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Abstract: The article presents a dynamic analysis of a straight pipe, elastically clamped at both ends. The 

stiffnesses of the two angular springs are equal. The flowing fluid is incompressible and heavy, moving 

through the pipe at a constant speed. For three different values of the stiffness of the elastic clamping of 

the pipe, the relationships between the fluid velocity and the natural circular frequencies of the pipe are 

determined. In the calculations, the influence of the Coriolis force has been neglected. Considering the fact 

that pipeline failures and associated fluid leaks lead to environmental, financial, and health issues, the 

main objective of the article is to determine the critical fluid velocity for each of the studied pipes, at which 

they lose stability. The study provides insights into how the rigidity of both elastic springs affects the 

system's stability. 

Key words: pipe, fluid, natural frequency, critical velocity, elastic supports, dynamic stability, Coriolis 

force. 
 

1. INTRODUCTION  
  

In recent years, extensive research has 
focused on the interaction between fluids and 
structures, with the dynamic behavior of fluid-
carrying pipes being a key issue in this field. The 
dynamic stability of these structures has 
garnered significant attention from both 
scientific research and industry. Since fluid-
conveying pipes are integral to many 
engineering systems and serve as a primary 
means of transporting oil and gas, ensuring their 
stability is crucial. Any loss of stability in these 
pipes can result in damage with far-reaching 
economic, environmental, and societal 
consequences. 

In their study, Zhang, Gorman and Reese [1] 
investigated the dynamic stability of pipes with 
fluid flow. The finite element method was 
employed to analyze the vibrations of the fluid-
conveying pipes. The pipes in question were 
supported at both ends by joints or clamps. 
Lagrange's principle and the Ritz method were 
also applied in their analysis. 

Jum’a, Al-hilli and Sattar [2] examined pipes 
with fluid flow under various support 

conditions, including simply supported beams, 
cantilever beams, beams clamped at both ends, 
and beams composed of separate sections 
connected by joints. Both straight and curved 
pipes are considered. To increase energy 
dissipation, dampers were added to the pipes. 
Theoretical conclusions, numerical modeling, 
and experiments on the vibrations of fluid-
conveying pipes are discussed. 

Bao [3] investigated the dynamic stability of 
pipes with various types of supports under the 
influence of fluid flow. The differential equation 
for the transverse displacements of the pipe’s 
axis was discretized using the Galerkin method. 
The critical fluid velocity was determined. The 
stability of the pipe was also studied using 
dynamic simulation methods.  

Once more, Bao [4] conducted a study on the 
dynamic characteristics of the free vibrations of 
a fluid-conveying pipe with various types of 
supports. A numerical analysis was performed, 
and the natural circular frequency was 
determined based on the stiffness of the elastic 
supports. 

Siba et al. [5] conducted a review of studies 
related to the analytical, numerical, and 
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experimental investigation of vibrations in fluid-
conveying pipes—specifically water, oil, gas, 
and steam. Mathematical models have been 
proposed. 

Shankarachar and Radhakrishna [6] 
investigate the dynamic stability of a pipe 
supported at both ends by a linear and a 
rotational spring. The frequency equation is 
derived using Euler-Bernoulli theory. An 
energetic approach using Hamilton's principle is 
applied to the differential equation describing 
the vibrations of the fluid-conveying pipe. It is 
found that as the velocity of the flowing fluid 
increases, the circular frequency of the free 
vibrations decreases. 

In their work, Mahato and Luintel [7] present 
a dynamic study of a pipe with fluid flow, 
supported by various types of supports. They 
derive a formula for the fluid acceleration and 
subsequently establish the differential equation 
for the transverse displacements of the pipe's 
axis. The Galerkin method is applied to this 
equation, and the numerical investigation is 
conducted using the Runge-Kutta method. The 
results indicate that as the fluid velocity 
increases, the transverse displacements of the 
pipe's axis and its bending moments also 
increase. The study examines two different 
materials for the pipe. 

The influence of the Coriolis force on the 
dynamic stability of fluid-conveying pipes has 
been studied in several articles. 

