
317

Received: 27.04.25; Similarities: 29.05.25: Reviewed: 28.05./12.06.25: Accepted:12.06.25.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 68, Issue II, June, 2025

A MACHINE LEARNING APPROACH IN PLANAR MECHANISM

TRAJECTORY APPROXIMATION

Tiberiu Alexandru ANTAL

Abstract: Determining the motion path of a point (or link) in a mechanism based on given input motion or

designing a mechanism such that a specific point follows a desired trajectory (or motion profile) are key

areas in kinematic design for planar and spatial mechanisms. The present work aims to find in the

trajectories generated by mechanisms sequences of points that satisfy with a given approximation certain

conditions in order to classify them into categories such as line (or arc) with the help of artificial

intelligence.

Key words: artificial intelligence, mechanisms, trajectory, programing, Python.

1. INTRODUCTION

In 1968 the book “The Art of Computer

Programming, Volume 1: Fundamental

Algorithms” written by Donald Knuth

formalized the definition of algorithms, setting

the precise conditions that an algorithm must

satisfy: finiteness, definiteness, Input/Output,

effectiveness. “Volume 1” also defined

computer science as a mathematical discipline,

introduced algorithm analysis and Big-O

notation, provided a deep analysis of essential

data structures and optimal

allocation/manipulation of the resources. In

1976 the book “Algorithms + Data Structures =

Programs” written by Niklaus Wirth covered a

piece of the fundamental topics in computer

programming related to the algorithms,

algorithm evaluation metrics and data structures.

Based on their researches an algorithm takes

input, process it and produces output. In the

classical sense, the notion of algorithm can be

associated with Newtonian mechanics -

Newton's second law (�⃗ = ��⃗) - where we have

a set of data that characterizes the initial state of

the system (input data), a mathematical formula

/ expression (an algorithm or procedure to deal

with the input) through which it evolves (and can

form the output) from the initial state to other

states. Nothing in the classical definition

suggests that input and output can be coupled /

associated to teach the algorithm, using different

mathematical models, to predict each input and

output for (input, output) data pairs that did not

participate in the learning process. This

algorithm will draw it’s intelligence by

identifying common habits in the (input, output)

data pairs and by transforming the output to an

input to perform prediction. The following

research tries to use such an approach in the

space of trajectories generated by mechanisms in

order to identify trajectory sections that deviate

with an imposed error from a known trajectory

(in this case the line in the plan). If such a

sequence is identified, then it extracts de

characteristic features of the sequence making

an association between the geometrical

dimensions of the mechanism, the trajectory and

the features discovered in the trajectory subset.

Machine Learning (ML) is a about a set of

algorithms that become aware of patterns in data

and are able to make predictions on future or on

new data (based on the experience accumulated

from previous data).

2. AI AND TRAJECTORY RECOGNITION

IN PLANAR MECHANISM

ML is a subfield of Artificial Intelligence (AI),

as not all AI systems use ML (e.g., rule-based

318

expert systems don’t rely on learning from data).

The recognition of trajectories generated by

planar mechanisms is a wide research area in

robotics, kinematics, and control systems. A

brief and subject oriented current state of this

field includes approaches like:

1. Mathematical and Geometric Approaches

[1], [2], [3]:

• Kinematic Equations: Trajectories are

analyzed using closed-form kinematic

equations that describe the motion of the

mechanism [4], [5].

• Differential Geometry: Curvature and

torsion properties help distinguish

different trajectories.

• Fourier Descriptors: Used to represent

complex trajectories in a frequency

domain.

2. Computer Vision and Machine Learning

[6], [7], [15], [16]:

• Pattern Recognition: Machine learning

algorithms, including neural networks and

support vector machines (SVM), are used

to classify and recognize trajectories.

• Deep Learning: Convolutional Neural

Networks (CNNs) and Recurrent Neural

Networks (RNNs) are applied to analyze

time-series data of motion paths.

• Feature Extraction: Keypoints and

descriptors (SIFT, HOG) are used to

identify distinct trajectory patterns.

