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Abstract: Clock mechanisms belong to the field of precision mechanics, which measure the passage of time 

by a high degree of uniformity of their movements. The key sub-assembly of the clock mechanism is an 

oscillator coupled with an escapement mechanism which introduces disturbances into the oscillatory 

process so that the oscillations are no longer free, but forced and nonlinear with a frequency that is 

subjected to change. This work is dedicated to the analysis of the clock mechanism dynamics using the 

theory of perturbation calculus. The approximate solution of the nonlinear differential equations that 

describe the motion of the clock's oscillator are determined by the method of two-time scale perturbation 

and represent universally applicable formulas for escapement errors. These formulas are verified by the 

computer simulations of the escapement mechanism operation. 
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1. INTRODUCTION  

 

Time has long been an important subject of 

study in religion, philosophy, and science. Two 

contrasting viewpoints on time divide prominent 

philosophers: 

- Sir Isaac Newton [1]:  time is part of the 

fundamental structure of the universe – a 

dimension independent of events, in which 

events occur in sequence/ 

- Gottfried Wilhelm (von) Leibniz [2], 

Immanuel Kant [3]: time it is part of a 

fundamental intellectual structure – a priory 

intuition (together with space and number) 

within which humans sequence and compare 

events. 

Albert Einstein introduced the relativity of 

time in his Special and General theories of 

relativity. Quantum mechanics unsuccessfully 

attempts to quantize time. In contemporary 

sciences, time is fundamental concept.  

Despite the fact that nothing essential and 

definitive can be claimed about time, we have a 

strong and a priory intuition that flow of time is 

uniform. The measurement of time is based on 

this inner premonition of human soul. By the 

observing, tracking, recording and measuring 

any proper or favorable sort of uniform motion 

or, in general, any suitable kind of uniform 

process, we are actually measuring the flow of 

time. There are many uniform processes that can 

be used for measuring the flow of time [4]:  

- Motions of Sun and Moon, (observed from 

the Earth), (day, week, month, solstice, year, 

saros cycle, eclipse cycle, etc.) 

- Water clock (flow of water) 

- Hourglass (flow of sand) 

- Candle clock (burning a graduated 

candle). 

It was Christiaan Huygens (1629.–1695), a 

Dutch physicist, mathematician, astronomer and 

inventor who discovered that mechanical 

oscillations are phenomena suitable for 

measuring the flow of time [5]. Christiaan 

Huygens designed the first clock with the 

pendulum and watch with the hairspring 

attached to the balance wheel, as oscillators [6]. 

In particular, the flow of time can be measured 

by the counting the oscillations number, since 

their frequency is relatively stable. All 

contemporary type of clocks (quartz - electronic, 

atomic and mechanical) share the same 

operational principle: they are counting the 

number of oscillations.  



352 
 

 

It is necessary to briefly consider the 

construction of a mechanical watch, because this 

lecture is dedicated to mechanical watches and 

clocks. Each such watch, i.e. a mechanical 

instrument that measures the passage of time 

(Figure 1), contains of [7, and 8]:  

1 Mainspring barrel 

2 Gear train 

3 Dial and watch hands 

4 Oscillator (balance wheel and hairspring) 

5 Escapement mechanism   

 

 
Fig. 1. Parts of every mechanical watch 

 

The mainspring barrel supplies the watch 

with mechanical potential energy (elastic 

deformation energy) and, converting it into 

kinetic energy, enables the continuous operation 

of all moving parts of the mechanism. The gear 

train (transmission mechanism) is a system of 

meshing gears that transmits the drive energy 

from the mainspring barrel to the escapement. In 

addition, the gear train transmits its rotational 

movements to the hands, which record the 

elapsed time intervals on the dial. An oscillator 

is a physical pendulum or balance wheel with a 

spiral spring. The oscillator performs 

oscillations under the effect of restitution elastic 

force and is characterized by a relatively stable 

natural frequency, i.e., an approximately 

constant period of oscillation. The clock 

mechanism displays and measures the passage 

of time as an integer multiple of the period or 

half period of the oscillator's oscillations. The 

escapement mechanism, the heart of every 

watch, is the mechanism that regulates the 

angular velocity of clock or watch arbors. It is 

also called a locking-impulse mechanism 

because it achieves its function through these 

two, more or less separate activities. Under the 

influence of the driving torque, the gear train has 

a tendency to move faster, and with its locking 

function, the escapement prevents this tendency 

in the rhythm of balance wheel oscillations. 