Kuye and Olayiwola [8] investigated the 
dynamic stability of a pipe with fluid flow, 
supported at both ends as a simple beam. They 
solved the differential equation for the 
transverse displacements of the beam using 
integral Fourier-Laplace transformation. Their 
findings revealed that ignoring the Coriolis force 
increased the instability of the pipe. 

Santi et al. [9] conducted an investigation on 
two types of tubes with fluid flow. In one case, 
the pipe ends are clamped, while in the other, 
they are freely supported. They applied the finite 
element method using Hermitian shape 
functions to address the dynamic problem. By 
considering two finite elements of equal length, 
their results were found to align with the 
analytical solution using the Hermitian shape 
function, particularly for the first circular 
frequency of oscillation. 

In his article, Udoetok [10] investigates the 
oscillations of pipes that are clamped at both 
ends and those that are hinged. The differential 
equation governing the transverse displacements 
of the pipe axis does not account for the 
influence of Coriolis acceleration. However, the 
applied method for studying oscillations 
incorporates the effect of centripetal force 
resulting from the transverse displacements of 
the pipe axis. The author presents expressions 
for the circular frequency of oscillations, the 
function of transverse displacements, the critical 
fluid velocity, and the maximum stress. The 
circular oscillation frequencies obtained are 
compared with published experimental results. 

The objective of this study is to investigate 
the dynamic stability of straight pipes with 
elastic restraints against rotation that convey 
fluid, without considering the Coriolis force. 

 
2. PROBLEM FORMULATION 
  

In this study, the dynamic stability of a fluid-
conveying pipe is analyzed using the Euler-
Bernoulli beam theory, with the Coriolis force 
omitted from the calculations. 

The investigated beam is elastically clamped 
at both ends. Its static scheme shown in Fig.1.  

 

 
Fig. 1. Static scheme of the pipe under investigation 

 
The rigidity of the rotational springs is 

denoted by k  in Fig. 1 

The following differential equation describes 
the transverse oscillations of a straight pipe 
conveying an inviscid fluid. 
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In equation (1), the function ( )txw ,  

represents the lateral displacement of the pipe's 
axis. The other symbols in equation (1) include: 
the time t , the pipe's cross-sectional rigidity EI

, the velocity of the flowing fluid V , the mass of 
the pipe per unit length pm , and the mass of the 

conveyed fluid per unit length of the pipe fm . 

When the Coriolis acceleration is neglected, 
equation (1) takes the following simplified form 
[10]. 

 

 +
∂
∂+

∂
∂

2

2
2

4

4

x

w
Vm

x

w
EI f

 ( ) 0
2

2
=

∂
∂++

t

w
mm pf . (2) 

 
The boundary conditions for solving equation 

(2) for the beam with the static scheme shown in 
Fig. 1 are: 

 
 ( ) ( ) 0,,0 == tlwtw ; 

 ( ) ( ) 0,0,0 =′+′′ twktwEI ; 
 ( ) ( ) 0,, =′+′′ tlwktlwEI . (3) 

 
The solution to the differential equation (2) is 

sought in the form 
 

 ( ) ( ) ( )txWtxw ωsin, = . (4) 
 
In (4) ω  is the circular frequency of the pipe. 
A polynomial solution is assumed for the 

function ( )xW . 
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Applying the boundary conditions (3) yields 

the following results for the coefficients in (5). 
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Substituting (4) into (2) yields the following 

equation. 
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By using the average values of centripetal 

force and deflection, x  will be eliminated from 
the equation (10) [10]. 
Тhe average value of the centripetal force is 

determined using the sketch presented in Fig. 2. 
 

 
Fig. 2. Centripetal forces acting on the investigated pipe 

 
The axis of the pipe exhibits varying 

curvature with x  and experiences two changes 
in direction along the deflected pipe at 1x  and 

2x . These points, where the direction changes 
and centripetal force is zero, are identified by 
solving the following equation for zero. 
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As a result, the following quadratic equation 

is obtained. 
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The roots of equation (12) correspond to the 
deflection points of the pipe’s axis at 1x  and 2x . 