3. Symbolic and Computational Methods [8],

[9], [10], [13], [14]:

• Graph-Based Representation:

Trajectories are modeled as graphs for

efficient matching and comparison.

• Optimization Techniques: Genetic

algorithms and particle swarm

optimization refine trajectory recognition.

As can be seen in the previous classification, ML

was found to be useful in analyzing mechanism

motion paths. The general term of ML includes

three types of paradigms:

1. Supervised Learning (SL), the

algorithm is trained on a labeled dataset,

meaning each input comes with a

corresponding correct output. The model

learns to map inputs to outputs based on

this labeled data. Characteristics of the

model cam be summarized as:

o Labeled Data - Each input has a

known correct answer or output.

o Direct Feedback - The model is

trained with explicit right or

wrong answers.

o Predict Output - Learns to map

inputs to expected outputs for

future predictions.

2. Unsupervised Learning (UL) has no

labeled data. Instead, the model

identifies hidden structures and patterns

in the data. Characteristics of the model

cam be summarized as:

o No Labels - The model is not told

what the correct answer is.

o No Direct Feedback - The model

doesn’t know if its output is

correct or not.

o Finds Patterns in Data - Groups,

clusters, or detects anomalies in

datasets.

3. Reinforcement Learning (RL), an

agent interacts with an environment and

learns through trial and error to

maximize rewards. Characteristics of the

model cam be summarized as:

o Decision Process - The agent

makes a series of decisions over

time.

o Reward System - Receives

rewards or penalties based on

actions.

o Learns Series of Actions -

Develops strategies to maximize

long-term rewards.

If the outputs are discrete the subcategory of SL

is called classification, if the output is

continuous the SL is called regression for

predicting continuous outcomes. The following

work is an attempt to approximate sections of

motion paths based on SL regression analysis.

Regression finds a mathematical function that

best fits the given data. It tries to minimize the

difference between actual values and predicted

values using error metrics like Mean Squared

Error (MSE). If the regression is linear the

mathematical function is � = �� + 	 and

319

models a straight-line relationship between input

(X) and output (Y) where m is the slope

(relationship strength) and n the intercept

(constant).

2.1 PYTHON and the linear regression

 NumPy (Numerical Python) is a fundamental

library for scientific computing in Python. It

provides support for: multi-dimensional arrays

(efficient storage & operations), mathematical

functions (linear algebra, statistics, etc.),

broadcasting (element-wise operations on

arrays), and performance optimization (faster

than standard Python lists). SciPy (Scientific

Python) is an open-source library in Python that

builds on NumPy and provides tools for

scientific computing, including like:

optimization (minimizing functions),

interpolation (estimating missing values), signal

processing (filtering data), linear algebra

(solving equations), statistics and probability

(distributions, hypothesis testing), integration

and differentiation (solving integrals).

scipy.stats is a module in SciPy that provides

a wide range of statistical functions and

probability distributions. In scipy.stats a

simple way to perform linear regression is using

the linregress() function. It calculates the best-

fit line for two given sets of data points, which

can be used to model the relationship between an

independent variable x and a dependent variable

y. The function signature is:

scipy.stats.linregress(x, y)

where the parameters are:

• x: an array-like, independent variable

(input data);

• y: an array-like, dependent variable

(output data).

Both x and y must have the same length and

correspond to the data points we want to model.

The function returns a tuple with 5 values:

• slope: The slope (m) of the regression

line mm.

• intercept: The intercept (n) of the

regression line.

• r_value: The correlation coefficient

between x and y. Measures the strength

and direction of the linear relationship

between the variables (ranges from -1 to

+1).

• p_value: The two-sided p-value for a

hypothesis test where the null hypothesis

is that the slope of the regression line is

zero (no correlation).

• std_err: The standard error of the

estimated slope. It provides a measure of

how precise the slope estimate is.

