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Abstract: In this paper we analyze the kinematics of the human finger joints versus an anthropomorphic 

robotic finger using wavelet theory. As such, we propose an approach to evaluate the kinematics of both 

human and a robotic finger joins by using the decomposition of the signal and comparing the detail energy 

levels. The results show that the detail energy of the signal corresponding to level 5 for robot finger is much 

lower than the similar energy of human joint finger. 
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1. INTRODUCTION  

  
The human hand is one of the most complex 
tools from the anatomical and biomechanical 
perspectives. The human hand plays a very 
important role in the life of an individual by: 

• helping the human being while eating or 
procuring aliments; 

• maintaining personal hygiene; 
• ensuring all the actions required for 

producing goods; 
• key tool in the non-verbal communication 

process with other individuals by sign 
gestures made with human hand and/or 
fingers, many times more important than 
the verbal communication; 

• ensuring the non-verbal communication 
by writing, drawing, painting, music etc; 

• gathering sensorial information from the 
outside environment (tactile, temperature, 
pressure etc.) through the fingers and 
hand skin. As one could observe, the 
human hand surpasses any other tool in 
terms of functionality, thus enriching the 
life in so many ways.   

From the anatomical perspective, the human 
hand is a system which consists of multi-degrees 
of freedom anatomical joints which helps to 
produce the human movements of the phalanxes, 
fingers, palm and/or the entire upper hand. In 

doing so, each finger could be associated with 4 
degrees of freedom mechanical structure (the 
index, middle, ring and little fingers), except the 
thumb finger which has 3 degrees of freedom. 
Moreover, two degrees of freedom anatomical 
joint (the hand-forearm joint) enable the motions 
of flexion-extension and abduction-adduction of 
the entire human hand with respect to the 
forearm, as one could observe from Figure 1.  

 
Fig. 1. The human hand skeleton (DIP- distal 

interphalanx joints, PIP- proximal interphalanx joints, 
and MP- metacarpal joints [1]) 

 
The human hand skeleton has 8 carpal, 5 
metacarpal and 14 finger bones, which form 12 
intercarpal joints, 8 joints formed between 
carpal and metacarpal bones, 4 joints between 
metacarpals, 5 joints (2 D.O.F.) formed between 
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metacarpal and finger bones (phalanxes) – MP 
joints, and 9 joints (1 D.O.F.) between phalanxes 
– PIP and DIP joints, as shown in Fig. 1. 
Therefore, in total the human hand skeleton 
comprises 27 bones and 38 joints from which 19 
D.O.F only at the phalanxes level. 

The kinematics of human and/or robotic 
finger joins was analyzed previously using 
various methods. For example, in paper [2] the 
kinematics of finger and human upper arm is 
studied using a motion capture system, while in 
[3, 4] the design and the robotic joints of an 
anthropomorphic hand-arm system are analyzed 
using chaos theory. The kinematic and dynamic 
analysis of the index finger has been performed 
employing the Runge-Kutta method by Zhifei, J. 
et al. in [5]. 

 Our approach is to collect data regarding 
the human finger joints and a robot finger using 
a goniometer data acquisition system and to 
analyze each signal using wavelet theory. The 
aforementioned theory was first developed by 
the work of Daubechies [6] and Mallat [7] and 
used in various fields (economics, mechatronics, 
biomechanics, medicine etc.) to analyze certain 
signals of interest. For example, William, L. et 
al. [8] have used different wavelet families 
(Daubechies and Meyer) to analyze individual 
M-waves, signals collected from forearm 
muscles using surface EMG stimulation of 
patients with complete spinal cord injuries. 
Wavelets are used to remove noise and artefacts 
for the EMG signals collected from the arm 
muscles like biceps brachii and triceps brachii 
by Gradolewski, D., et al. [9]. Muscle fatigue 
occurrence is studied with the aid of wavelet 
transform in paper [10]. A method of 
recognizing human finger motion using Wavelet 
Transform of surface EMG signals collected 
from the arm is proposed by authors in paper 
[11]. Moreover, in paper [12], Boostani, R. et. al 
propose the evaluation of the 19 forearm EMG 
signal features for the control of a prosthetic 
hand employing wavelet theory. Wavelet 
decomposition of the signal and computation of 
energy for each signal in case of healthy human 
volunteers carrying asymmetric loads, from 0-
12.5 kg in 2.2 kg increments, is carried out by 
Berceanu C. et al. in [13].  

