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Abstract: This paper proposes a detailed study on the evaluation of deflection and rotation for two distinct 

types of supports, aiming to analyze structural behavior under various loading conditions. To conduct this 

analysis, the Taylor series expansion method is employed, a mathematical tool that allows for the 

approximation of nonlinear functions by incorporating higher-order terms. Thus, in the context of 

deflection and rotation analysis, various loading scenarios are investigated, each with its specific 

characteristics, and the Taylor series expansion is applied to approximate structural behavior at points of 

interest, considering initial conditions and the characteristics of the support type. This methodology 

facilitates obtaining approximate solutions for deflection and rotation, particularly in regions where exact 

solutions are difficult to determine due to the complexity of geometry or load distribution. A central aspect 

of the study is the identification of the limitations of the Taylor series expansion method concerning the 

analyzed cases. 
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1. INTRODUCTION 
 

The calculation of deflection and 
rotation is essential for verifying the rigidity of 
statically determinate structures. This process 
supports damage prevention by limiting 
deformations, enhances structural performance, 
and ensures durability, achieving an optimal 
balance between safety and material efficiency 
[1-6]. 

The evaluation of deflection y(x) and 
rotation φ(x) in statically determinate structures 
can be performed using a variety of analytical 
and numerical methods, each having specific 
applications depending on the complexity and 
type of structure being analyzed. The differential 
equation of the deformed neutral axis, based on 
the relation d²y(x)/dx² = ±Mz(x)/E·Iz, represents 
a classical approach, providing a direct solution 
for evaluating the deformations of a beam under 
load. The double integral method allows for the 
integration of the bending moment over the 
entire length of the structure to determine y(x) 

and φ(x), while Mohr's theorem uses moment 
diagrams to calculate deflections at various 
points of the structure. Influence functions 
enable the evaluation of deflection at a specific 
point, depending on the load distribution. The 
principle of virtual work and Castigliano's 
theorem are based on energy principles [7], 
calculating deformations by integrating virtual 
forces or deriving the elastic energy stored in the 
material from which the structure is made. 
Another approach within energy methods is that 
the expression of the elastic curve is considered 
as an infinite sum of sinusoidal functions, which 
are successively evaluated using sinusoidal 
trigonometric series if it is considered a periodic 
function, or using Fourier series if it is 
considered a non-periodic function [8-10]. 

In the context of complex problems, the 
Finite Element Method (FEM) provides a 
numerical solution by breaking down the 
structure into finite elements [11, 12], while the 
graphical analysis of the funicular is used for 
simple structures, offering a visual solution for 
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deformations. Standardized tables are often used 
to quickly determine deflections and rotations in 
the case of common beams, while extensometry 
[13], through direct measurements of specific 
linear deformations, validates theoretical 
calculations [14-17]. 

These methods, each with specific 
applicability, are essential in structural 
engineering to ensure the proper behavior of 
structures under load. 

This paper initiates a detailed study on 
the evaluation of deflection and rotation for two 
distinct types of support, with the aim of 
analyzing the structural behavior under various 
loading conditions. To carry out this analysis, 
the Taylor series expansion is used, a 
mathematical method that allows for the 
approximation of nonlinear functions through 
higher-order terms. 

Thus, in the context of deflection and 
rotation evaluation, different loading scenarios 
will be analyzed, each with its specific 
characteristics, and the Taylor series expansion 
method will be applied to approximate the 
structural behaviors at points of interest, taking 
into account the initial conditions and the 
support characteristics. This approach allows for 
obtaining approximate solutions for deflection 
and rotation, particularly in regions where exact 
solutions are difficult to obtain due to the 
complexity of the geometry or load distribution. 

An essential aspect of this study is the 
identification of the applicability limits of the 
Taylor series expansion method for the cases 
under investigation. Therefore, the goal is to 
establish the validity domains of this method, 
considering that the Taylor series can provide 
precise approximations only when structural 
deformations are small and the material behavior 
is assumed to be linear. The proposed study will 
contribute to a deeper understanding of the 
method's applicability in different loading 
scenarios and support types, establishing the 
conditions under which the Taylor series 
expansion can be an effective and useful 
alternative for analyzing structural behavior in 
civil and mechanical engineering [18]. 

