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Abstract: This paper explores the use of the Intel RealSense Depth Camera D455 in the context of 

localization, autonomous navigation, and mapping of complex environments. We investigated advanced 

methods for estimating the position and orientation of mobile robots, using depth data to build detailed and 

accurate maps. The Simultaneous Localization and Mapping (SLAM) algorithm implemented is based on 

the real-time detection of changes in the environment, ensuring continuous updating of the map. The robot 

vector, representing its state, is evaluated according to the robot trajectory, significantly influencing the 

performance of autonomous navigation. The results obtained demonstrate the efficiency of the proposed 

method in various test scenarios. 

Key words: Intel RealSense Depth Camera D455, localization, autonomous navigation, mapping, robot 

vector. 

 
1. INTRODUCTION 
 
  This article evidences results on the control 
of autonomous mobile robots vectors, a highly 
relevant research area that has significant 
implications in autonomous robotics, artificial 
intelligence (AI), and robotics engineering.  

Autonomous mobile robots (AMRs) are 
complex systems capable of moving and 
operating independently in an environment, 
using a range of advanced sensors and 
algorithms to orient themselves, navigate and 
perform various tasks.  

An essential aspect in controlling 
autonomous mobile robots is localization and 
mapping. Simultaneous Localization and 
Mapping (SLAM) technology is particularly 
important in this context, allowing robots to 
create maps of the environment while 
determining their position in that environment. 
The use of sensors such as Lidar, RGB-D 
cameras, and inertial measurement units (IMUs) 
facilitate this process.  

These advanced technologies allow robots to 
navigate in unfamiliar environments, avoid 
obstacles, and complete complex missions.  

Control algorithms play a crucial role in the 
operation of autonomous mobile robots. The 
article discusses the use of advanced control 
algorithms, including adaptive control and 
reinforcement learning. These methods allow 
robots to adapt their trajectory according to 
changes in the environment and improve their 
performance over time.  

Although significant progress has been made 
in the field of controlling autonomous mobile 
robots, there are still many challenges.  

AMRs demonstrate outstanding autonomous 
and flexible navigation capabilities. They use 
advanced technologies, such as SLAM 
(Simultaneous Localization and Mapping), to 
orient themselves and create accurate maps of 
the environment. SLAM technology allows 
robots to simultaneously determine their 
position in space and map the environment, 
making it easier to avoid obstacles and adapt to 
changes in the operational environment. This 
capability is essential for efficient operation in 
unfamiliar and dynamic spaces.  

To highlight the importance of post-
processing techniques applied to the depth maps 
generated by RealSense cameras in improving 
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the accuracy of depth measurements, we 
referenced article [1], which emphasizes two 
essential aspects: temporal filtering, which can 
significantly reduce depth noise, and spatial 
filtering, which enables image smoothing 
without compromising important details. This 
information is relevant to supporting the 
methodology used in my paper, providing a solid 
theoretical framework and arguments based on 
existing research that validate the proposed 
approach.  

Reference [2] is used to emphasize the 
relevance of an autonomous navigation system 
for mobile robots operating in an industrial 
environment. Citing this reference is essential to 
highlight how mobile robots can recognize floor 
markings and navigate along a predefined route, 
avoiding obstacles and moving autonomously 
between fixed points. 

I used reference [3] as a source because it 
provides a detailed description of the navigation 
system, localization, and simultaneous mapping 
methods employed for managing large-scale 
urban center maps.  

These methods were tested on a real 
autonomous robot that traversed several 
kilometers in an urban environment, helping us 
better understand how SLAM functions in this 
context. 

Because we also focused on the use of the 
Kalman filter, reference [4] was utilized as it 
presents an interesting solution involving the use 
of a global reference system along with a set of 
point landmarks on a map. This approach 
addresses the problem of estimating the state 
vector representing the robot’s position and the 
landmarks. 