2. DATA COLLECTION AND 

    PROCESSING  
 
The experimental data was acquired in the 
Laboratory of Biomechanics from the INCESA 
– Center of Advanced Research of the 
University of Craiova. 
The human middle finger flexion-extension 
motion (see Fig. 2) was recorded for four 
volunteers (one male and three females), with 

mean age of 34.5 (SD = 10.84), height (m) 

1.78 (SD = 0.049), and weight (kg) 68.7 (SD = 

10.21), having no pain symptoms and a 

robotic finger. The details of the human 

volunteers are depicted in Table 1. The 

anthropometric data for the volunteer’s 

fingers are given in Table 2. 
Table 1 

The human subjects which participated to the study 

Subject Age Sex Height 
[m] 

Weight 
[kg] 

1 27 F 1.81 68 
2 27 M 1.83 83 
3 34 F 1.72 59 
4 50 F 1.76 65 

 
Table 2 

Middle finger phalanx lengths  

Subject Proximal 
[mm] 

Medial 

[mm]  
Distal 

[mm] 

1 32 23 25 
2 32 24 25 
3 34 26 27 
4 30 25 27 

Avg. [mm] 

(SD) 

32 
(1.63) 

24.5 
(1.29) 

26 
(1.15) 

Robot 28 22 26 

 
The data was collected using Biometrics Ltd. 
data acquisition system [14-20], employing a 
F35 sensor (goniometer) placed on the middle 
finger, as shown in Fig. 2. 
 
3. RESULTS 
 
Fig.3 shows the PIP joint law for a human 
subject with two signals, i.e. the raw signal and 
filtered (noise removed) signal. The clean signal 
was obtained using MATLAB software, with the 
aid of Daubechies’s function of first order (db1 
type). 
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Fig. 2. The goniometer placed on the finger used for data 

acquisition [14] 

 
Fig. 3. The raw and filtered human finger signal for PIP 

joint  
 

Moreover, in Fig. 4 one can observe a 
comparison between filtered PIP and MP motion 
signals for the four human subjects vs. the same 
robotic finger motion.  

 

 

 
Fig. 4. The displacement for PIP and MP joints, for all 

five signals 

One important tool to characterize the 
periodicity or instability of the motion is the 
Poincaré map. If the points are scattered on the 
map as motion evolves in time one can conclude 
that the motion is highly instable, the case of the 
human finger motion, see Fig. 5 a). By contrast, 
if the points accumulate on the map (forming a 
nucleus) one can say that the motion is much 
stable or periodical, the case of robotic finger 
motion, shown in Fig. 5 b).  
We have done such an analysis with the MP joint 
motion for both human and robotic finger. In 
Figure 5 is presented the Poincaré map for 
human subject no. 3 vs. robotic finger. We can 
observe a similar pattern for all the subjects 
regarding the MP joint. Moreover, Poincaré map 
presents similar results for PIP joint, all the 
human volunteers. In Figure 6 we present the 
phase plane plots for the PIP joint both for 
human, Fig. 6 a), and robotic finger, as shown in 
Fig. 6 b). 
 

 

 
Fig. 5. The Return map of the maxima for MP joint, 

human a) vs. robot b)
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a) 

 
b) 

Fig. 6. The phase plane for PIP joint, human (a) vs.  
robot (b) 

 
 In order to assess other differences in the 
finger joints signals of human vs. robot, we have 
conceived a MATLAB algorithm, which 
decomposes the original signal into 
approximation, and detail functions (five levels, 
see Fig. 7 and 8). The analyzed signals are 
decomposed using Daubechies’s wavelet 
functions, db8 type. 