The Taylor series expansion allows for 
the representation of functions through higher-
order polynomials, ensuring an accurate local 
evaluation of the solutions to the differential 

equations that describe the structural 
deformation behavior under various loading and 
support conditions [19-23]. 

By expanding functions into Taylor 
series, it is possible to model the structural 
behavior of beams through a polynomial 
representation in the vicinity of a point of 
interest. This technique simplifies the analysis of 
complex problems by reducing the 
computational complexity and providing a clear 
interpretation of mechanical phenomena. 
Specifically, Taylor series are used to linearize 
the behavior of nonlinear materials near an 
operating point, facilitating the application of 
both analytical and numerical methods for 
determining the approximate structural response 
[24-30]. 

The application of this method to a 
discrete segment of a beam allows for obtaining 
detailed information about the distribution of 
deformations and stresses. The Taylor series 
expansion provides a formal framework for 
describing the local behavior of the structure, 
enabling the precise evaluation of the effects of 
applied forces and moments on its deformation 
and stability. Additionally, the identification of 
critical zones becomes more accessible, 
contributing to the geometric and functional 
optimization of structures to prevent exceeding 
limit states [31-40]. 

In terms of stability analysis, Taylor 
series are used to approximate the solutions of 
differential equations that describe the 
equilibrium of beams under complex loads. 
These solutions provide essential information 
about the stability conditions and load limits of 
structures, thus contributing to ensuring their 
performance under extreme operating conditions 
[41-45]. 

Thus, from a scientific perspective, the 
application of Taylor series in the analysis of 
deformations in straight beams represents a 
robust and versatile method, integrating both 
theoretical and practical aspects for evaluating 
structural behavior. This approach enables 
engineers to develop solutions optimized for 
safety and efficiency, significantly contributing 
to the advancement of modern structural design 
and analysis [46-50]. 
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Given a function f defined on an interval 
I, and differentiable at the point a∈I. The Taylor 
formula for the function f at the point a is: ���� = ���� + � − �1! ∙ ����� + ⋯ + 

+ �� − ����! ∙ ������� + �����, � ∈ �       �1� 

In the sequence (Rn(x)) for x∈X⊂I is 
convergent to zero, that is lim�→� ����� = 0, 

x∈X⊂I, then the series: ���� + � − �1! ∙ ����� + ⋯ + 

+ �� − ����! ∙ ������� + ⋯ �2� 

called the Taylor series of the function f at the 
point a, is convergent for x∈X⊂I to f(x), 
therefor: ���� = ���� + � − �1! ∙ ����� + ⋯ + 

 + �������! ∙ ������� + ⋯ �3� 

Relation (3) is called the formula for 
expanding the function f(x) into a Taylor series 
around the point a. 

It is observed that series (2) is 
convergent for x=a. It is of interest for there to 
exist points x≠a for which series (2) is also 
convergent. A sufficient condition for the 
existence of a set of convergence that includes 
points other than a is provided by the following 
theorem: 

The Taylor series of the function f 
around the point a is convergent in a 
neighborhood V of a if the derivatives of any 
order f(n) are uniformly bounded in V, that is, !�������! ≤ #, # > 0, for any x∈V and any 
natural number n. 

This can be demonstrated if the 
remainder Rn , in its Lagrange form, is: ����� = �� − ���%&�� + 1�! ∙ ���%&��'�, ' ∈ ��, ��⊂ V 
thus |�����| < ,�� − ���%&�� + 1�! , ∙ # 

however, |�����| → 0 as � → ∞, because the 
series with the general term: .� = ,�� − ���%&�� + 1�! , ∙ # 

is convergent for any x∈R. 

lim�→/ .�%&.� = lim�→/ 0� − �� + 10 = 0 

 If in relation (3) a is replaced with 0 and f is 
infinitely differentiable at the point 0∈I, it 
follows: ���� = ��0� + �1! ∙ ���0� + ⋯ + 

+ �����! ∙ �����0� + ⋯ �4� 

called the Mac-Laurin series. 
 