Thus, the locking function of this regulator 

ensures the uniformity of the clock operation. In 

addition to the restitution force, the frictional 

torque (viscous air resistance and dry friction 

inside the support) acts on the oscillator, and 

thus tend to stop its motion. In order for the 

oscillator to oscillate continuously, it is 

necessary that the clock mechanism periodically 

compensates this energy loss, which is exactly 

what the impulse function of the escapement 

does. So, in the rhythm of its own oscillations, 

the escapement mechanism transfers certain 

energy to the oscillator, compensates the losses 

and thus ensures the continuity of its oscillation. 

 

2. ESCAPEMENT MECHANISM 

 

The escapement mechanism is an important 

component of watch and clock mechanisms with 

two different functions: the locking and the 

impulse function. The angular velocity of the 

clock and watch going train is regulated by the 

locking function while the dissipation of the 

oscillator energy is recompensed by the action of 

the impulse function [7, and 8]. The escapement 

counts the number of oscillations of the clock 

pendulum or watch balance wheel and thus 

measures the flow of time. Second, escapement 

delivers impulses to the clock and watch 

oscillators and recompenses the oscillator’s 

energy dissipated during its damped oscillations. 

Consequently, clock and watch oscillators 

perform driven damped oscillations which 

frequency and period is just approximately 

constant [7].  

Parts of the Graham deadbeat escapement 

(Fig. 2):  

1. anchor 

2. anchor axis 

3. escapement wheel  

4. escapement wheel arbor 

5. pendulum 

6. left pallet 

7. right pallet 

8. left pallet locking surface 

9. left pallet impulse surface 

10. right pallet locking surface 
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11. right pallet impulse surface 

 
Fig. 2. The Graham deadbeat escapement 

 

On each pallet, the locking function is 

accomplished first and then impulse one. When 

impulse function is finished on the left pallet, the 

locking function begins on the right pallet, etc. 

This activities are repeated rhythmically in 

accordance with the pendulum oscillations [7, 

and 10]. The external actions of an escapement 

on a clock or watch oscillator induct the 

frequency alteration of its oscillations. Thus the 

process of measurement of time flow generates 

the error to that measurement. This variation of 

oscillation frequency generated by the influence 

of the escapement to the oscillator is called an 

escapement error [7].  

Classification of the escapement mechanism can 

be obtained by the following criteria [9]: 

1. Whether the constructive and dynamic 

separation of impulse and locking function 

exist? 

2. Whether the impulse function depends on a 

clock driving torque? 

3. Whether the escapement interacts with the 

oscillator during the execution of the 

escapement locking function?  

In accordance to the exposed criteria, all 

escapement mechanism can be categorized into 

following 4 classes [9]:  

1. Recoil escapements 

The impulse and locking functions are not 

separated; the impulse function depends on a 

driving torque; the escapement interacts with the 

oscillator during the execution of the locking 

function.   

2. Deadbeat or frictional rest escapements  

The impulse and locking functions are 

separated; other features are identical to the 

characteristics of the recoil escapements. 

3. Isodynamic or constant escapements  

The impulse function does not depend on a 

driving torque. 

4. Detached escapements  

The impulse and locking functions are separated 

from each other; the escapement does not 

interact with the oscillator during the execution 

of the locking function 

 

2.1 Diagrams of torque interactions for recoil 

anchor escapement 

 

The recoil anchor escapement is shown on 

Fug.3 and diagram of torque interactions for this 

type of escapement and oscillator is shown on 

Fig 4. 

 

 
Fig. 3. Recoil anchor escapement 

 

 In average, S=Glsinφ and М have the same 

direction, which means that restitution torque is 

increased. Consequently, this type of 

escapement diminishes the period of the 

pendulum oscillations and accelerates the clock 

rate. The effect is called tachy-chronous: ταχύς 

– fast, shortens [9]. 
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The recoil anchor escapement was invented by 

an English clockmaker William Clement and 

British scientist Robert Hook, 1635 –1703, in 

1670. That same year the clockmaker Joseph 

Knibb, 1640 – 1711, built the first clock with the 

Clement-Hook anchor escapement in Oxford. 

This type of escapement is considered as the first 

modern clock rate regulator and it is still 

installed in many contemporary wall clocks [9].  

 
Fig. 4. Diagrams of torque interactions for recoil anchor 

escapement 

 

3. THE THEORY OF PERTURBATION  

 

Theory of regular perturbation comprises 

mathematical methods (Fig.5) for finding an 

approximate solution to a problem, by starting 

from the exact solution �0 of a related, simpler 

but less realistic problem [11]. Thus, the 

approximate solution is represented as 

perturbation series that quantifies the deviation 

from the exact solvable but simpler problem 
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�0 - the solution of the exact solvable initial 

(simpler but less realistic) problem �1, �2, �3 … - the first, second, third and the 

higher order terms which may be found 

iteratively by some systematic procedure. 

