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Abstract: The paper presents two new kinematic schemes of articulated planar mechanisms used as legs in 

a quadruped mobile robot. These mechanisms consist of 5 mobile kinematic elements when it is compared 

to the Jansen mechanism which is made of 7 elements. The four leg mechanisms of the quadruped robot 

are driven by a single electric motor by means of spur gears. The structure of the mechanism schemes is 

consisting of kinematic chains with four articulated triadic or tetradic elements. For each of the proposed 

kinematic schemes, several geometrical options regarding the position of the articulations and the fulcrum 

have been considered. The mobility of each kinematic scheme is assessed and a geometrical synthesis 

method for generating the fulcrum of the reciprocating coupler curve is given. 
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1. INTRODUCTION  

 

All currently used kinematic schemes [1, 3, 4, 

5] for the configuration of the quadruped mobile 

robot legs include simple dyad chains in their 

topologic structure. The kinematic schemes 

proposed by the authors for the legs of a 

quadruped mobile robot (fig. 1a) are using 

complex kinematic chains as the triadic [1] or 

tetradic type [2]. 

For exemplification, the kinematic scheme of 

a quadruped mobile robot (figure 1b) is 

presented having the two legs with different 

structures, i.e. a triadic kinematic chain (left) and 

a tetradic kinematic chain (right). 

In reality, the two mechanisms with 

articulated bars are the same and they are 

simultaneously driven by means of a central 

pinion p through spur gears (figure 1b). 

Each crank 1 is fixed together with the 

corresponding gear (as the driven element in the 

gear), so that the cranks rotate in the same 

direction.  

The articulated kinematic elements (2, 3, 4 

and 5) form a triadic chain (left) LTr(2,3,4,5), 

and a tetradic chain (right) LTt(2,3,4,5) 

respectively. 

We can remark that the Klann mechanism [6, 

7], which has the same total number of kinematic 

elements, the chain consisting of the four 

elements (2, 3, 4 and 5) is formed of two simple 

dyad type kinematic chains: LD (2,3) + LD 

(4,5). 

 

 
Fig. 1. Kinematic and 3D scheme of a quadruped mobile 

robot equipped with the Jansen mechanism. 
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The structure of the Jansen mechanism [7] 

(figure 1a) contains a kinematic chain of 6 

elements (2, 3, 4, 5, 6 and 7) assembled as three 

dyadic chains connected in parallel: LD(2,3) + 

LD(4,5) + LD(6,7).  

For the proposed mechanisms (figure 1b), 

fulcrum M belongs to a planar movement 

kinematic element (reciprocating coupler) which 

can be the bars 2 or 3 (left), and 2, 3 or 4 (right). 

 

2. STRUCTURE AND KINEMATICS OF 

THE COMPLEX MECHANISM 

 

2.1 The triadic chain 

Let us consider the kinematic scheme of the 

Triadic mechanism (figure 2a) for which the 

structural equation of the “motor” mechanism is 

written (with crank 1 as actuator): 

 

 . (1) 

 

 

 
Fig. 2. Kinematic scheme of the Triadic mechanism LTr 

(2,3,4,5): variant 1 (a) and variant 2 (b) 

The triadic chain LTr (2,3,4,5) is defined by 

the characteristic lengths of the four component 

elements and the 4 variable angular parameters 

  

The triad (2,3,4,5) is defined by two closed 

independent kinematic contours  and 

, for which the closing scalar 

equations are written as follows (fig. 2a): 

 

 (2) 

 

 (3) 

 

 (4) 

 

 (5) 

 

For a certain value of the angle φ1, in the 

system of the four non-linear equations, angles 

are calculated. 

The position of the fulcrum M is defined by 

the Cartesian coordinates: 

 
 

(6) 

 

 (7) 

In the equations (2), (3)..., (7), we have 

denoted the following lengths:  

 
If we consider variant 2 (fig. 2b), the central 

element 3 has the articulations B, C and D 

collinear, which results in changing certain 

geometrical parameters (  The 

fact that the three articulations C, B and D are 

collinear leads to . 

 
 

(6’) 

 (7’) 

 

2.2 The tetradic chain 

Let us now consider the kinematic scheme of 

the Tetradic chain (fig. 3) for which the 
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structural equation of the “motor” mechanism is 

written (with crank 1 as actuator): 

  (8) 

 

 
 

 
 

Fig. 3. Mechanism with Tetradic chain LTt (2,3,4,5): 

variant 1 (a) and variant 2 (b) 

 

Formula (8) shows that the degree of mobility 

Mb is given by the independent geometrical 

parameters. In this case, it is just one, 

represented by the angle φ1 that positions the 

crank 1 (fig. 3). 

The mobility of the mechanism is calculated 

by means of the general formula [2]: 

  (9) 

Let us identify in formula (9) the following 

symbols visible on the kinematic scheme: 

 - mobility of the kinematic joint, 

 

 - number of the kinematic joints of class 

 
  - rank of the space associated to the 

kinematic scheme  

  - number of the closed independent 

kinematic contours. 

Observing the kinematic scheme (fig. 3), we 

deduce the numerical values: 

        
Introducing these data in the formula (9), we 

obtain: 

  (10) 

The calculation of the instantaneous positions of 

the driven kinematic elements (2, 3, 4, 5) implies 

the writing of the closing scalar equations of the 

two independent contours  and 

   
 (11) 

 

 (12) 

 

 (13) 

 (14) 

In the equations (11) - (14), the following 

denotations have been used (fig. 3a):  

 

 
Knowing the value of angle φ1 (fig. 3a), using 

the system of the 4 non-linear equations (11), 

(12), (13), (14), we determine the angles 

 
For the position of M, we obtain the Cartesian 

coordinates: 

 (15) 

 (16) 

It has to be mentioned that the scalar 

equations (11) - (16) are the same in the variant 

2 of the tetradic mechanism (fig. 3b).  