 The tests were conducted according to 
estimation and filtering theory, providing a solid 
foundation for solving various localization and 
simultaneous mapping problems in an unknown 
environment. 

To map an environment, it is essential for the 
autonomous mobile robot to detect current 
changes in the explored areas so that the 
generated map can be used in real-time. The 
accuracy of the SLAM algorithm is closely tied 
to the trajectory of the autonomous mobile robot 
in that environment.  

Reference [5] provided insights that we were 
able to apply in our tests.  

2. METHODS AND MATERIALS 

Types and characteristics of the materials 
(subsystems / components / software), as well as 
associated methods used in this research are 
further presented. 
 
2.1 Air Vector (drone)  
Individualized Tello drone (see figure 1) 
features that stand out for their ease of use, 
varied functionality, and ability to provide a 
pleasant flight experience are: 

- dimensions: 98 x 92.5 x 41 mm 
- weight: approx. 80 grams (including 

battery)  
- photo resolution: 5 MP (2592 x 1936) 
- video resolution: 720p HD at 30 frames 

per second  
- top speed: 8 m/s (18 mph) 
- maximum flight altitude: 10 m 
- flight time: approximately 13 minutes 

 

 

Fig. 1. Tello Drone [6] 
 

High-performance depth camera, Intel® 
RealSense™ D455 (see figure 2), was also used. 
It is designed to provide accurate color images 
and depth data for a wide range of applications, 
such as robotics, augmented reality, and 
autonomous vehicles.  

Important technical features are:  
 The depth accuracy of the D455 camera 

is significant, with depth errors below 
2% at a distance of 4 meters. 

 The high-resolution RGB camera 
provides clear and detailed images, 
useful for visual recognition and 
analysis. 

 Resolution - up to 1280 x 720 pixels- 
high resolution allows fine detail to be 
captured in images and depth data. 
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Fig. 2. Depth Camera D455 [7] 
 

2.2. The Terrestrial Vector (the robot)  
The terrestrial vector has integrated tank chassis 
(see figure 3.) into autonomous mobile robots 
that have the ability to move and perform 
missions without direct human intervention. 
These types of robots can be equipped with 
cameras, sensors and navigation systems to help 
them navigate in various unstructured 
environments. 
 

 

Fig. 3. Robotic Tank Chassis [8] 

 
 The Intel® RealSense™ Depth Camera D455 
has been attached to the mobile robot (and 
resulted the ground robot) - as evidenced in 
figure 4. 
 

 

Fig. 4. Depth Camera D455 and Mobile Robot 

 

 Then followed the ROS installation process 
using the specific code lines (see figure 5) 
 

 

Fig. 5. ROS Installation Code Lines 
 

and adding the Intel RealSense™ Depth 
Camera D455 in ROS (see figure 6)  

 

Fig. 6. Installation of Camera D455 in ROS 

 The next step required for localization and 
mapping was that of defining the parameters of 
the D455 depth camera. It involves setting and 
adjusting various specifications and features to 
obtain accurate distance measurements and 
optimize the camera's performance in the desired 
application. These parameters include, but are 
not limited to: resolution, frame rate, 
measurement distance, filtering and processing 
algorithms, camera calibration. (see figure 7).   
 

 

Fig. 7. Camera D455 Parameter Settings 

 
 The Intel RealSense D455 camera is an 
advanced depth camera that offers both depth 
images and RGB (color) images. Its main 
functionality and how these images are obtained 
are essential (see figure 8). 
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Fig. 8. Capturing RGB images 

 The block diagram of the command-and- 
control system of the ground robot and drone is 
shown in figure 9. 
 