A commented code to use the function follows:

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import linregress

X = np.arange(0, 10, 1)

y = np.array([])

print the independent X array

print()

print("x=",X)

create the Y dependent array using the

the equation of a line whisch has

the slope and intercept slightlty

modifyed using randon numbers

for x in X:

 y1=np.append(y,2*np.random.uniform(0.6,

1.2)*x+np.random.uniform(0.1, 1.1))

 # NumPy arrays are immutable, meaning

 ## np.append() creates a new array

 ## instead of modifying the original one.

 y=y1

print()

print("y=",y)

Compute linear regression

slope, intercept, r_value, p_value, std_err =

linregress(X, y)

Print results

print()

print(f"Equation: y = {slope:.2f}X +

{intercept:.2f}")

print(f"R-squared: {r_value**2:.3f}") Measure of how

well the line fits the data

320

Generate predicted y values

y_pred = slope * X + intercept

Plot actual data points

plt.scatter(X, y, color='blue', label="Actual Data")

Plot regression line

plt.plot(X, y_pred, color='red', label=f"Regression

Line (y = {slope:.2f}x + {intercept:.2f})")

Labels and legend

plt.xlabel("X")

plt.ylabel("Y")

plt.title("Linear Regression using scipy")

plt.legend()

plt.show()

The result of the code are:

x= [0 1 2 3 4 5 6 7 8 9]

y= [0.23949386 2.01693542 4.37974392 4.93306005

7.79004034 9.91579324
 8.71725701 17.41970643 12.7219643 18.72986918]

Equation: y = 1.94X + -0.04
R-squared: 0.902

Fig. 1. - Linear regression results of the code for testing

scipy.stats.linregress(x, y) function.

Using the X = np.arange(0, 10, 1) line of

code an array of input values is generated

starting from 1 to 10 with a step of 1. Then the

for loop creates an array of dependent points

with the slope and intercept slightly modified

from a straight line as the blue dots in Figure 1

show. The red line is obtained by regression as

well as the equation of the line. At the same

time the correlation (R-squared) coefficient

between x and y is computer having the

following meaning:

• R-squared =1: the regression model

perfectly explains the variance in the

data, and the predicted values are

exactly the same as the actual values.

• R-squared =0: the regression model

explains none of the variance in the

data. The model does no better than

simply predicting the mean of the

dependent variable for all points.

• 0< R-squared <1: the regression model

explains a portion of the variance. The

closer R-squared is to 1, the better the

model fits the data.

3. PYTHON IN MECHANISM

SIMULATION

Python provides powerful tools for mechanical

system simulation, whether it's kinematics,

FEA, CFD, rigid body dynamics, or machine

learning-based trajectory prediction [12]. It can

be used for real-time applications, research, and

engineering design. A four-bar linkage consists

of four rigid links connected by rotating joints.

ML can be used to approximate trajectories or

trajectory sections generated by the four-bar

linkage mechanism using the scikit-learn

(simpler regression-based models). Python

implements the OOP programming paradigm

that models real-world entities using classes and

objects. Python supports encapsulation,

inheritance, and polymorphism, making it

powerful for modular and reusable code. The

OOP model of four-bar linkage mechanism

based on the concept of vector [11] is presented

as follows. In Figure 2 there are four vectors,

each having a name and constructed from the

start point to the endpoint. For example, the v1

vector is named “a” starts at (0,0) and ends at (2-

,0). The initial states for the mechanisms are

presented and the simulation results are

presented in Figure 2, Figure 3 and Figure 4.

Vector v4 has always the start point at the middle

of the v2 vector. By modifying one of the vectors

a different four-bar mechanism is obtained that

will produce different trajectory. The

modifications are presented as a single vector

321

which changes the original configuration from

set (1) to (2) and (3).

v1 = Vector2D("a", 0, 0, -2, 0)

v2 = Vector2D("b", -2, 0, 2, 3.5)

v3 = Vector2D("c", 4,0, 2, 3.5)

v4 = Vector2D("d", v2.mid_x, v2.mid_y, 5.5, 6.5)

(1)

Fig. 2. - Four-bar linkage simulation for the set of (1)

vectors.

v3 = Vector2D("c", 4,-2, 2, 3.5) (2)

Fig. 3. - Four-bar linkage simulation for the set (2) of

vectors.

v4 = Vector2D("d", v2.mid_x, v2.mid_y, 2, 6) (3)

The grid of graphical representations allows the

evaluation of magnitude, orientation and sense

of each vector in the model. If the v1 vector

rotates around the start point the trajectory

generated by the endpoint of the v4 vector will

result in a close curve drawn in blue during the

simulation on each figure.