For the variant 1 of the tetradic mechanism 

(fig.3a), a simulation along with a computer 

program have been made, tracing the 

reciprocating coupler curve by means of the 

fulcrum M (fig. 4). 

3. SYNTHESIS OF THE TETRADIC 

MECHANISM 

 

Let us consider the kinematic scheme of the 

tetradic mechanism in the variant 3 (fig. 5) 

where M belongs to the plane of the bar 3, so that 

the angle β3 is constant. 
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Fig. 4. Modelling the reciprocating coupler curve                                                                           

 
Fig. 5. Kinematic scheme of the mechanism in the 

variant 3 with the plane of the bar 3 

 

For several numerical values imposed to the 

angle β3 between 185° and 225° the 

reciprocating coupler curve  has been 

traced, and whose configuration has clearly 

changed (fig. 6). 

 
Fig. 6. The reciprocating coupler curve traced by M of 

the mobile robot leg                                                                       

 

To trace the trajectories of the fulcrum M, we 

have gone through the following stages: 

   - writing the equations and solving them by 

means of MathCAD software; 

   - exporting the results (M point coordinates for 

each value of the angle β3) into an Excel file; 

   - plotting the graphs that correspond to the 

trajectories of the point M by means of Excel 

software. 

The Excel software automatically determines 

the best way to represent the data on the graph, 

unlike the MathCAD software that plots the 

graphs by uniting the points whose coordinates 

are specified for each of the axes (the values of 

the angle φ1k increase by 45°). 

We should notice (fig. 6) that only the first 

four closed curves correspond to an optimal 

trajectory of the fulcrum M 

 
For the first value of the angle β3 (1850), we 

have modeled and simulated the designed 

mechanism (fig. 7) in two positions of the crank 

 

 

 
Fig. 7. Screen captures in Inventor software for φ1 = 90° 

(a) and φ1 = 270° (b) 

MΓ

,MΓ

-0.025

-0.02

-0.015

-0.01

-0.005

0

0 0.02 0.04 0.06 M185

M190

M195

M200

M205

M210

M215

M220

M225

).,,,( 200195190185 MMMM

).270,90( 00
1 =ϕ



385 

 

 

 

4. SYNTHESIS OF THE TETRADIC 

CROSSED-BAR MECHANISM 

 

Let us now consider the solution of the 

tetradic chain LTt (2,3,4,5) where the bars 3 and 

4 are crossed (fig. 8), having the motion in 

parallel planes. Two kinematic options are taken 

into consideration: the fulcrum M belongs to the 

bars 2 or 3. These are highlighted by the angle β2 

(fig. 8a) and angle β3 (fig. 8b).  

The synthesis procedure is the same, it 

consists of the simulation of the mechanism by 

means of the MathCAD software for several 

values of the angle β2 and angle β3.  

Therefore, along a kinematic cycle 

(considering the values of the angle φ1 that 

increases by 45° each time), we have obtained 

the Cartesian coordinates of the point M. 

 

a)  

 

b)  
 

Fig. 8. Kinematic schemes of the tetradic crossed-bar 

mechanisms. 

 

By means of the Excel software, we deduce 

the reciprocating coupler curves of the point M 

in the plane of the bar 2, for several values of the 

angle β2 (fig. 9). 

 

 

Fig. 9. The reciprocating coupler curves described by the 

point M 

We notice that the last curve (point M90°) is 

the best solution for the leg mechanism of the 

mobile robot.  We also mention that the solution 

of the mechanism in which the point M belongs 

to the bar 3 (fig. 8b) is not suitable for the 

conditions imposed by the movement of the 

quadruped robot. 

 

5. CONCLUSIONS  

 

The two solutions using a triad or a tetrad 

kinematic chain presented in the paper are 

suitable to be implemented in the structure of the 

legged mobile robots. The kinematic analysis 

applied on these two major solutions is the first 

step in designing the locomotion system of the 

quadruped robot. 

Thus, in the case of the triad mechanism we 

have proposed two solutions, triangle-shape or 

bar, for the kinematic element that has three 

joints. Then, in the case of the tetrad mechanism 

we have proposed also two solutions: usual or 

crossed-bar deformable contour. 

Further, we have also performed the 

mechanism synthesis on two tetradic solutions: 

1. chain using a usual contour but with a 

slightly difference in its structure i.e. fixing 

together the point M with the bar 3 (fig. 5) 

instead of 2 (fig. 3a); 

2. chain using a crossed-bar contour with the  

point M fixed together with the bar 2 (fig. 8a). 
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Sinteza mecanismului complex al  robotului mobil patruped 

Lucrarea prezintă două noi scheme cinematice ale mecanismelor planare articulate utilizate ca 

picioare într-un robot mobil patruped. Aceste mecanisme sunt formate din 5 elemente cinematice 

mobile în comparație cu mecanismul Jansen, care este format din 7 elemente. Mecanismele celor 

patru picioare ale robotului patruped sunt acționate de un singur motor electric prin intermediul 

angrenajelor cilindrice. Structura schemelor de mecanisme este formată din lanțuri cinematice cu 

patru elemente articulate triadice sau tetradice. Pentru fiecare dintre schemele cinematice propuse, au 

fost luate în considerare mai multe opțiuni geometrice privind poziția articulațiilor și a punctului de 

sprijin. Mobilitatea fiecărei scheme cinematice este evaluată și este prezentată o metodă de sinteză 

geometrică pentru generarea punctului de sprijin al curbei cuplelor reciproce. 
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