2. METHOD 
 

From the perspective of the topics 
addressed in this study, the function f(x) will be 
denoted by y(x) and will represent the 
continuous and smooth function that expresses 
the deformation of the deformed average fiber, 
as shown in Figure 1. 

 

Fig. 1. The deformed average fiber for a cantilever 
beam. 

The function y(x) can be expressed using 
the Taylor series as follows: 

2��� = 3 1�!
/

�4� ∙ 5�2�0�5�� 0� = 0 ∙ ��      �5� 

or, 2��� = 2�0� + 7�0� ∙ � + 12! ∙ 582�0�5�8 ∙ �8 + 

+ 13! ∙ 592�0�5�9 ∙ �9 + 14! ∙ 5:2�0�5�: ∙ �: + 

+ 15! ∙ 5;2�0�5�; ∙ �; + ⋯  �6� 

where: y(0) and φ(0) represent the displacement 
and rotation at the reference point. 

Assuming that a load q is applied, 
distributed per unit length L, and with the 
maximum amplitude at x=0, it follows that: 
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= ∙ �> ∙ 5;2�0�5�; = ? ⇒ 5;2�0�5�; = ?����= ∙ �>      �7� 

where: E represents Young's modulus, and Iz is 
the axial moment of inertia.  

The linear variation law of the 
distributed load q can be expressed through the 
fourth-order derivative as: = ∙ �> ∙ 5:2�0�5�: = ?��� ⇒ 5:2�0�5�: = ?���= ∙ �>   �8� 

The third-order derivative expresses the 
variation of the shear force Ty(x), while the 
second-order derivative characterizes the 
evolution of the bending moment Mz(x). = ∙ �> ∙ 592�0�5�9 = CD��� ⇒ 592�0�5�9 = CD���= ∙ �>  �9� 

= ∙ �> ∙ 582�0�5�8 = #>��� ⇒ 582�0�5�8 = #>���= ∙ �> �10� 

The first-order derivative represents the 
tangent to the deformed neutral axis (or the 
rotation of the cross-sectional section). = ∙ �> ∙ 52�0�5� = 7��� ⇒ 52�0�5� = 7���= ∙ �>  �11� 

Equations (9) and (10) are derived in 
accordance with the sign conventions for 
positive values of the bending moment Mz(x) 
and shear force Ty(x), as shown in Figure 2. The 
sign of the distributed load q depends on the 
direction of the ordinate y. Furthermore, 
relations (8), (9), and (10) represent the 
differential relationships between forces, as 
expressed in the specialized literature in the 
following form: −?��� = 5CD5� = 58#>5�8               �12� 

 

Fig. 2. The sign convention for Ty (shear force) and 
Mz (bending moment). 

According to Figure 1, by substituting 
relations (7) through (11) into relation (6), it 
results in: 2��� = 12! ∙ #>���= ∙ �> ∙ �8 + 13! ∙ CD���= ∙ �> ∙ �9 + 

+ 14! ∙ ?���= ∙ �> ∙ �: + 15! ∙ ?����= ∙ �> ∙ �;           �13� 

It should be emphasized that the origin of 
the orthogonal coordinate system can be 
arbitrarily chosen at any considered point. 
Generally, it is recommended that this point be 
defined to the left of the considered interval so 
that the calculation volume is as small as 
possible. It should also be mentioned that the 
number of terms included in the Taylor series is 
finite and depends on the order of the function 
governing the variation of the distributed load. 

This consideration is crucial because, in 
practice, a truncated Taylor series is used to 
approximate the behavior of the system. The 
more terms included, the more accurate the 
approximation becomes, but the computational 
effort also increases. The choice of the number 
of terms is typically determined by the required 
accuracy and the nature of the load distribution. 