 

 
Fig. 5. The Perturbation Technique 

 

It is necessary that perturbation series represent 

an asymptotic expansion of the solution, which 

means that 
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If it is no so, terms are disordered since some 

of them grow without bound and perturbation 

series does not converge to the solution of the 

problem. These terms that grow without bound 

are called secular terms. They are caused by the 

terms of resonant forcing in differential 

equation. 

The particularly great value of perturbation 

theory is that it can provide approximate 

solutions to very complex problems in analytical 

forms. Perturbation theory is used in a wide 

range of scientific fields, and reaches its most 

sophisticated and advanced forms in quantum 

field theory. Apart from quantum mechanics, 

perturbation theory has numerous applications 

in mathematics - solving algebraic and 

differential equations, in physics, especially in 

celestial mechanics for calculating the 

trajectories of celestial bodies, then in chaos 

theory, thermodynamics, chemistry, etc [11]. In 

this lecture, one perturbation methods will be 

presented: the two-time scale perturbation [12]. 

For this method, the solutions will be expressed 

in the form:  

 

 )( 2

1

1

0 εε OAAA ++= . (3) 

 

Where ����� indicate the big O notation for the 

order of the error in the approximate solution. 



355 

 

 

4. THE ESCAPEMENT ERRORS 

DETERMINED BY THE TWO-TIME 

SCALE PERTURBATION METHOD 

 

The two-time scale perturbation is an 

alternative to the method of regular perturbation 

by which the appearance of secular terms can be 

avoided. It comprises techniques used to 

construct uniformly valid approximations to the 

solutions of perturbation problems, both for 

small as well as large values of the independent 

variables. This is done by introducing fast-scale 

and slow-scale variables for an independent 

variable, and subsequently treating these 

variables, fast and slow, as if they are 

independent. The equation which describes the 

driven damped oscillations of the watch balance 

wheel (Fig. 6) is 

 

 )(
...

ϕϕϕϕ MkcJ =++  (4) 

 

in which � is the momentum of inertia of the 

balance wheel, � is damping coefficient, 	 is 

spiral spring constant. The initial conditions are 
�0� � 
�, 
� �0� � 0. 

 

 
Fig. 6. The Balance wheel with the hairspring 

 

Equation Eq. 4 can be transformed to: 

 

 )(2
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where �� � �	 �⁄ , � � � �2����⁄ , � ∈ �0,  1� 

and � ≪ 1, ��
� � ��
� �⁄ . This nonlinear 

equation is solved by the two-time scale 

perturbation method. 

As the damping ξ is small, the specific torque 

μ(
) represents a small disturbance of the free 

damped oscillations of the balance wheel. In 

order to highlight this property and make the 

calculation flow clearer, the function μ1 (
) is 

formally introduced so that: 

 

 )()( 1 ϕξµϕµ =  (6) 

 

Independent variable t is replaced by two 

variables �� и �� so that �� � � and �� � �� for           � ∈ �0, 1�. The approximate solution 
���, ��, �� of the differential equation Eq. 4 is 

given in the form:  
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The initial conditions 
�0� � 
�   and   
� �0� �0 for both functions 
����, ��� and 
����, ��� are 

given by the expressions:   
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When all the necessary differentiations of Eq. 8 

are accomplished, and neglect the terms 

containing ��, the differential equation Eq. 5 

becomes: 
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In order for the left side of equation Eq. 9 to be 

equal to zero, the both equations must be 

satisfied: 
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Initial conditions are: 
� � 
�, "
�/"�� � 0, 
� � 0 and "
� /"�� � −"
� / "��. 

 

The solution for the equation Eq. 10 is 
����� � 
sin����� + (� and for the equation 

Eq. 11 the solution must be required in the form:  
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where amplitude 
���� and phase difference (���� of oscillation are both function of time ��.    

Regarding Eq. 6 and Eq. 12, the specific torque 

μ(
) can be expressed as: 
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When all the necessary differentiations of Eq. 12 

are accomplished and regarding Eq. 13, 

differential equation Eq. 11 becomes: 
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The function ���
, )� is periodic with angular 

frequency ω0 and can be expanded into a Fourier 

trigonometric series. This procedure must be 

carried out in order to observe the appearance of 

resonant forcing terms which are generated by 

the fundamental harmonics of the periodic 

escapement torque. Thus, the Fourier expansion 

of the function ���
, )� is:  
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In which the coefficients *�, *+ and ,+ are 

determined by the following expressions: 
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The fundamental harmonics *��
� cos ) and ,��
� sin ) are especially emphasized since 

they represent the resonant forcing terms by 

which the secular terms are generated. It was 

already emphasized that these secular terms 

must be avoided from the solution of differential 

equation Eq. 14 since they grow without bound 

and perturbation series does not converge to the 

solution of the problem [11]. 

