
165

Received: 29.01.25; Similarities: 05.03.25: Reviewed: 20.02./14.02.25: Accepted:19.03.25.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering
 Vol. 68, Issue I, March, 2025

ROBOT VECTOR OPERATING SYSTEM FOR LOCALIZATION
AND MAPPING

Alexandra-Cătălina CIOCÎRLAN, Luige VLĂDĂREANU, Ionel-Alexandru GAL

 Bianca Rodica GHINOIU, Cristina Marilena NIȚU , Marius PANDELEA,
Mihaiela ILIESCU

Abstract: This paper explores the use of the Intel RealSense Depth Camera D455 in the context of

localization, autonomous navigation, and mapping of complex environments. We investigated advanced

methods for estimating the position and orientation of mobile robots, using depth data to build detailed and

accurate maps. The Simultaneous Localization and Mapping (SLAM) algorithm implemented is based on

the real-time detection of changes in the environment, ensuring continuous updating of the map. The robot

vector, representing its state, is evaluated according to the robot trajectory, significantly influencing the

performance of autonomous navigation. The results obtained demonstrate the efficiency of the proposed

method in various test scenarios.

Key words: Intel RealSense Depth Camera D455, localization, autonomous navigation, mapping, robot

vector.

1. INTRODUCTION

 This article evidences results on the control
of autonomous mobile robots vectors, a highly
relevant research area that has significant
implications in autonomous robotics, artificial
intelligence (AI), and robotics engineering.

Autonomous mobile robots (AMRs) are
complex systems capable of moving and
operating independently in an environment,
using a range of advanced sensors and
algorithms to orient themselves, navigate and
perform various tasks.

An essential aspect in controlling
autonomous mobile robots is localization and
mapping. Simultaneous Localization and
Mapping (SLAM) technology is particularly
important in this context, allowing robots to
create maps of the environment while
determining their position in that environment.
The use of sensors such as Lidar, RGB-D
cameras, and inertial measurement units (IMUs)
facilitate this process.

These advanced technologies allow robots to
navigate in unfamiliar environments, avoid
obstacles, and complete complex missions.

Control algorithms play a crucial role in the
operation of autonomous mobile robots. The
article discusses the use of advanced control
algorithms, including adaptive control and
reinforcement learning. These methods allow
robots to adapt their trajectory according to
changes in the environment and improve their
performance over time.

Although significant progress has been made
in the field of controlling autonomous mobile
robots, there are still many challenges.

AMRs demonstrate outstanding autonomous
and flexible navigation capabilities. They use
advanced technologies, such as SLAM
(Simultaneous Localization and Mapping), to
orient themselves and create accurate maps of
the environment. SLAM technology allows
robots to simultaneously determine their
position in space and map the environment,
making it easier to avoid obstacles and adapt to
changes in the operational environment. This
capability is essential for efficient operation in
unfamiliar and dynamic spaces.

To highlight the importance of post-
processing techniques applied to the depth maps
generated by RealSense cameras in improving

166

the accuracy of depth measurements, we
referenced article [1], which emphasizes two
essential aspects: temporal filtering, which can
significantly reduce depth noise, and spatial
filtering, which enables image smoothing
without compromising important details. This
information is relevant to supporting the
methodology used in my paper, providing a solid
theoretical framework and arguments based on
existing research that validate the proposed
approach.

Reference [2] is used to emphasize the
relevance of an autonomous navigation system
for mobile robots operating in an industrial
environment. Citing this reference is essential to
highlight how mobile robots can recognize floor
markings and navigate along a predefined route,
avoiding obstacles and moving autonomously
between fixed points.

I used reference [3] as a source because it
provides a detailed description of the navigation
system, localization, and simultaneous mapping
methods employed for managing large-scale
urban center maps.

These methods were tested on a real
autonomous robot that traversed several
kilometers in an urban environment, helping us
better understand how SLAM functions in this
context.

Because we also focused on the use of the
Kalman filter, reference [4] was utilized as it
presents an interesting solution involving the use
of a global reference system along with a set of
point landmarks on a map. This approach
addresses the problem of estimating the state
vector representing the robot’s position and the
landmarks.

 The tests were conducted according to
estimation and filtering theory, providing a solid
foundation for solving various localization and
simultaneous mapping problems in an unknown
environment.

To map an environment, it is essential for the
autonomous mobile robot to detect current
changes in the explored areas so that the
generated map can be used in real-time. The
accuracy of the SLAM algorithm is closely tied
to the trajectory of the autonomous mobile robot
in that environment.