Fig. 4. - Four-bar linkage simulation for the set (3) of

vectors.

The simulations from the previous Figure 2 to

Figure 4 generated by the code from [11] are

processed with the following code and the

results are given in Figure 5 to Figure 7. This

sequence of code is filtering consecutive points

that will participate in the regression set of

values by selecting only those points that differ

by slope from the previous ones by a given eps
value.

import matplotlib.pyplot as plt1

from scipy import stats

xf, yf = [], []

eps = 0.122

for i in range(0,len(xdata)-1):

 d = delta(xdata[i],ydata[i], xdata[i+1],

ydata[i+1])

 for j in range(i+1, len(xdata)-1):

 d1 = delta(xdata[j],ydata[j], xdata[j+1],

ydata[j+1])

 if abs(d-d1) <= eps:

 xf.append(xdata[j])

 yf.append(ydata[j])

 else:

 break

m, n, r, p, std_err = stats.linregress(xdata, ydata)

mf, nf, rf, pf, std_errf = stats.linregress(xf, yf)

mymodel = list(map(myfunc, xdata))

mymodelf = list(map(myfuncf, xf))

322

fig, (ax1, ax2) = plt1.subplots(2,1,

figsize=(50,1.05*40/2), dpi=100)

ax1.scatter(xdata, ydata, color='red')

ax1.scatter(xf, yf, color='green')

ax1.plot(xdata, mymodel, color='red')

ax1.plot(xf, mymodelf,color='green')

ax2.scatter(xf,yf,color='green')

ax2.plot(xf, mymodelf,color='green')

plt1.show()

print(f'Initial line equation is: {m}x+ {n} with std

err: {std_err}')

print(f'Adjusted line equation is: {mf}x+ {nf} with

std err: {std_errf} >> ')

The red set of points contain all the points that

are used in the simulation; these overlap the

trajectories presented in Figure 2 to Figure 5.

The green set of points is filtered from the red

set by applying the eps value to the selection. As

seen in Figure 5 to Figure 8 this set narrows the

original set the points that fit to the slope

condition. The red line is the regression based on

all the points, while the green line fits only the

filtered points. For each result the code also

prints the standard errors and line equations.

Fig. 5. - Four-bar linkage linear regression for the set (1)

without (red) and with filter (green for eps = 0.122).

eps=0.122
Initial line equation is: -0.3209208605956093x+

8.608079316908118 with std err: 0.03219330490967546
Adjusted line equation is: -0.2950935509526894x+
8.177922296144654 with std err: 0.004522828261481185

Fig. 6. - Four-bar linkage linear regression for the set (1)

without (red) and with filter (green for eps = 0.05) .

eps = 0.005

Initial line equation is: -0.32210198726971784x+
8.624795574824729 with std err: 0.022679965457873954
Adjusted line equation is: -0.19708300569626602x+

7.5738795427731045 with std err:
0.0004822294740303662

Fig. 7. - Four-bar linkage linear regression for the set (2)

without (red) and with filtering (green for eps = 0.122).

eps=0.122

Initial line equation is: -0.30829236532141124x+
8.51320479109249 with std err: 0.02177058660483168

Adjusted line equation is: -0.3243627143488145x+
8.293453800439082 with std err:
0.00044578900272856784

In linear regression, the standard error is an

important metric that provides information

about the accuracy of the estimated regression

coefficients (slope and intercept). In

scipy.linregress(), the standard error (SE) is

calculated for the slope of the regression line,

and it gives an idea of how much the estimated

slope can vary due to the random noise in the

data. It reflects how precise the estimate of the

323

slope is in relation to the data, and it depends on

the spread of the data and the number of data

points. The SE of the slope is better if the value

is smaller as this means the slope is more

precisely estimated.

