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Abstract: Determining the motion path of a point (or link) in a mechanism based on given input motion or 

designing a mechanism such that a specific point follows a desired trajectory (or motion profile) are key 

areas in kinematic design for planar and spatial mechanisms. The present work aims to find in the 

trajectories generated by mechanisms sequences of points that satisfy with a given approximation certain 

conditions in order to classify them into categories such as line (or arc) with the help of artificial 

intelligence. 
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1. INTRODUCTION 

 

In 1968 the book “The Art of Computer 

Programming, Volume 1: Fundamental 

Algorithms” written by Donald Knuth 

formalized the definition of algorithms, setting 

the precise conditions that an algorithm must 

satisfy: finiteness, definiteness, Input/Output, 

effectiveness. “Volume 1” also defined 

computer science as a mathematical discipline, 

introduced algorithm analysis and Big-O 

notation, provided a deep analysis of essential 

data structures and optimal 

allocation/manipulation of the resources. In 

1976 the book “Algorithms + Data Structures = 

Programs” written by Niklaus Wirth covered a 

piece of the fundamental topics in computer 

programming related to the algorithms, 

algorithm evaluation metrics and data structures. 

Based on their researches an algorithm takes 

input, process it and produces output. In the 

classical sense, the notion of algorithm can be 

associated with Newtonian mechanics - 

Newton's second law (�⃗ = ��⃗) - where we have 

a set of data that characterizes the initial state of 

the system (input data), a mathematical formula 

/ expression (an algorithm or procedure to deal 

with the input) through which it evolves (and can 

form the output) from the initial state to other 

states. Nothing in the classical definition 

suggests that input and output can be coupled / 

associated to teach the algorithm, using different 

mathematical models, to predict each input and 

output for (input, output) data pairs that did not 

participate in the learning process. This 

algorithm will draw it’s intelligence by 

identifying common habits in the (input, output) 

data pairs and by transforming the output to an 

input to perform prediction. The following 

research tries to use such an approach in the 

space of trajectories generated by mechanisms in 

order to identify trajectory sections that deviate 

with an imposed error from a known trajectory 

(in this case the line in the plan). If such a 

sequence is identified, then it extracts de 

characteristic features of the sequence making 

an association between the geometrical 

dimensions of the mechanism, the trajectory and 

the features discovered in the trajectory subset. 

Machine Learning (ML) is a about a set of 

algorithms that become aware of patterns in data 

and are able to make predictions on future or on 

new data (based on the experience accumulated 

from previous data).  

 

2. AI AND TRAJECTORY RECOGNITION 

IN PLANAR MECHANISM 

 

ML is a subfield of Artificial Intelligence (AI), 

as not all AI systems use ML (e.g., rule-based 



318 
 

 

expert systems don’t rely on learning from data). 

The recognition of trajectories generated by 

planar mechanisms is a wide research area in 

robotics, kinematics, and control systems. A 

brief and subject oriented current state of this 

field includes approaches like: 

1. Mathematical and Geometric Approaches 

[1], [2], [3]: 

• Kinematic Equations: Trajectories are 

analyzed using closed-form kinematic 

equations that describe the motion of the 

mechanism [4], [5]. 

• Differential Geometry: Curvature and 

torsion properties help distinguish 

different trajectories. 

• Fourier Descriptors: Used to represent 

complex trajectories in a frequency 

domain. 

 

2. Computer Vision and Machine Learning 

[6], [7], [15], [16]: 

• Pattern Recognition: Machine learning 

algorithms, including neural networks and 

support vector machines (SVM), are used 

to classify and recognize trajectories. 

• Deep Learning: Convolutional Neural 

Networks (CNNs) and Recurrent Neural 

Networks (RNNs) are applied to analyze 

time-series data of motion paths. 

• Feature Extraction: Keypoints and 

descriptors (SIFT, HOG) are used to 

identify distinct trajectory patterns. 

 

3. Symbolic and Computational Methods [8], 

[9], [10], [13], [14]: 

• Graph-Based Representation: 

Trajectories are modeled as graphs for 

efficient matching and comparison. 

• Optimization Techniques: Genetic 

algorithms and particle swarm 

optimization refine trajectory recognition. 

 

As can be seen in the previous classification, ML 

was found to be useful in analyzing mechanism 

motion paths. The general term of ML includes 

three types of paradigms: 

1. Supervised Learning (SL), the 

algorithm is trained on a labeled dataset, 

meaning each input comes with a 

corresponding correct output. The model 

learns to map inputs to outputs based on 

this labeled data. Characteristics of the 

model cam be summarized as: 

o  Labeled Data - Each input has a 

known correct answer or output. 

o  Direct Feedback - The model is 

trained with explicit right or 

wrong answers. 

o Predict Output - Learns to map 

inputs to expected outputs for 

future predictions. 