Reference [5] provided insights that we were
able to apply in our tests.

2. METHODS AND MATERIALS

Types and characteristics of the materials
(subsystems / components / software), as well as
associated methods used in this research are
further presented.

2.1 Air Vector (drone)
Individualized Tello drone (see figure 1)
features that stand out for their ease of use,
varied functionality, and ability to provide a
pleasant flight experience are:

- dimensions: 98 x 92.5 x 41 mm
- weight: approx. 80 grams (including

battery)
- photo resolution: 5 MP (2592 x 1936)
- video resolution: 720p HD at 30 frames

per second
- top speed: 8 m/s (18 mph)
- maximum flight altitude: 10 m
- flight time: approximately 13 minutes

Fig. 1. Tello Drone [6]

High-performance depth camera, Intel®
RealSense™ D455 (see figure 2), was also used.
It is designed to provide accurate color images
and depth data for a wide range of applications,
such as robotics, augmented reality, and
autonomous vehicles.

Important technical features are:
 The depth accuracy of the D455 camera

is significant, with depth errors below
2% at a distance of 4 meters.

 The high-resolution RGB camera
provides clear and detailed images,
useful for visual recognition and
analysis.

 Resolution - up to 1280 x 720 pixels-
high resolution allows fine detail to be
captured in images and depth data.

167

Fig. 2. Depth Camera D455 [7]

2.2. The Terrestrial Vector (the robot)
The terrestrial vector has integrated tank chassis
(see figure 3.) into autonomous mobile robots
that have the ability to move and perform
missions without direct human intervention.
These types of robots can be equipped with
cameras, sensors and navigation systems to help
them navigate in various unstructured
environments.

Fig. 3. Robotic Tank Chassis [8]

 The Intel® RealSense™ Depth Camera D455
has been attached to the mobile robot (and
resulted the ground robot) - as evidenced in
figure 4.

Fig. 4. Depth Camera D455 and Mobile Robot

 Then followed the ROS installation process
using the specific code lines (see figure 5)

Fig. 5. ROS Installation Code Lines

and adding the Intel RealSense™ Depth
Camera D455 in ROS (see figure 6)

Fig. 6. Installation of Camera D455 in ROS

 The next step required for localization and
mapping was that of defining the parameters of
the D455 depth camera. It involves setting and
adjusting various specifications and features to
obtain accurate distance measurements and
optimize the camera's performance in the desired
application. These parameters include, but are
not limited to: resolution, frame rate,
measurement distance, filtering and processing
algorithms, camera calibration. (see figure 7).

Fig. 7. Camera D455 Parameter Settings

 The Intel RealSense D455 camera is an
advanced depth camera that offers both depth
images and RGB (color) images. Its main
functionality and how these images are obtained
are essential (see figure 8).

168

Fig. 8. Capturing RGB images

 The block diagram of the command-and-
control system of the ground robot and drone is
shown in figure 9.

Fig. 9. General Robot Vector Scheme

3. ROBOT VECTORS MODELING

The intelligent vector control system of
autonomous mobile robots is based on the
presence of a leader, which in this case is the DJI
TELLO drone. The overall transient state
control function of the leading autonomous air
vector, in the context of a multi-intelligent
vector environment, is defined by the following
relationship:

(, ,)SCI SCI STTf tΘ= ∆ ∆ (1)

The expression of the dynamic mathematical
model that defines the leading air vector and
includes six variable parameters — three
positions and three orientations in the inertial
frame of reference — is as follows:

ФVALin = (xin, yin, zin, φin, θin, ψin) (2)

The correlation of the two systems is given by

relations system (3):

����(�) = 	
��
(�)���
(�)���
(�)
� = � ⋅ ������������� �

�����(�) = 	���(�)���(�)���(�)
� = 	��������� ��

� = ! ⋅ 	"� �
#��
$� �

� (3)

 The Gazebo environment is commonly

used in ROS because together they provide a
complete platform for robotics development and
testing. Gazebo enables real-time control of
robots in simulation, allowing for running and
changing the robot code while they are in the
virtual environment.

The Tello drone was simulated in ROS using
Gazebo, where a launch file (*.launch) was
created to specify all the nodes and parameters
required for the package in Gazebo.
 Images of how the drone was simulated in the
Gazebo are shown in figure 10 (a. front view; b.
top view).

a. front view

b. top view

Fig. 10. Drone simulation in the Gazebo

169

3.2. Gazebo Environment Description
Simulating drones in virtual environments is

essential for testing and developing control,
navigation, and perception algorithms, with low
risk of physical damage or additional costs.
Gazebo, integrated with the Robot Operating
System (ROS), provides a robust and flexible
platform for these simulations.