For discrete signals (countable in time 
domain), like PIP joint, the Discrete Wavelet 
Transform (DWT) will decompose the signal in 
a series of approximation (smoothing) and detail 
functions. As such, the initial joint signal can be 
written like in equation (1): 
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The approximation and detail energy for each 
decomposition level are computed using the 
equations (2), while the full energy of the signal 
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It must be noted that in eqns. (1), (2), and (3), 
R=5 is the level of signal decomposition;  

][nA
R

 is the approximation function, obtained 

by applying a low-pass filter and down sampling 
from the initial joint signal, as shown in Fig. 7;  

][nDi  are the detail functions, obtained by 

applying a high-pass filter and downsampling; 
n=720 is the number of samples for the signal.  
N is the number of detail and approximation 
coefficients at each decomposition level.  
 

 
Fig. 7. The signal decomposition technique using 

wavelet transform, S is initial joint signal 
 
The detail energy for all the five levels is shown 
and compared in Fig. 9. As one could observe 
from this figure, the detail energy for level 5 is 
significantly smaller for robot finger joint signal 
vs. human finger joint signal. 
 

 
samples 

 
Fig. 8. The decomposition of the signal in approximation 

and detail functions for PIP joint human subjects 
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Fig. 9. Comparison between the detail energies of human vs. robot finger motion, PIP joint (five levels of 

decomposition) 
 
4. CONCLUSIONS  
 

In this paper we have analyzed, using wavelet 
decomposition technique, some signals acquired 
from the human finger motion of healthy 
individuals and compared these with the same 
motion of a robotic anthropomorphic finger. We 
have found that the detail energy for level 5, 
corresponding to PIP joint, is significantly 
smaller for robotic finger vs. human fingers 
motion, as shown in Fig. 9 and Fig. 10.  

 
a) 

 
b) 

Fig. 10. The signal detail energies corresponding to the 
5th decomposition level human vs. robot PIP joint (a) and 

MP joint (b) 
 

This is explainable due to periodic nature of the 
motion of the robotic finger. In the case of 
human finger motion, after some time and 
motion cycles, muscle and ligament fatigue 
come in place, thereby affecting the repeatability 
of the motion (both in amplitude and cadence). 

An interesting continuation of this study will 
be to include human subjects with some 
impaired motion control (arthritis, for example) 
and compare the motion, from the energy level 
perspective, with the healthy subjects’ motion. 
Furthermore, we propose the algorithm 
developed in MATLAB as a method to quantify 
the differences between kinematic stability of 
the movements of a healthy subject and a patient 
affected by diseases of the upper limb joints. 

 

 5. REFERENCES  

 
[1] Sinelnikov, R.D., Atlas de Anatomia Huma na, 

MIR Publishing House, Moscow, 1975  
[2] Berceanu, C., et al., About an experimental 

approach used to determine the kinematics of the 

human finger, Journal of the Solid State 
Phenomena, Robotics and Automation Systems, 
Vol. 166-167, pp. 45-50, 2010 

[3] Berceanu, C., Tarniţă, D., Mechanical design and 

control issues of a dexterous robotic 

hand. Advanced Materials Research, 463, 
pp.1268-1271, 2012. 

[4] Tarnita, D., Marghitu, D., Analysis of a hand arm 

system, Robotics and Computer-Integrated 
Manufacturing, 29(6), pp. 493-501, 2013. 



124 
 

 

[5] Zhifei J. et al., The Kinematic and Dynamic 

Analysis of a Bionic Manipulator, J. Phys.: Conf. 
Ser. 1948, 012078, 2021. 

[6] Daubechies, I., Wavelets: A different way to look 

at subband coding, In Proc. 1st NJIT Symposium 
on Wavelets, Subbands and Transforms, April 
1990. 