Regarding Eq. 15 and Eq. 16, differential 

equation Eq. 14 becomes: 
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The resonant forcing terms in equation Eq. 17 

are eliminated by the following expressions: 
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In accordance with Eq. 16, and �� � ��, Eq. 18 

can be transformed to:  
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⎧
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In accordance with Eq. 16, and and �� � ��, Eq. 

19 can be transformed to:  

 

 <(� � 2=24 �� − ��5673 8 ��
, )�:>? ) ;)�5� .(21) 

 

The sub integral functions in formulas Eq. 20 

and Eq. 21 depend on the phase coordinate ψ and 

the oscillation amplitude Φ, and the limits of 

integration are 0 and 2π. The mentioned 

expressions can also be defined as functions of 

the angular coordinate 
 and the oscillation 

amplitude Φ. According to the formulas used to 

transform the coordinate ψ into the angular 

coordinate 
:  
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the expressions Eq. 20 and Eq. 21 becomes: 

 

 <
� � 2324 �� −���
 + ��5673 ∮ ��A�;A3 . (23) 

 

 <(� � 2=24 �
� − ��5673E 8 H�B�B 2B�3EFBE�5� . (24) 

 

Equation Eq. 23 describes the change of an 

oscillations amplitude and Eq. 24 the change of 

oscillation phase angle shift as a functions of 

angular coordinate
. Last two differential 

equations describes the dynamic of the watch 

balance wheel. They are universally applicable 

for all types of escapement mechanisms, both for 

stationary and non-stationary oscillations. 

Finally, it is important to emphasize that 

equations Eq. 21 and Eq. 23 defines the variation 

of oscillation frequency generated by the 

influence of the escapement to the oscillator and 

represent the mathematical description of an 

important horological phenomenon known as 

escapement error. 

 

5. SIMULATIONS 

 

Motion analysis disclosed in this chapter is 

accomplished to prove the correctness of the 

theoretical formulas for the escapements errors 

derived from the perturbation theory. Besides 

significance in theory of oscillations and clock 

mechanisms, the exposed method can be broadly 

applied for all mechanisms which operation are 

triggered by movement or depend on sensor 

states [10]. 

Event-based motion analysis is approach 

complementary to the motion analysis based on 

time and it serves to solve more complex 

kinematic and dynamic problems by the using of 

the SolidWorks application. Since external 

actions of an escapement on a watch oscillator 

are triggered by the part movement or state of 

the escapement-oscillator assembly, it is wise to 

choose this method of simulation rather than the 

method based on flow of operational time.  

In particular, the event based motion analysis is 

applied to simulate and describe the complex 

dynamic behavior of the escapement-oscillator 

assembly and thus to determine the numerical 

values of the escapement error. 

The correctness of the following two formulas 

are considered: 

Formula which describes the error of 

detached escapement which includes English 

lever and Swiss lever escapements, as the most 

famous in contemporary watch mechanism: 
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Formula which describes the error of recoil 

escapement which includes verge escapement, 

different anchor and grasshopper escapements: 
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In both formulas 
� is the stationary 

amplitude, 
� is the angular centrum of impulse, I is a half of angular interval J
� − I,  
� + IK 
in which escapement delivers the energy to the 

balance wheel and 
М is the meshing angle 

between escapement pallets and teeth of the 

escapement wheel. 

Since escapement error is generated by the 

influence of the escapement to the watch 

oscillator (balance wheel), the entire 3D solid 

model of the escapement and balance wheel 

assembly (Fig. 7) must be built and considered 

during computer simulation of its motion. It 

must be emphasized that these 3D models are 

abstract, adapted to describe parameters of the 

exposed mathematical formulas clearly. 