 
Fig. 9. General Robot Vector Scheme 

 
3. ROBOT VECTORS MODELING 
 

The intelligent vector control system of 
autonomous mobile robots is based on the 
presence of a leader, which in this case is the DJI 
TELLO drone. The overall transient state 
control function of the leading autonomous air 
vector, in the context of a multi-intelligent 
vector environment, is defined by the following 
relationship: 

 

( , , )SCI SCI STTf tΘ= ∆ ∆      (1) 

The expression of the dynamic mathematical 
model that defines the leading air vector and 
includes six variable parameters — three 
positions and three orientations in the inertial 
frame of reference — is as follows: 

 
ФVALin = (xin, yin, zin, φin, θin, ψin) (2) 

 
The correlation of the two systems is given by 

relations system (3): 
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 The Gazebo environment is commonly 

used in ROS because together they provide a 
complete platform for robotics development and 
testing. Gazebo enables real-time control of 
robots in simulation, allowing for running and 
changing the robot code while they are in the 
virtual environment.  

The Tello drone was simulated in ROS using 
Gazebo, where a launch file (*.launch) was 
created to specify all the nodes and parameters 
required for the package in Gazebo. 
 Images of how the drone was simulated in the 
Gazebo are shown in figure 10 (a. front view; b. 
top view). 
 

 
a. front view  

 
b. top view  

Fig. 10. Drone simulation in the Gazebo 
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3.2. Gazebo Environment Description 
Simulating drones in virtual environments is 

essential for testing and developing control, 
navigation, and perception algorithms, with low 
risk of physical damage or additional costs. 
Gazebo, integrated with the Robot Operating 
System (ROS), provides a robust and flexible 
platform for these simulations.  

Gazebo is a high-fidelity robotics simulator 
that allows the simulation of complex robot 
dynamics in 3D environments. Gazebo offers 
advanced features such as:  

• Realistic Physics Simulation: Uses 
physics engines such as ODE, Bullet, 
and DART to recreate motion dynamics 
and interactions with the environment. 

• 3D Visualization: Provides a graphical 
interface to view and interact with robots 
in real-time. 

• ROS Integration: Enables seamless 
communication with ROS, facilitating 
the development and testing of control 
algorithms. 

 
3.3. Modeling the terrestrial robot vector  

Modeling a terrestrial robot vector in the 
Gazebo involves several steps, from defining 
the robot model to integrating it into a 
simulation environment.  

The ground robot simulated using Gazebo 
is shown in figure 11. 

 

 

Fig. 11. Robot in the Gazebo 

In order to have the simulation in Gazebo, 
where the robot can be tested, we first need a 
URDF file to describe it. The URDF file is based 
on the XML language where there are declared 
the mass of each element, the inertia, the joints, 
the links and everything necessary for the 
simulation of the robot.  

The file for describing a robot can become 
very complex, even if it is a simple model. For 
this reason, but also to make the URDF file more 
flexible in case changes occur, XACRO files are 
better used to define the robot model.  

XACRO is not an alternative to the URDF, it 
is just another way of defining it. In addition, the 
URDF file can be generated from the XACRO 
file by executing a single command.  
     For example, if we have created the file 
"4WD.xacro" and we want to get "4D.urdf", we 
will execute "rosrun xacro xacro.py 4WD.xacro 
> 4WD.urdf".  

One of the advantages of using XACRO is the 
ability to declare a constant at the beginning of 
the file, which can be used in defining several 
links and, if we want to change one feature 
value, we can do it only once instead of 
modifying it for each element. A relevant 
example for this work being the wheel, which 
will be defined identically 4 times. Another 
advantage of XACRO is the ability to calculate 
mathematical expressions, which are necessary 
for inertia. 

We started the description of the robot by 
creating a ROS package, which we named 
"4wd_description" and inside which we created 
an "urdf" folder containing the file of interest 
"4wd.xacro". Next, the code written in groups of 
structures as independent as possible will be 
explained.  

For the file to be considered a XACRO file, 
the minimum structure is this:  

<?xml version="1.0"?> 
<robot name="4wd" 

xmlns:xacro="http://www.ros.org/wiki/xacro"> 
 
The first line is the declaration of the XML 

language to which is assigned a version that 
must be 1.0. This is standard in all XACRO files.  

