteme. Ca urmare s-au 

intreprins numeroase cercetari care au tinut seama de comportarea nelineara a materialelor in timpul functionarii 

sistemelor mecanice. Legile constitutive nu mai pot fi considerate legi lineare. S-au propus numeroase forme de legi 

coinstitutive care sa acopere neliniariutaile existente. Printre acestea s-au remarcat legile de tipul power law, in care 

dependenta este de tip exponential. In cadrul lucrarii s-au obtinut rezultate privind strain si stress aparute in elemente 

standard utilizate in inginerie. De asemenea a fost studiata posibilitatea utilizarii teoremei lui Castigliano in cazul 

aplicarii la materiale cu comportare nelineara, cu lege constitutiva de tip power law. Rezultatele obtinute pot fi utile 

inginerilor caci ofera rezultate rapide si cu o buna precizie. 

Cuvinte cheie: ecuație constitutivă neliniară; legea puterii; Teorema lui Castigliano; tensiune; comprimare; aplecare; 

Forfecare; Torsiune  
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