In a similar manner, using Taylor series, 
the rotation φ(x), the bending moment Mz(x), 
and the shear force Ty(x) can be expressed as 
follows: 7��� = 7�0� + #>�0�= ∙ �> ∙ � + 12! ∙ CD���= ∙ �> ∙ �8 + 

+ 13! ∙ ?���= ∙ �> ∙ �9 + 14! ∙ ?����= ∙ �> ∙ �:    �14� 

#>��� = #>�0� + CD�0� ∙ � + 12! ∙ ?��� ∙ �8 + 

+ 13! ∙ ?���� ∙ �9   �15� 

CD��� = CD�0� + ?��� ∙ � + 12! ∙ ?�����8 �16� 

3. RESULT AND DISCUSSION  

The validation of the Taylor series 
application method, as well as the establishment 
of its applicability limits, is carried out by going 
through several progressively complex 
examples for two distinct support cases: a 
cantilever beam (as shown in Figure 1) and a 
simply supported beam (as shown in Figure 3). 

A first example is the one considered in 
the introductory part of this study: a cantilever 
beam, fixed at the left end, on which a uniformly 
distributed load q is applied. 

At the left end, the boundary conditions 
are: x=0, φ(0)=0, y(0)=0, Mz(0)=-q·L2/2, 
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Ty(0)=q·L. The uniformly distributed load is a 
negative quantity, directed in the negative y 
coordinate direction. 

From relation (13), we obtain: 2��� = 12! ∙ #>�0�= ∙ �> ∙ �8 + 13! ∙ CD�0�= ∙ �> ∙ �9 + 

+ 14! ∙ ?= ∙ �> ∙ �: = 

= ? ∙ �824 ∙ = ∙ �> ∙ �−6 ∙ F8 + 4 ∙ � ∙ F − �8�      �17� 

For x=L, from relation (17), we obtain: 2���G�� = − ? ∙ F:8 ∙ = ∙ �>               �18� 

From relation (14), it follows: 7��� = #>�0�= ∙ �> ∙ � + 12! ∙ CD���= ∙ �> ∙ �8 + 

+ 13! ∙ ?= ∙ �> ∙ �9 = 

= ? ∙ �6 ∙ = ∙ �> ∙ �−3 ∙ F8 + 3 ∙ � ∙ F − �8�  �19� 

For x=L, from relation (19), it follows: 7���G�� = − ? ∙ F96 ∙ = ∙ �>             �20� 

Relations (18) and (20) are identical to 
the solutions provided in the specialized 
literature (certa eadem derivate directe - 
c.e.d.d.). 

A second example is a cantilever beam, 
fixed at the left end, on which a linearly 
distributed load q is applied, having a maximum 
value at the left end and a zero value at the right 
end. 

Here, to reduce the volume of 
calculations, it can be assumed that the origin of 
the coordinate system is at the free end, where 
the boundary conditions are: x=0, Ty(0)=0, 
Mz(0)=0, φ(0)≠0, y(0)≠0. From this perspective, 
the governing variation law for the load 
distribution is q(x)=q·x/L. At the left end, the 
boundary conditions are x=L, φ(L)=0, y(L)=0, 
Mz(L)=-q·L2/6, Ty(L)=q·L/2. 

According to relation (14), it follows: 7�F� = 7�0� − 14! ∙ ?F ∙ = ∙ �> ∙ F: ⇒ 

7�0� = ? ∙ F924 ∙ = ∙ �>                 �21� 

and from relation (13), it follows: 

2�F� = 2�0� + 7�0� ∙ F − 15! ∙ ?F ∙ = ∙ �> ∙ F; ⇒ 

2�0� = − ? ∙ F:24 ∙ = ∙ �> + ? ∙ F:120 ∙ = ∙ �> ⇒ 

2�0� = − ? ∙ F:30 ∙ = ∙ �>                  �22� 

Relations (21) and (22) are identical to 
the solutions provided in the specialized 
literature (c.e.d.d.). 