The second line "tells" the XACRO system to 
use the XACRO protocol from the address: 

<xacro:include filename="$(find 
4wd_description)/urdf/4wd_materials.xacro" /> 

 
By this line another XACRO file has been 

included that describes a series of colors that can 
be used in the creation of components. Its 
content is:  
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<?xml version="1.0"?> 
<robot 

xmlns:xacro="http://www.ros.org/wiki/xacro"> 
 <material name="Green"> 
  <color rgba="0.0 1.0 0.0 1.0"/> 
 </material> 
 <material name="Blue"> 
  <color rgba="0.0 0.0 1.0 1.0"/> 
 </material> 
 <material name="Red"> 
  <color rgba="1.0 0.0 0.0 1.0"/> 
 </material> 
 <material name="White"> 
  <color rgba="1.0 1.0 1.0 1.0"/> 
 </material> 
 <material name="Yellow"> 
  <color rgba="1.0 1.0 0.0 1.0"/> 
</material> 
</robot> 
 
 This file can be optional, as colors can be 

given directly in the body of each link. We chose 
this method for the highest possible 
simplification of the code. The colors are 
defined using the RGB system with the values 
scaled from 0 to 1, instead of 0 to 255. There can 
also be noticed the first lines needed for any 
XACRO file, mentioned above. 

 The next line includes another file, called 
"4wd.gazebo", which is defined for controlling 
the robot in the simulator. 

<xacro:include filename="$(find 
4wd_description)/urdf/4wd.gazebo" /> 
 

The code so far was just the beginning of the 
file that contained the declaration and 
initialization part. The next part is the actual 
construction of each element and the 
establishment of the parent-child relationships. 
The first link is the basic one that has a simple 
description and on which all other links will 
depend. This is the center of the robot and is 
especially important in Rviz. 

<link name="base_link"> </link> 

It should be noticed that the order in which 
the links are declared does not matter because 
the model will be created according to the joints 
where the parent and child are set.  

The following structure describes the robot 
chassis:  

<link name="body_link"> 
  <visual> 
<origin xyz="0 0 0.03" rpy="0 0 0" /> 
            <geometry> 
<box size="0.4 ${wheel_separation} 0.09"/> 
            </geometry> 
<material name="White" /> 
  </visual> 
  <collision> 
<origin xyz="0 0 0.03" rpy="0 0 0" /> 
            <geometry> 
<box size="0.4 ${wheel_separation} 0.09"/> 
            </geometry> 
  </collision> 
        <inertial> 
<origin xyz="0 0 0.03" rpy="0 0 0" /> 
            <mass value="${mass}" /> 

<inertia ixx="${inertia}" ixy="0.0" ixz="0.0" 
iyy="${inertia}" iyz="0.0" izz="${inertia}" /> 

        </inertial> 
 </link> 
 <joint name="base_to_body" type="fixed"> 
    <parent link="base_link" /> 
   <child link="body_link" /> 
<origin xyz="0 0 ${wheel_radius}" rpy="0 0 

0"/> 
    </joint> 
 
One of the essential elements in the 

simulation of a robot is "collision" and refers to 
the way it interacts with the world around it. The 
element contains a label indicating the geometry 
of the collision, in the same format as in the case 
of the visual, for which an origin can also be 
specified. 

Along with collision properties, inertia 
properties allow for physical simulation of the 
robot. The element 'inertial' contains the 
following labels: 

- "origin" - is used to elect the position of the 
center of mass relative to the origin of the 
connection. 

- "mass"- sets the mass of the connection., it 
must have a value as close as possible to the real 
one because it will condition the way the joints 
move. 

- "inertia" - defines the inertia matrix of the 
bond and will determine how it behaves when 
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moving or rotating. It was assumed that the 
material from which the connection is made is 
homogeneous, and the matrix will have values 
other than 0, only diagonally. These were 
calculated based on the primary geometric 
shapes. 

The last element in the structure is the merge 
that is initialized with a name and a type, after 
which the parent, the child and the origin are 
declared. 