2. Unsupervised Learning (UL) has no 

labeled data. Instead, the model 

identifies hidden structures and patterns 

in the data. Characteristics of the model 

cam be summarized as:  

o No Labels - The model is not told 

what the correct answer is. 

o No Direct Feedback - The model 

doesn’t know if its output is 

correct or not. 

o Finds Patterns in Data - Groups, 

clusters, or detects anomalies in 

datasets. 

3. Reinforcement Learning (RL), an 

agent interacts with an environment and 

learns through trial and error to 

maximize rewards. Characteristics of the 

model cam be summarized as:  

o Decision Process - The agent 

makes a series of decisions over 

time. 

o Reward System - Receives 

rewards or penalties based on 

actions. 

o Learns Series of Actions - 

Develops strategies to maximize 

long-term rewards. 

 

If the outputs are discrete the subcategory of SL 

is called classification, if the output is 

continuous the SL is called regression for 

predicting continuous outcomes. The following 

work is an attempt to approximate sections of 

motion paths based on SL regression analysis. 

Regression finds a mathematical function that 

best fits the given data. It tries to minimize the 

difference between actual values and predicted 

values using error metrics like Mean Squared 

Error (MSE). If the regression is linear the 

mathematical function is � = �� + 	  and 
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models a straight-line relationship between input 

(X) and output (Y) where m is the slope 

(relationship strength) and n the intercept 

(constant). 

 

2.1 PYTHON and the linear regression 

 NumPy (Numerical Python) is a fundamental 

library for scientific computing in Python. It 

provides support for: multi-dimensional arrays 

(efficient storage & operations), mathematical 

functions (linear algebra, statistics, etc.), 

broadcasting (element-wise operations on 

arrays), and performance optimization (faster 

than standard Python lists). SciPy (Scientific 

Python) is an open-source library in Python that 

builds on NumPy and provides tools for 

scientific computing, including like: 

optimization (minimizing functions), 

interpolation (estimating missing values), signal 

processing (filtering data), linear algebra 

(solving equations), statistics and probability 

(distributions, hypothesis testing), integration 

and differentiation (solving integrals). 

scipy.stats is a module in SciPy that provides 

a wide range of statistical functions and 

probability distributions. In scipy.stats a 

simple way to perform linear regression is using 

the linregress() function. It calculates the best-

fit line for two given sets of data points, which 

can be used to model the relationship between an 

independent variable x and a dependent variable 

y. The function signature is: 

 
scipy.stats.linregress(x, y) 
 

where the parameters are: 

• x: an array-like, independent variable 

(input data); 

• y: an array-like, dependent variable 

(output data).  

 

Both x and y must have the same length and 

correspond to the data points we want to model. 

The function returns a tuple with 5 values: 

• slope: The slope (m) of the regression 

line mm. 

• intercept: The intercept (n) of the 

regression line. 

• r_value: The correlation coefficient 

between x and y. Measures the strength 

and direction of the linear relationship 

between the variables (ranges from -1 to 

+1). 

• p_value: The two-sided p-value for a 

hypothesis test where the null hypothesis 

is that the slope of the regression line is 

zero (no correlation). 

• std_err: The standard error of the 

estimated slope. It provides a measure of 

how precise the slope estimate is. 

 

A commented code to use the function follows: 

 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import linregress 

 

X = np.arange(0, 10, 1) 

y = np.array([]) 

 

# print the independent X array 

print() 

print("x=",X) 

 

# create the Y dependent array using the  

## the equation of a line whisch has 

## the slope and intercept slightlty 

## modifyed using randon numbers 

for x in X: 

    y1=np.append(y,2*np.random.uniform(0.6, 

1.2)*x+np.random.uniform(0.1, 1.1)) 

    # NumPy arrays are immutable, meaning  

    ## np.append() creates a new array  

    ## instead of modifying the original one. 

    y=y1 

print() 

print("y=",y) 

 

# Compute linear regression 

slope, intercept, r_value, p_value, std_err = 

linregress(X, y) 

 

# Print results 

print() 

print(f"Equation: y = {slope:.2f}X + 

{intercept:.2f}") 

print(f"R-squared: {r_value**2:.3f}") Measure of how 

well the line fits the data 
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# Generate predicted y values 

y_pred = slope * X + intercept 

 

# Plot actual data points 

plt.scatter(X, y, color='blue', label="Actual Data") 

 

# Plot regression line 

plt.plot(X, y_pred, color='red', label=f"Regression 

Line (y = {slope:.2f}x + {intercept:.2f})") 

 

# Labels and legend 

plt.xlabel("X") 

plt.ylabel("Y") 

plt.title("Linear Regression using scipy") 

plt.legend() 

plt.show() 

 

The result of the code are: 

 
x= [0 1 2 3 4 5 6 7 8 9] 
 
y= [ 0.23949386  2.01693542  4.37974392  4.93306005  

7.79004034  9.91579324 
  8.71725701 17.41970643 12.7219643  18.72986918] 
 

Equation: y = 1.94X + -0.04 
R-squared: 0.902 

 

 
Fig. 1. - Linear regression results of the code for testing 

scipy.stats.linregress(x, y) function. 
 