[7] Mallat, S., Theory for multiresolution signal 

decomposition: The wavelet representation. 
IEEE Trans. Pattern Anal. Mach. Intell., 11(7), 
pp. 674–693, 1989. 

[8] William, L., et al., A method based on wave-lets 

to analyse overlapped and dependant M-Waves, 
Journal of Electromyo-graphy and Kinesiology, 
Vol 63, 102646, 2022 

[9] Gradolewski, D., Tojza, P.M., Jaworski, J., 
Ambroziak, D., Arm EMG Wavelet-Based 

Denoising System. In: Mechatronics - Ideas for 
Industrial Application. Advances in Intellig Syst 
and Computing, Vol. 317, 2015.  Springer, Cham. 

[10] Kumar, D.K., et al., Wavelet Analysis of Surface 

Electromyography to Determine Muscle Fatigue, 
IEEE Transactions on Neural Systems and 
Rehabilit Eng 11(4), 400–406, 2003. 

[11] Jiang M., Wang R., et al., A Method of 

Recognizing Finger Motion Using Wavelet 

Transform of Surface EMG Signal, In Proc IEEE 
Eng Med Biol. Soc. 2005, 2672-4.  

[12] Boostani R., Moradi M.H., Evaluation of the 

forearm EMG signal features for the control of a 

prosthetic hand. Physiol Meas.  
    2003 May, 24(2):309-19. PMID: 12812417 
[13] Tarnita, D., et al., Experimental 

Characterization of Human Walking on Stairs 

Applied to Humanoid Dynamics, Advances in 
Robot Design and Intelligent Control, RAAD16, 
Springer, 540, pp.293-301, 2017. 

[14] Biometrics Ltd., Goniometer&Torsiometer 
Operating Manual, available at 
https://sportsciencesafety.wordpress.stir.ac.uk/fil
es/2020/09/biometricsGoniometer_UserGuide.p
df 

[15] Tarnita, D., Marghitu, D.B., Nonlinear 

dynamics of normal and osteoarthritic human 
knee. Proceedings of the Romanian 
Academy, 18(4), pp.353-360, 2017 

[16] Berceanu, C., Marghitu D.B., et al., Gait 

Analysis Parameters of Healthy Human Subjects 

with Asymmetric Loads, Computer Methods in 
Biomechanics and Biomedical Engineering, Vol. 
19(8), pp. 855-863, 2015. 

[17]Tarnita, D., Berceanu, C. Tarnita, C., The three-

dimensional printing–a modern techno-logy used 

for biomedical rototypes. Materiale 
plastice, 47(3), pp.328-334. 

[18] Geonea, I.D.; et al., Dynamic Analysis of a 

Spherical Parallel Robot Used for Brachial 

Monoparesis Rehabilitation. Applied 

Sciences, 2021, 11, 11849. 
[19] Tarnita, D., Georgescu, M., Tarnita, D.N., 

Applications of Nonlinear Dynamics to Human 

movement on Plane & Inclined Treadmill, New 
Trends in Medical and Service Robots, Vol 39,  
59-73, 2016. 

[20] Tarnita, D., Geonea., I.D., et. al. Analysis of 

Dynamic Behavior of ParReEx Robot Used in 

Upper Limb Rehabilitation, Appl. Sci., 12(15), 
pp. 7907, 2022. 

 

Analiza cinematică a mișcării degetului uman și robotic folosind teoria WAVELET  
Rezumat: În această lucrare s-a făcut analiza cinematică a mișcării de flexie-extensie a degetului uman și a unui deget 
robotic,  fiind comparate rezultatele folosind tehnica descompunerii semnalului cu ajutorul funcțiilor și teoriei wavelet. 
Lucrarea propune o metodologie de evaluare a cinematicii articulațiilor formate între falangele degetului uman și ale unui 
deget robotic prin compararea energiei de detaliu a semnalului.  
Cuvinte Cheie: deget uman, deget de robot, cinematica, teoria WAVELET, biometrica, goniometrie 
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