Gazebo is a high-fidelity robotics simulator
that allows the simulation of complex robot
dynamics in 3D environments. Gazebo offers
advanced features such as:

• Realistic Physics Simulation: Uses
physics engines such as ODE, Bullet,
and DART to recreate motion dynamics
and interactions with the environment.

• 3D Visualization: Provides a graphical
interface to view and interact with robots
in real-time.

• ROS Integration: Enables seamless
communication with ROS, facilitating
the development and testing of control
algorithms.

3.3. Modeling the terrestrial robot vector

Modeling a terrestrial robot vector in the
Gazebo involves several steps, from defining
the robot model to integrating it into a
simulation environment.

The ground robot simulated using Gazebo
is shown in figure 11.

Fig. 11. Robot in the Gazebo

In order to have the simulation in Gazebo,
where the robot can be tested, we first need a
URDF file to describe it. The URDF file is based
on the XML language where there are declared
the mass of each element, the inertia, the joints,
the links and everything necessary for the
simulation of the robot.

The file for describing a robot can become
very complex, even if it is a simple model. For
this reason, but also to make the URDF file more
flexible in case changes occur, XACRO files are
better used to define the robot model.

XACRO is not an alternative to the URDF, it
is just another way of defining it. In addition, the
URDF file can be generated from the XACRO
file by executing a single command.
 For example, if we have created the file
"4WD.xacro" and we want to get "4D.urdf", we
will execute "rosrun xacro xacro.py 4WD.xacro
> 4WD.urdf".

One of the advantages of using XACRO is the
ability to declare a constant at the beginning of
the file, which can be used in defining several
links and, if we want to change one feature
value, we can do it only once instead of
modifying it for each element. A relevant
example for this work being the wheel, which
will be defined identically 4 times. Another
advantage of XACRO is the ability to calculate
mathematical expressions, which are necessary
for inertia.

We started the description of the robot by
creating a ROS package, which we named
"4wd_description" and inside which we created
an "urdf" folder containing the file of interest
"4wd.xacro". Next, the code written in groups of
structures as independent as possible will be
explained.

For the file to be considered a XACRO file,
the minimum structure is this:

<?xml version="1.0"?>
<robot name="4wd"

xmlns:xacro="http://www.ros.org/wiki/xacro">

The first line is the declaration of the XML

language to which is assigned a version that
must be 1.0. This is standard in all XACRO files.

The second line "tells" the XACRO system to
use the XACRO protocol from the address:

<xacro:include filename="$(find
4wd_description)/urdf/4wd_materials.xacro" />

By this line another XACRO file has been

included that describes a series of colors that can
be used in the creation of components. Its
content is:

170

<?xml version="1.0"?>
<robot

xmlns:xacro="http://www.ros.org/wiki/xacro">
 <material name="Green">
 <color rgba="0.0 1.0 0.0 1.0"/>
 </material>
 <material name="Blue">
 <color rgba="0.0 0.0 1.0 1.0"/>
 </material>
 <material name="Red">
 <color rgba="1.0 0.0 0.0 1.0"/>
 </material>
 <material name="White">
 <color rgba="1.0 1.0 1.0 1.0"/>
 </material>
 <material name="Yellow">
 <color rgba="1.0 1.0 0.0 1.0"/>
</material>
</robot>

 This file can be optional, as colors can be

given directly in the body of each link. We chose
this method for the highest possible
simplification of the code. The colors are
defined using the RGB system with the values
scaled from 0 to 1, instead of 0 to 255. There can
also be noticed the first lines needed for any
XACRO file, mentioned above.

 The next line includes another file, called
"4wd.gazebo", which is defined for controlling
the robot in the simulator.

<xacro:include filename="$(find
4wd_description)/urdf/4wd.gazebo" />

The code so far was just the beginning of the
file that contained the declaration and
initialization part. The next part is the actual
construction of each element and the
establishment of the parent-child relationships.
The first link is the basic one that has a simple
description and on which all other links will
depend. This is the center of the robot and is
especially important in Rviz.

<link name="base_link"> </link>

It should be noticed that the order in which
the links are declared does not matter because
the model will be created according to the joints
where the parent and child are set.