Fig. 8. - Four-bar linkage linear regression for the set (3)

without (red) and with filtering (green for eps = 0.122).

eps=0.122
Initial line equation is: 0.054099974604102236x+

5.68297218438789 with std err: 0.023729057267452593
Adjusted line equation is: 0.3783954932633479x+
5.219579265874449 with std err: 0.006760759745804158

4. CONCLUSIONS

As visible in all the presented results (figures

and numbers) the linear regression on filter data

using the slope criterion will produce good

results. For each of the figures showing the

algorithm results (Figure 5 to Figure 8) the green

line obtained from filtered data is closer to the

green set of points and as a numerical quality

indicator the “Adjusted line equation” is having

a better (smaller) standard error value that the

value for the “Initial line equation”. With the

obtained results a ML classifier system can be

trained having the input data (features or the

independent variables) organized in a structured

table to store 4 vectors (or 8 numbers) and the

labels as multi-class responses as {“unknown”,

“linear”, “arc”, “circle”, “quadratic”}.

5. REFERENCES

[1] Ting, HZ (Ting, Han Zhong); Zaman,

MHM (Zaman, Mohd Hairi Mohd); Ibrahim,

MF (Ibrahim, Mohd Faisal); Moubark, AM

(Moubark, Asraf Mohamed). Kinematic

Analysis for Trajectory Planning of Open-

Source 4-DoF Robot Arm.

INTERNATIONAL JOURNAL OF

ADVANCED COMPUTER SCIENCE

AND APPLICATIONS, Volume: 12, Issue:

6, Pages: 768-775, 2021, ISSN: 2158-107X.

WOS: 000686178900090.

[2] Han Kyul Joo, Tatsuya Yazaki, Masahito

Takezawa, Takashi Maekawa. Differential

geometry properties of lines of curvature of

parametric surfaces and their visualization,

Graphical Models,Volume 76, Issue 4, 2014,

Pages 224-238, ISSN 1524-0703,

https://doi.org/10.1016/j.gmod.2014.05.001.

[3] Mark S. Nixon, Alberto S. Aguado, 7 -

Object description, Editor(s): Mark S.

Nixon, Alberto S. Aguado, Feature

Extraction and Image Processing for

Computer Vision (Fourth Edition),

Academic Press, 2020, Pages 339-398,

ISBN 9780128149768,

https://doi.org/10.1016/B978-0-12-814976-

8.00007-5.

[4] Vaida, C.; Pisla, D.; Schadlbauer, J.; Husty,

M.; Plitea, N. Kinematic analysis of an

innovative medical parallel robot using

study parameters. In New Trends in Medical

and Service Robots. Mechanisms and

Machine Science; Wenger, P., Chevallereau,

C., Pisla, D., Bleuler, H., Rodić, A., Eds.;

Springer: Cham, Switzerland, 2016; Volume

39.

[5] Plitea, N.; Hesselbach, J.; Vaida, C.; Raatz,

A.; Pisla, D.; Budde, C.; Vlad, L.; Burisch,

A.; Senner, R. Innovative development of

surgical parallel robots. Acta Electron.

Mediamira Sci. Cluj Napoca 2007, 4, 201–

206.

[6] Asrar G. Alharthi, Salha M. Alzahrani, Do

it the transformer way: A comprehensive

review of brain and vision transformers for

autism spectrum disorder diagnosis and

classification, Computers in Biology and

Medicine, Volume 167, 2023, 107667, ISSN

0010-4825,

https://doi.org/10.1016/j.compbiomed.2023.

107667.

[7] Rus, G.; Andras, I.; Vaida, C.; Crisan, N.;

Gherman, B.; Radu, C.; Tucan, P.; Iakab, S.;

Hajjar, N.A.; Pisla, D. Artificial Intelligence-

324

Based Hazard Detection in Robotic-Assisted

Single-Incision Oncologic Surgery. Cancers

2023, 15, 3387.

https://doi.org/10.3390/cancers15133387

[8] A. Antal, A. Antal, The use of genetic

algorithms for the design of mechatronic

transmissions with improved operating

conditions, 3rd International Conference on

Human System Interaction, Rzeszow,

Poland, 2010, pp. 63-66, doi:

10.1109/HSI.2010.5514588.