The average curvatures in each of the three 
zones along the length of the pipe are as follows: 

For ],0[ 1xx ∈  and ],[ 2 lxx ∈  
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In (14) and (16) 
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From the geometry in the region ],0[ 1xx ∈ , 

the curvature of the pipe is approximated as 
follows [10] 
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By equating equations (14) and (18), the 

value of the coefficient 5B  in the region 

],0[ 1xx ∈  is obtained.  
The value of the angle θ  can be determined 

based on the geometric relations (Fig.2). 
Knowing θ , one could calculate the 

centripetal force for the entire beam. 
In formula (10) ( )xW  is represented as the 

peak of the pipe’s deflection 
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Knowing the centripetal force of the beam 

and the peak value of ( )xW  through the use of 
equation (10), the circular frequency of the 
system can be calculated. 
  
3. RESULTS AND DISCUSSION  
   

Numerical analyses have been conducted for 
the pipe depicted in Fig. 1. 

The pipe’s dimensions and material 
properties are as follows: inner radius of the 
cross-section mRin 05.0= , outer radius of the 

cross-section mRout 055.0= , modulus of 

elasticity GPaE 210= , density of the flowing 

fluid - 
3/1000 mkN=ρ , density of the material 

of the pipe - 3/7850 mkN=ρ .  
When the circular frequency reaches zero, the 

system is on the verge of losing stability. The 
fluid velocity corresponding to the circular 
frequency 0=ω  is referred to as the critical 
velocity crV .  

The natural frequency of the system is 
influenced by all its parameters. Therefore, if all 
parameters are kept constant (except for fluid 
velocity), the corresponding critical velocity can 
be determined. 

Fig. 3 illustrates the relationship between the 
first circular frequency ω  of the system and the 
velocity of the conveyed fluid V  for three 
different rigidities of the elastic clamping of the 
pipe.  

From the results presented in Fig. 3, it can be 
concluded how the stiffness of the elastic 
clamping affects the stability of the analyzed 
pipe. 
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Fig. 3. The relationship between the first natural frequency ω  of the pipe and the velocity of the conveyed fluid V  

 
 

4. CONCLUSION  
  

Neglecting the Coriolis force when studying 
the dynamic stability of fluid-conducting pipes 
allows for a quick and easy determination of the 
critical fluid velocity. The suggested method can 
be viewed as a strong competitor to other well-
established techniques, like the Matrix method, 
for the dynamic analysis of fluid-conveying 
pipes. 

This study seeks to assess the impact of 
elastic clamping stiffness on the dynamic 
stability of a fluid-conveying pipe, elastically 
restrained against rotation at its both ends.  

The findings demonstrate that higher 
clamping stiffness enhances the stability of the 
pipe, with increased rigidity leading to a rise in 
the critical velocity. 

The results also show that fluid velocity has a 
significant effect on the system’s dynamic 
behavior and may affect its safety. To avoid 
potential damage, operators should ensure that 
transport velocities do not exceed the system's 
critical velocity. ¶  
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STABILITATEA DINAMICĂ A UNEI CONDUCTE DREPTE CARE TRANSPORTĂ 
FLUID, FIXATĂ ELASTIC ÎMPOTRIVA ROTAȚIEI LA AMBELE CAPETE 

 
Rezumat: Articolul prezintă o analiză dinamică a unei conducte drepte, fixată elastic la ambele 
capete. Rigiditățile celor două arcuri unghiulare sunt egale. Fluidul care curge este incomprimabil 
și greu, deplasându-se prin conductă cu o viteză constantă. Pentru trei valori diferite ale rigidității 
fixării elastice a conductei, sunt determinate relațiile dintre viteza fluidului și frecvențele circulare 
proprii ale conductei. În calcule, influența forței Coriolis a fost neglijată. Având în vedere faptul 
că defecțiunile conductelor și scurgerile de fluid asociate duc la probleme de mediu, financiare și 
de sănătate, obiectivul principal al articolului este de a determina viteza critică a fluidului pentru 
fiecare dintre conductele studiate, la care acestea își pierd stabilitatea. Studiul oferă informații 
despre modul în care rigiditatea celor două arcuri elastice influențează stabilitatea sistemului. 
Cuvinte cheie: țeavă, fluid, frecvență naturală, viteză critică, suporturi elastice, stabilitate 

dinamică, forță Coriolis. 
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