The following structure describes the robot
chassis:

<link name="body_link">
 <visual>
<origin xyz="0 0 0.03" rpy="0 0 0" />
 <geometry>
<box size="0.4 ${wheel_separation} 0.09"/>
 </geometry>
<material name="White" />
 </visual>
 <collision>
<origin xyz="0 0 0.03" rpy="0 0 0" />
 <geometry>
<box size="0.4 ${wheel_separation} 0.09"/>
 </geometry>
 </collision>
 <inertial>
<origin xyz="0 0 0.03" rpy="0 0 0" />
 <mass value="${mass}" />

<inertia ixx="${inertia}" ixy="0.0" ixz="0.0"
iyy="${inertia}" iyz="0.0" izz="${inertia}" />

 </inertial>
 </link>
 <joint name="base_to_body" type="fixed">
 <parent link="base_link" />
 <child link="body_link" />
<origin xyz="0 0 ${wheel_radius}" rpy="0 0

0"/>
 </joint>

One of the essential elements in the

simulation of a robot is "collision" and refers to
the way it interacts with the world around it. The
element contains a label indicating the geometry
of the collision, in the same format as in the case
of the visual, for which an origin can also be
specified.

Along with collision properties, inertia
properties allow for physical simulation of the
robot. The element 'inertial' contains the
following labels:

- "origin" - is used to elect the position of the
center of mass relative to the origin of the
connection.

- "mass"- sets the mass of the connection., it
must have a value as close as possible to the real
one because it will condition the way the joints
move.

- "inertia" - defines the inertia matrix of the
bond and will determine how it behaves when

171

moving or rotating. It was assumed that the
material from which the connection is made is
homogeneous, and the matrix will have values
other than 0, only diagonally. These were
calculated based on the primary geometric
shapes.

The last element in the structure is the merge
that is initialized with a name and a type, after
which the parent, the child and the origin are
declared.

The robot would not yet be able to move in
the simulation because no effort (force or torque)
has been applied to the joints, so it is applied
"real" motors. For this, transmissions will have
to be added to all the "continuous" joints that
describe the relationship between the motors and
the links, as we did for the front wheel on the
right side.

<transmission name="front_right_wheel">
<type>transmission_interface/SimpleTrans

mission</type>
 <joint name="base_to_front_right_wheel">
<hardwareInterface>hardware_interface/Eff

ortJointInterface</hardwareInterface>
 </joint>
 <actuator name="front_right_motor">

4. RESULTS AND DISCUSSIONS

One of the most important mathematical tools
for working with robots is Transformers (TF).
ROS provides special packages through which
we can use these transformers much more easily
to solve various problems. Physical systems,
especially those for robots, have many 3D
coordinate frames that can change over time. TF
is the package that allows the user to keep track
of these frames.

In ROS, each node can use the TF packet to
transmit a transformation from one frame to
another. With all these vertices the transform
tree can be created.

The five transformer frames are: "body_link",
"battery", "rear_right_wheel", "hcsr04_link"
and "front_right_wheel". The last 4 have a
common parent, and that is "body_link", which
in turn has the "base_link" frame as its parent.
The additional information that the tree also
provides is:

- "Recorded at time" - provides information
about the time when the transforms were
transmitted in the "Unix time" system.

- "Broadcaster" - represents the name of the

node that transmits data.
- "Average rate" - refers to the average

publication rate expressed in Hz.
- "Buffer length" - contains how long data has

been stored.
The robot's movement was done through the

dedicated ROS "teleop_twist_keyboard"
package, which allows movement from the
keyboard buttons, because it publishes in the
subject "/cmd_vel", and the differential control
module provided by Gazebo listens to the
subject "/cmd_vel".

The simulation of the robot and drone in a
virtual environment (see figure 12) is aimed to
observe its behavior in various scenarios by
varying the speed and changing the shapes and
positions of obstacles. For the visualization and
verification of these aspects, the Rviz platform
was used.

Fig. 12. Robot and drone in the Gazebo

5. CONCLUSION

The article highlights the importance of
vector control of autonomous mobile robots and
the relevance of this field of research in
autonomous robotics, artificial intelligence and
robotics engineering.

Advances in localization, mapping, and
control algorithm technologies have the
potential to transform various industries and
significantly improve the capabilities and
applicability of autonomous mobile robots.

The simulation of the DJI Tello drone and
ground robot in Gazebo, integrated with ROS,
provides a robust and efficient test environment

172

for the development and validation of control
algorithms. This framework allows researchers
and developers to experiment advanced
technologies in a safe controlled environment.