[9] ANTAL, T. A., Planar mechanism

synthesis using genetic algorithms, Acta

Technica Napocensis, Series: Applied

Mathematics and Mechanics. No. 42, Vol.

II, 1999, p.55-60, U. T. PRESS - The

Technical University form Cluj-Napoca,

Romania, ISSN 1221-5872.

[10] Tucan, P.; Vaida, C.; Horvath, D.;

Caprariu, A.; Burz, A.; Gherman, B.; Iakab,

S.; Pisla, D. Design and Experimental Setup

of a Robotic Medical Instrument for

Brachytherapy in Non-Resectable Liver

Tumors. Cancers 2022, 14, 5841.

https://doi.org/10.3390/cancers14235841

[11] ANTAL, T. A., Python in the planar four-

bar linkage mechanism simulation, Acta

Technica Napocensis, ACTA TECHNICA

NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, [S.l.], v. 68, n. 1, 2025.

ISSN 2393–2988.

[12] Vaida, C.; Rus, G.; Tucan, P.; Machado,

J.; Pisla, A.; Zima, I.; Birlescu, I.; Pisla, D.

Enhancing Robotic-Assisted Lower Limb

Rehabilitation Using Augmented Reality and

Serious Gaming. Appl. Sci. 2024, 14, 12029.

https://doi.org/10.3390/app142412029

[13] Morariu-Gligor, R.M., Șerdean, Florina

M., Moholea, Iuliana F., Computer

programming in C language with

applications in mechanical engineering, vol.

I, Editura Tehnica-Info, Chișinău, 2023, pag.

223.

[14] Șerdean, Florina M., Morariu-Gligor,

R.M., Moholea, Iuliana F., Programming in

Matlab with applications in mechanical

engineering, vol. I, Editura Tehnica-Info,

Chișinău, 2023, pag. 227.

[15] Deteşan, O.A., The Path Planning of

RTTRR Small-Sized Industrial Robot in a

Process of Microprocessor Packing, Acta

Technica Napocensis, Series: Applied

Mathematics, Mechanics and Engineering,

vol. 60, issue. IV, p. 551-556, Cluj-Napoca,

2017, ISSN 1221-5872

[16] Deteşan, O.A., The Path Planning of

Industrial Robots Using Polynomial

Interpolation, with Applications to Fanuc

LR-Mate 100iB, Acta Technica Napocensis,

Series: Applied Mathematics and

Mechanics, no. 56, vol. IV, p. 665-670, Cluj-

Napoca, 2013, ISSN 1221-5872.

6. ACKNOWLEDGEMENT
The completion of this work would not have been

possible without the support of TERAPIA S.A who, in

2024, sponsored the “TERAPIA Laboratory” within

the Department of Mechanical Systems Engineering

with the AI hardware equipment necessary for the

research. I would also thank the leadership of the

Technical University from Cluj-Napoca to encourage

and support us in attending various forms of AI

education. And from a teacher to a teacher, special

thanks to Andrei Luchici, instructor at ILBAH

STUDIO, for his steady guidance, perseverance, and

constant encouragements in teaching the "Python

Machine Learning & AI" course.

O abordare a învățării automate în aproximarea traiectoriei mecanismelor plane

Determinarea traiectoriei de mișcare a unui punct (element cinematic) dintr-un mecanism sau proiectarea acestuia

astfel încât un anumit punct să urmeze o traiectorie dorită (sau un tip de mișcare) sunt domenii cheie în proiectarea

cinematică pentru mecanismele plane și spațiale. Lucrarea de față își propune să găsească în traiectoriile generate de

mecanisme secvențe de puncte care satisfac cu o aproximare dată anumite condiții pentru a le clasifica în categorii

precum linia (sau arcul) cu ajutorul inteligenței artificiale.

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca,

Department of Mechanical System Engineering, antaljr@mail.utcluj.ro, 0264-401667, B-dul

Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