Using the X = np.arange(0, 10, 1)  line of 

code an array of input values is generated 

starting from 1 to 10 with a step of 1. Then the 

for loop creates an array of dependent points 

with the slope and intercept slightly modified 

from a straight line as the blue dots in Figure 1 

show. The red line is obtained by regression as 

well as the equation of the line. At the same 

time the correlation (R-squared) coefficient 

between x and y is computer having the 

following meaning: 

• R-squared =1: the regression model 

perfectly explains the variance in the 

data, and the predicted values are 

exactly the same as the actual values. 

• R-squared =0: the regression model 

explains none of the variance in the 

data. The model does no better than 

simply predicting the mean of the 

dependent variable for all points. 

• 0< R-squared <1: the regression model 

explains a portion of the variance. The 

closer R-squared is to 1, the better the 

model fits the data. 

 

3. PYTHON IN MECHANISM 

SIMULATION 

 

Python provides powerful tools for mechanical 

system simulation, whether it's kinematics, 

FEA, CFD, rigid body dynamics, or machine 

learning-based trajectory prediction [12]. It can 

be used for real-time applications, research, and 

engineering design. A four-bar linkage consists 

of four rigid links connected by rotating joints. 

ML can be used to approximate trajectories or 

trajectory sections generated by the four-bar 

linkage mechanism using the scikit-learn 

(simpler regression-based models). Python 

implements the OOP programming paradigm 

that models real-world entities using classes and 

objects. Python supports encapsulation, 

inheritance, and polymorphism, making it 

powerful for modular and reusable code. The 

OOP model of four-bar linkage mechanism 

based on the concept of vector [11] is presented 

as follows. In Figure 2 there are four vectors, 

each having a name and constructed from the 

start point to the endpoint. For example, the v1 

vector is named “a” starts at (0,0) and ends at (2-

,0). The initial states for the mechanisms are 

presented and the simulation results are 

presented in Figure 2, Figure 3 and Figure 4. 

Vector v4 has always the start point at the middle 

of the v2 vector. By modifying one of the vectors 

a different four-bar mechanism is obtained that 

will produce different trajectory. The 

modifications are presented as a single vector 
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which changes the original configuration from 

set (1) to (2) and (3).  

v1 = Vector2D("a", 0, 0, -2, 0) 

v2 = Vector2D("b", -2, 0, 2, 3.5) 

v3 = Vector2D("c", 4,0, 2, 3.5) 

v4 = Vector2D("d", v2.mid_x, v2.mid_y, 5.5, 6.5) 

(1) 

 

 
Fig. 2. - Four-bar linkage simulation for the set of (1) 

vectors. 

v3 = Vector2D("c", 4,-2, 2, 3.5) (2) 

 

 
Fig. 3. - Four-bar linkage simulation for the set (2) of 

vectors. 

v4 = Vector2D("d", v2.mid_x, v2.mid_y, 2, 6) (3) 

 

The grid of graphical representations allows the 

evaluation of magnitude, orientation and sense 

of each vector in the model. If the v1 vector 

rotates around the start point the trajectory 

generated by the endpoint of the v4 vector will 

result in a close curve drawn in blue during the 

simulation on each figure. 

 

 
Fig. 4. - Four-bar linkage simulation for the set (3) of 

vectors. 
 

The simulations from the previous Figure 2 to 

Figure 4 generated by the code from [11] are 

processed with the following code and the 

results are given in Figure 5 to Figure 7. This 

sequence of code is filtering consecutive points 

that will participate in the regression set of 

values by selecting only those points that differ 

by slope from the previous ones by a given eps 
value. 