6. REFERENCES

[1] Grunnet-Jepsen, A., & Tong, D. (2018). Depth post-

processing for intel® realsense™ d400 depth
cameras. New Technologies Group, Intel

Corporation, 3.
[2] Harapanahalli, S., Mahony, N. O., Hernandez, G. V.,

Campbell, S., Riordan, D., & Walsh, J. (2019).
Autonomous Navigation of mobile robots in factory
environment. Procedia Manufacturing, 38, 1524-1531.

[3] Kümmerle, R., Ruhnke, M., Steder, B., Stachniss, C.,
& Burgard, W. (2015). Autonomous robot navigation

in highly populated pedestrian zones. Journal of Field
Robotics, 32(4), 565-589.

[4] Smith, R., Self, M., & Cheeseman, P. (1990).
Estimating uncertain spatial relationships in robotics.
Autonomous robot vehicles, 167-193.

[5] Stachniss, C., Hahnel, D., & Burgard, W. (2004,
September). Exploration with active loop-closing for

FastSLAM. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566) (Vol. 2, pp. 1505-
1510). IEEE.

[6] https://www.f64.ro/dji-tello/p, accessed on 07.03.2023
[7] https://www.intelrealsense.com/depth-camera-d455/,

accessed on 02.03.2023
[8] https://www.robofun.ro/kit-roboti/sasiu-tanc-robotic-

metalic-cu-cauciucuri-mari. html, accessed on
02.03.2023

Sistem de operare vector robot pentru localizare și cartografiere

Această lucrare explorează utilizarea camerei Intel RealSense Depth Camera D455 în contextul localizării, navigării
autonome și mapării mediilor complexe. Am investigat metode avansate de estimare a poziției și orientării roboților
mobili, utilizând date de adâncime pentru a construi hărți detaliate și precise. Algoritmul de Localizare și Cartografiere
Simultană (SLAM) implementat se bazează pe detectarea în timp real a modificărilor din mediul înconjurător, asigurând
actualizarea continuă a hărții. Vectorul de robot, reprezentând starea acestuia, este evaluat în funcție de traiectoria
parcursă, influențând semnificativ performanța navigării autonome. Rezultatele obținute demonstrează eficiența soluției
propuse în diverse scenarii de testare.
Cuvinte cheie: Intel RealSense Depth Camera D455, localizare, navigare autonomă, cartografiere, vector robot.

Alexandra-Cătălina CIOCÎRLAN, PhD Student, Institute of Solid Mechanics, Robotics and

Mechatronics, alexandra.ciocirlan@imsar.ro/katalina.alexandra@yahoo.com, office@imsar.ro,
+40 21 312 67 36, 15 Constantin Mille, Bucharest, Romania.

Luige VLĂDĂREANU, Senior researcher, Dr. Eng., Institute of Solid Mechanics, Robotics and
Mechatronics, luige.vladareanu@imsar.ro, office@imsar.ro, +40 21 312 67 36, 15 Constantin
Mille, Bucharest, Romania.

Ionel-Alexandru GAL, Researcher CS II, Dr. Eng., Institute of Solid Mechanics, Robotics and
Mechatronics, alexandru.gal@imsar.ro, office@imsar.ro, +40 21 312 67 36, 15 Constantin Mille,
Bucharest, Romania.

Bianca Rodica GHINOIU, PhD Student, Institute of Solid Mechanics, Robotics and Mechatronics,
bianca.ghinoiu@imsar.ro, office@imsar.ro, +40 21 312 67 36, 15 Constantin Mille, Bucharest,
Romania.

Cristina MARILENA Nițu, Researcher CS II, Dr. Eng., Institute of Solid Mechanics, Robotics and
Mechatronics, cristina.nitu@imsar.ro, office@imsar.ro, +40 21 312 67 36, 15 Constantin Mille,
Bucharest, Romania.

Marius PANDELEA, Dr. Eng., Institute of Solid Mechanics, Robotics and Mechatronics,
marius.pandelea@imsar.ro, office@imsar.ro, +40 21 312 67 36, 15 Constantin Mille, Bucharest,
Romania.

Mihaiela ILIESCU, Senior researcher, Habil. Dr. Eng., corresponding author, Institute of Solid
Mechanics, Robotics and Mechatronics, mihaiela.iliescu@imsar.ro; iliescumihaiela7@gmail.com,
office@imsar.ro, +40 21 312 67 36, 15 Constantin Mille, Bucharest, Romania.