Continuing, a series of examples will be 
presented in which the beam is simply supported 
at both ends, as shown in Figure 3. The boundary 
conditions at the two ends are as follows: at the 
left end, x(0)=0, y(0)=0, φ(0)≠0, and at the right 
end, x(0)≠0, y(0)=0, φ(0)≠0. 

Thus, if it is assumed that a concentrated 
force acts at the midpoint of the span between 
the supports (at L/2), directed in the negative y 
coordinate direction, the shear force is given by 
Ty(0)=F/2 for 0≤x≤L/2. 

From relation (13), it follows: 2��� = 7�0� ∙ � + CD�0�= ∙ �> ∙ �93! ⇒ 

2��� = 7�0� ∙ � + H ∙ �912 ∙ = ∙ �>      �23� 

From relation (14), it follows: 7��� = 7�0� + CD�0�= ∙ �> ∙ �82! ⇒ 

7��� = 7�0� + H ∙ �84 ∙ = ∙ �>          �24� 

Fig. 3. Deformed neutral axis for a simply supported 
beam. 

For this type of support, φ(x) is zero at 
the location L/2, i.e., at the point where the nodal 
force F is applied. Thus, from relation (24), it 
follows: � = F2 ⇒ 7��� = 0 ⇒  7�0� = − H ∙ F816 ∙ = ∙ �>  �25� 

By substituting expression (25) into (24), 
the following result is obtained: 
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7��� = − H ∙ F816 ∙ = ∙ �> + H ∙ �84 ∙ = ∙ �> ⇒ 

7��� = H16 ∙ = ∙ �> ∙ �−F8 + 4 ∙ �8�    �26� 

And by substituting expression (25) into 
(23), the following result is obtained: 2��� = − H ∙ F816 ∙ = ∙ �> ∙ � + H ∙ �912 ∙ = ∙ �> ⇒ 

2��� = H ∙ �48 ∙ = ∙ �> ∙ �−3 ∙ F8 + 4 ∙ �8�   �27� 

For x=L/2, from relation (27), it follows: 2 IF2J = − H ∙ F948 ∙ = ∙ �>             �28� 

Relations (25) and (28) are identical to 
the solutions provided in the specialized 
literature (c.e.d.d.). 

If instead of the nodal force F, a 
uniformly distributed load q is applied over the 
entire length L of the beam, directed in the 
negative y coordinate direction, the shear force 
is given by Ty(0)=q·L/2. 

In this case, from relation (13), it 
follows: 2��� = 7�0� ∙ � + 13! ∙ CD���= ∙ �> ∙ �9 + 

+ 14! ∙ ?���= ∙ �> ∙ �: ⇒ 

2��� = 7�0� ∙ � + ? ∙ F ∙ �912 ∙ = ∙ �> − ? ∙ �:24 ∙ = ∙ �> �29� 

and from relation (14), it follows: 7��� = 7�0� + CD�0�= ∙ �> ∙ �82! + 13! ∙ ?���= ∙ �> ∙ �9 ⇒ 

7��� = 7�0� + ? ∙ F ∙ �84 ∙ = ∙ �> − ? ∙ �96 ∙ = ∙ �>    �30� 

For this type of support, φ(x) is zero at 
the location L/2. Thus, from relation (30), it 
follows: � = F2 ⇒ 7��� = 0 ⇒  7�0� = − ? ∙ F924 ∙ = ∙ �> �31� 

By substituting relation (31) into (29), 
the following result is obtained: 2��� = − ? ∙ F924 ∙ = ∙ �> + ? ∙ F ∙ �912 ∙ = ∙ �> − 

− ? ∙ �:24 ∙ = ∙ �> = 

= ?24 ∙ = ∙ �> ∙ �−F9 + 2 ∙ F ∙ �9 − �:��32� 

For x=L/2, from relation (32), it follows: 

2 IF2J = − 5 ∙ ? ∙ F:384 ∙ = ∙ �>             �33� 

Relations (31) and (33) are identical to 
the solutions provided in the specialized 
literature (c.e.d.d.). 