 

import matplotlib.pyplot as plt1 

from scipy import stats 

 

xf, yf = [], [] 

eps = 0.122 

 

for i in range(0,len(xdata)-1): 

  d = delta(xdata[i],ydata[i], xdata[i+1], 

ydata[i+1]) 

  for j in range(i+1, len(xdata)-1): 

    d1 = delta(xdata[j],ydata[j], xdata[j+1], 

ydata[j+1]) 

    if abs(d-d1) <= eps: 

     xf.append(xdata[j]) 

      yf.append(ydata[j]) 

    else:     

      break 

 

m, n, r, p, std_err = stats.linregress(xdata, ydata) 

mf, nf, rf, pf, std_errf = stats.linregress(xf, yf) 

 

mymodel = list(map(myfunc, xdata)) 

mymodelf = list(map(myfuncf, xf)) 
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fig, (ax1, ax2) = plt1.subplots(2,1, 

figsize=(50,1.05*40/2), dpi=100) 

ax1.scatter(xdata, ydata, color='red') 

ax1.scatter(xf, yf, color='green') 

ax1.plot(xdata, mymodel, color='red') 

ax1.plot(xf, mymodelf,color='green') 

ax2.scatter(xf,yf,color='green') 

ax2.plot(xf, mymodelf,color='green') 

plt1.show() 

 

print(f'Initial line equation is: {m}x+ {n} with std 

err: {std_err}') 

print(f'Adjusted line equation is: {mf}x+ {nf} with 

std err: {std_errf} >> ') 

 

The red set of points contain all the points that 

are used in the simulation; these overlap the 

trajectories presented in Figure 2 to Figure 5. 

The green set of points is filtered from the red 

set by applying the eps value to the selection. As 

seen in Figure 5 to Figure 8 this set narrows the 

original set the points that fit to the slope 

condition. The red line is the regression based on 

all the points, while the green line fits only the 

filtered points. For each result the code also 

prints the standard errors and line equations.  

 

 
Fig. 5. - Four-bar linkage linear regression for the set (1) 

without (red) and with filter (green for eps = 0.122). 
 

eps=0.122 
Initial line equation is: -0.3209208605956093x+ 

8.608079316908118 with std err: 0.03219330490967546 
Adjusted line equation is: -0.2950935509526894x+ 
8.177922296144654 with std err: 0.004522828261481185 

 
Fig. 6. - Four-bar linkage linear regression for the set (1) 

without (red) and with filter (green for eps = 0.05) . 
 

eps = 0.005 

Initial line equation is: -0.32210198726971784x+ 
8.624795574824729 with std err: 0.022679965457873954 
Adjusted line equation is: -0.19708300569626602x+ 

7.5738795427731045 with std err: 
0.0004822294740303662 

 

 
Fig. 7. - Four-bar linkage linear regression for the set (2) 

without (red) and with filtering (green for eps = 0.122). 
 

eps=0.122 

Initial line equation is: -0.30829236532141124x+ 
8.51320479109249 with std err: 0.02177058660483168 

Adjusted line equation is: -0.3243627143488145x+ 
8.293453800439082 with std err: 
0.00044578900272856784 

 

In linear regression, the standard error is an 

important metric that provides information 

about the accuracy of the estimated regression 

coefficients (slope and intercept). In 

scipy.linregress(), the standard error (SE) is 

calculated for the slope of the regression line, 

and it gives an idea of how much the estimated 

slope can vary due to the random noise in the 

data. It reflects how precise the estimate of the 
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slope is in relation to the data, and it depends on 

the spread of the data and the number of data 

points. The SE of the slope is better if the value 

is smaller as this means the slope is more 

precisely estimated. 

 

 
Fig. 8. - Four-bar linkage linear regression for the set (3) 

without (red) and with filtering (green for eps = 0.122). 
 
eps=0.122 
Initial line equation is: 0.054099974604102236x+ 

5.68297218438789 with std err: 0.023729057267452593 
Adjusted line equation is: 0.3783954932633479x+ 
5.219579265874449 with std err: 0.006760759745804158 

 

4. CONCLUSIONS 

 

As visible in all the presented results (figures 

and numbers) the linear regression on filter data 

using the slope criterion will produce good 

results. For each of the figures showing the 

algorithm results (Figure 5 to Figure 8) the green 

line obtained from filtered data is closer to the 

green set of points and as a numerical quality 

indicator the “Adjusted line equation” is having 

a better (smaller) standard error value that the 

value for the “Initial line equation”. With the 

obtained results a ML classifier system can be 

trained having the input data (features or the 

independent variables) organized in a structured 

table to store 4 vectors (or 8 numbers) and the 

labels as multi-class responses as {“unknown”, 

“linear”, “arc”, “circle”, “quadratic”}.  
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O abordare a învățării automate în aproximarea traiectoriei mecanismelor plane 
 

Determinarea traiectoriei de mișcare a unui punct (element cinematic) dintr-un mecanism sau proiectarea acestuia 

astfel încât un anumit punct să urmeze o traiectorie dorită (sau un tip de mișcare) sunt domenii cheie în proiectarea 

cinematică pentru mecanismele plane și spațiale. Lucrarea de față își propune să găsească în traiectoriile generate de 

mecanisme secvențe de puncte care satisfac cu o aproximare dată anumite condiții pentru a le clasifica în categorii 

precum linia (sau arcul) cu ajutorul inteligenței artificiale. 
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