The robot would not yet be able to move in 
the simulation because no effort (force or torque) 
has been applied to the joints, so it is applied 
"real" motors. For this, transmissions will have 
to be added to all the "continuous" joints that 
describe the relationship between the motors and 
the links, as we did for the front wheel on the 
right side. 

<transmission name="front_right_wheel"> 
<type>transmission_interface/SimpleTrans

mission</type> 
 <joint name="base_to_front_right_wheel"> 
<hardwareInterface>hardware_interface/Eff

ortJointInterface</hardwareInterface> 
        </joint> 
 <actuator name="front_right_motor"> 
 

4. RESULTS AND DISCUSSIONS 
 

One of the most important mathematical tools 
for working with robots is Transformers (TF). 
ROS provides special packages through which 
we can use these transformers much more easily 
to solve various problems. Physical systems, 
especially those for robots, have many 3D 
coordinate frames that can change over time. TF 
is the package that allows the user to keep track 
of these frames. 

In ROS, each node can use the TF packet to 
transmit a transformation from one frame to 
another. With all these vertices the transform 
tree can be created.  

The five transformer frames are: "body_link", 
"battery", "rear_right_wheel", "hcsr04_link" 
and "front_right_wheel". The last 4 have a 
common parent, and that is "body_link", which 
in turn has the "base_link" frame as its parent. 
The additional information that the tree also 
provides is: 

- "Recorded at time" - provides information 
about the time when the transforms were 
transmitted in the "Unix time" system. 

- "Broadcaster" - represents the name of the 

node that transmits data. 
- "Average rate" - refers to the average 

publication rate expressed in Hz. 
- "Buffer length" - contains how long data has 

been stored. 
The robot's movement was done through the 

dedicated ROS "teleop_twist_keyboard" 
package, which allows movement from the 
keyboard buttons, because it publishes in the 
subject "/cmd_vel", and the differential control 
module provided by Gazebo listens to the 
subject "/cmd_vel". 

The simulation of the robot and drone in a 
virtual environment (see figure 12) is aimed to 
observe its behavior in various scenarios by 
varying the speed and changing the shapes and 
positions of obstacles. For the visualization and 
verification of these aspects, the Rviz platform 
was used. 

 

 

Fig. 12. Robot and drone in the Gazebo 

 
5. CONCLUSION  
 

The article highlights the importance of 
vector control of autonomous mobile robots and 
the relevance of this field of research in 
autonomous robotics, artificial intelligence and 
robotics engineering.  

Advances in localization, mapping, and 
control algorithm technologies have the 
potential to transform various industries and 
significantly improve the capabilities and 
applicability of autonomous mobile robots. 

The simulation of the DJI Tello drone and 
ground robot in Gazebo, integrated with ROS, 
provides a robust and efficient test environment 
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for the development and validation of control 
algorithms. This framework allows researchers 
and developers to experiment advanced 
technologies in a safe controlled environment. 
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Sistem de operare vector robot pentru localizare și cartografiere  

Această lucrare explorează utilizarea camerei Intel RealSense Depth Camera D455 în contextul localizării, navigării 
autonome și mapării mediilor complexe. Am investigat metode avansate de estimare a poziției și orientării roboților 
mobili, utilizând date de adâncime pentru a construi hărți detaliate și precise. Algoritmul de Localizare și Cartografiere 
Simultană (SLAM) implementat se bazează pe detectarea în timp real a modificărilor din mediul înconjurător, asigurând 
actualizarea continuă a hărții. Vectorul de robot, reprezentând starea acestuia, este evaluat în funcție de traiectoria 
parcursă, influențând semnificativ performanța navigării autonome. Rezultatele obținute demonstrează eficiența soluției 
propuse în diverse scenarii de testare. 
Cuvinte cheie: Intel RealSense Depth Camera D455, localizare, navigare autonomă, cartografiere, vector robot. 
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