Continuing, it is assumed that the simply 
supported beam is loaded with a nodal force F, 
applied at a distance L/3 from the left end. In this 
case, the shear force is Ty(0)=2·F/3  for 
0≤x≤L/3. 

From relation (13), it follows: 2��� = 7�0� ∙ � + CD�0�= ∙ �> ∙ �93! ⇒ 

2��� = 7�0� ∙ � + H ∙ �99 ∙ = ∙ �>           �34� 

and from relation (14), it follows: 7��� = 7�0� + CD�0�= ∙ �> ∙ �82! ⇒ 

7��� = 7�0� + H ∙ �83 ∙ = ∙ �>           �35� 

In this case, relation (35) is a simple 
statically indeterminate equation because, based 
on the boundary conditions, the rotation φ(0) 
cannot be determined. Additionally, the section 
where φ(x) becomes zero is unknown. The 
indeterminacy is resolved by expressing the 
bending moment as follows: 0 ≤ � ≤ F3 ⇒ #>��� = 2 ∙ H3 ∙ �     �36� F3 < � ≤ F ⇒ #>��� = 2 ∙ H3 ∙ � − H ∙ I� − F3J �37� 

The rotation φ(x) is obtained by 
integrating the bending moment Mz(x): 7��� = K #>���= ∙ �>

�
� ∙ 5�               �38� 

For � ≤ F3 �9L�MNO 7��� = 1= ∙ �> ∙ K 2 ∙ H ∙ �3 5� = 

= 1= ∙ �> ∙ P− H ∙ �83 ∙ = ∙ �> + Q&R  �39� 

and for � > F3 �9L�MNO 

7��� = K 1= ∙ �> ∙ S2 ∙ H3 ∙ � − H ∙ I� − F3JT ∙ 5� 

= 1= ∙ �> ∙ UH ∙ �83 − H ∙ V� − F3W8
2 + Q8X �40� 
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From the continuity and smoothness 
condition of the deformed neutral axis, it follows 
that C1=C2=C, and from the boundary conditions 
defined at the support in the right end, the 
following is obtained: 

 Q = − 5 ∙ H ∙ F881                  �41� 

For x=0, from relation (39), it follows: 7�0� = Q= ∙ �> = − 5 ∙ H ∙ F881 ∙ = ∙ �>          �42� 

By substituting relation (42) into (35), 
for 0≤x≤L/3, the following is obtained: 7��� = 7�0� + H ∙ �83 ∙ = ∙ �> ⇒ 

7��� = − 5 ∙ H ∙ F881 ∙ = ∙ �> + H ∙ �83 ∙ = ∙ �>     �43� 

Thus, from relation (43), for x=L/3, we 
have: 7 IF3J = − 2 ∙ H ∙ F881 ∙ = ∙ �>           �44� 

The Taylor series for the rotation φ(x) 
around the point x=L/3 is: 7��� = 7 IF3J + I� − F3J ∙ 7′ IF3J + 

+ 12! ∙ I� − F3J9 ∙ 7′′ IF3J + ⋯ �45� 

The deflection can be expressed using 
relation (34) and has the form: 2��� = 7�0� ∙ � + H ∙ �99 ∙ = ∙ �> ⇒ 

2��� = H81 ∙ = ∙ �> ∙ �−5 ∙ F8 ∙ � + 9 ∙ �9�  �46� 

and for x=L/3, from relation (46), it follows: 2 IF3J = − 4 ∙ H ∙ F9243 ∙ = ∙ �>                     �47� 

In the section where the rotation φ(x) is 
zero (considering the coordinate xo), the 
deflection y(x)=ymax. Thus, from relation (40), a 
second-order equation is obtained in the 
following form: −27 ∙ �Y8 + 54 ∙ F ∙ �Y − 19 ∙ F8 = 0   �48� 
for which the real solution is xo=0.455·L. 