The proper validation of the previous 

formulas by the SolidWorks event based 

simulation needs correct and precise selection of 

the following motion analysis parameters: 

• The balance wheel mass momentum of 

inertia � � 1.8 ∙ 10FO	PQ�, 

• Spiral spring constant 	 � 4S�T�� ∙ � �0.11369784 YQ Z*;⁄ , 

• Damping coefficient � � 2S ∙ � ∙ T� [⁄ � 2.261947 ∙10F\ YQ ]^_2` ab , 

• Detent escapement torque � � � ∙Sc ∙ T�� ∙ 
de�/[ ∙ I �0.189363273YQ 

• Recoil escapement torque � � � ∙Sc ∙ T�� ∙ 
de�/[ ∙ 
f �0.001402691YQ 

 

 

 
 
Fig. 7. 3D solid model of detent escapement and balance 

wheel assembly 

 

 
  
Fig. 8. 3D solid model of recoil escapement and balance 

wheel assembly 

 

Parts of the 3D solid model of detent escapement 

and balance wheel assembly (Fig.7.): 

1 – balance wheel, 

2 – five different proximity sensors, 

3 –  left pallet, 

4 –  right pallet, 

5–8 – sensor triggers which activate especially 

defined proximity sensors by which the position 

of the pallets 3 and 4 can be changed and 

controlled, 

9 – sensor trigger which detects the transition of 

the balance wheel through the equilibrium 

position 
=0.   

Parts of the 3D solid model of recoil escapement 

and balance wheel assembly (Fig.8.): 

1 – balance wheel 

2 – sensor which changes the direction of the 

escapement torque 

3 – left pallet with the sensor trigger 

4 – right pallet with the sensor trigger 
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5 – sensor trigger on (5) detect the transition of 

the balance wheel through the equilibrium 

position 
=0. 

 

The results of the simulation: 

• For the detached escapement, the angular 

frequency and period of non-driven damped 

oscillations obtained by simulation are:  ��� � 25,13266316 Z*; :⁄ , h�� �2S ���⁄ � 0,25000078 : 

• For the recoil escapement, the angular 

frequency and period of non-driven damped 

oscillations obtained by simulation are: ��� �  25,13262744 Z*; :⁄ , h�� �2S ���⁄ � 0,25000113 :. 

• For the detached escapement, the angular 

frequency and period of driven damped 

oscillations obtained by simulation are: �� �  25,12986985 Z*; :⁄ , h� � 2S ��⁄ �0,250028565 :. 
• The detached escapement error obtained by 

simulation is: i� � �� − ��� �−0,00279331 Z*; :⁄ . 
• The theoretical value of the detached 

escapement error is: i�Т �−0,002795454 : 

• The relative difference between values of 

detached escapement errors obtained by 

theory of perturbation and computer 

simulation is k� � lmnТFmnmnТ l � 7,66959 ∙10FO < 0.08% . 
• For the recoil escapement, the angular 

frequency and period of driven damped 

oscillations obtained by simulation  are �� � 25,2413366 Z*; :⁄ , h� � 2S ��⁄ �0,24892443: 

• The recoil escapement error obtained by 

simulation is i� � �� −��� �  0,10870916 Z*; :⁄  

• The theoretical value of the recoil 

escapement error is i�Т �+0,108827469 Z*; :⁄  

• The relative difference between values of 

detached escapement errors obtained by 

theory of perturbation and computer 

simulation is k� � lmEТFmEmEТ l � 0,001087 <0.11%. 
 

6. CONCLUSION 

 

The extremely small previously calculated 

values for δ_1 and δ_2 prove the correctness of 

the theoretical formulas derived from the 

perturbation theory by which the errors of the 

detached and recoil escapements are determined 

[10]. 

This paper can be important mostly for 

education in the field of the theory of 

mechanisms, non-linear dynamics and 

mathematics, 3D modeling and simulation. In 

particular, this work can be useful for better 

understanding the operational principles of 

clock and watch mechanism, as well as their 

design, construction and maintenance.  

Moreover, the method of perturbation exposed 

in this paper, can be applied for solving many 

other problems of non-linear mechanics, 

especially non-linear oscillation and celestial 

mechanics. 
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Dinamica neliniara a mecanismelor de escapare  

 

Mecanismele de ceas aparțin domeniului mecanicii de precizie, care măsoară trecerea timpului printr-

un grad ridicat de uniformitate a mișcărilor lor. Subansamblul cheie al mecanismului de ceas este 

un oscilator cuplat cu un mecanism de evacuare care introduce perturbări în procesul oscilator 

astfel încât oscilațiile nu mai sunt libere, ci forțate și neliniare cu o frecvență care este supusă 

modificării. Această lucrare este dedicată analizei dinamicii mecanismului de ceas folosind teoria 

calculului perturbației. Rezolvarea aproximativă a ecuațiilor diferențiale neliniare care descriu 

mișcarea oscilatorului ceasului sunt determinate prin metoda perturbației la scară de două timpi și 

reprezintă formule aplicabile universal pentru erorile de scăpare. Aceste formule sunt verificate 

prin simulările computerizate ale funcționării mecanismului de evacuare. 
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