Relations (44) and (47) are identical to 
the solutions provided in the specialized 
literature (c.e.d.d.). 

 

4. CONCLUSIONS  

The use of Taylor series expansion 
allows for the formulation of general equations 
for determining the deformation and rotation of 
the beam's cross-section, in a manner similar to 
methods based on integrating the differential 
equation of the deformed neutral axis.  

These methods include direct integration 
and the Clebsch method for determining the 
integration constants. Unlike energy, graphical, 
or graph-analytical methods, this approach 
offers the advantage of reduced computational 
complexity, as it enables the derivation of shear 
force and bending moment equations without 
requiring the graphical representation of their 
variation.  

The deflection and rotation equations 
can be easily written for each segment of the 
beam by expressing the Taylor series expansion 
at the beginning of that segment. 

In this study, the following cases were 
considered: the first example corresponds to the 
case introduced in the introductory section, 
namely a cantilever beam fixed at the left end, 
subjected to a uniformly distributed load q; the 
second example consists of a cantilever beam 
fixed at the left end, subjected to a linearly 
distributed load with a maximum value at the left 
extremity and a zero value at the right extremity; 
the third example is a simply supported beam 
with supports at both ends, loaded at the 
midpoint of the span between the supports with 
a concentrated force F acting in the negative 
direction of the ordinate y; in the fourth example, 
instead of the nodal force F, a uniformly 
distributed load q is applied along the entire 
length L of the beam, oriented in the negative 
direction of the ordinate y; finally, in the fifth 
example, the simply supported beam is 
subjected to a nodal force F, applied at a distance 
of L/3 from the left extremity. 

For the first four studied cases, the 
obtained results are identical to those provided 
in the specialized literature. 

In the case of the fifth example, 
compared to the first four, there is a difficulty in 
determining the rotation. This indicates that a 
primary limitation of using the Taylor series 
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arises in the case of asymmetric loadings for 
simply supported beams.  

To solve this issue, the differential 
equation of the deformed neutral axis was 
integrated, and by applying the boundary 
conditions as well as the condition of continuity 
and smoothness of the deformed neutral axis, the 
calculation relation for the integration constant 
CCC was derived. Furthermore, from the 
expression of the rotation in the first segment of 
the beam, the rotation at the leftmost section 
could be evaluated. 

In general, the use of the Taylor series for 
complex applications can be recommended, 
provided that the limitation highlighted in the 
previous paragraph is taken into account. 
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LIMITELE DEZVOLTĂRII ÎN SERIE TAYLOR PENTRU STUDIUL FIBREI MEDII 
DEFORMATE ÎN GRINZI IZOTROPE, STATIC DETERMINATE, CU MOMENT DE 

INERȚIE CONSTANT 

Rezumat: În această lucrare se propune un studiu detaliat asupra evaluării săgeții și rotirii în 
cazul a două tipuri distincte de rezemare, având drept obiectiv analiza comportamentului structural 
sub diverse condiții de încărcare. În vederea realizării acestei analize, se utilizează metoda dezvoltării 
în serii Taylor, un instrument matematic ce permite aproximarea funcțiilor neliniare prin includerea 
termenilor de ordin superior. Astfel, în contextul analizei săgeții și rotirii, sunt investigate scenarii 
variate de încărcare, fiecare având particularități specifice, iar dezvoltarea în serii Taylor este aplicată 
pentru aproximarea comportamentului structural în punctele de interes, luând în considerare condițiile 
inițiale și caracteristicile tipului de reazem. Această metodologie facilitează obținerea unor soluții 
aproximative pentru săgeată și rotire, în special în regiunile unde soluțiile exacte sunt dificil de 
determinat din cauza complexității geometriei sau a distribuției sarcinilor. Un element central al 
studiului îl constituie identificarea limitărilor metodei dezvoltării în serii Taylor în raport cu cazurile 
analizate. 

Cuvinte cheie: deformatii structural, seriile Taylor extinse,  conditii la limita,  functii neliniare de 

aproximare 
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