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Abstract: Sandwich composite bars are largely used in mechanical structures containing subparts made of 

composite materials. Due to fabrication issues, quite often, a large majority of sandwich bar exhibits a 

certain number of nonuniformities across its transversal section. Nonuniformities are to be assessed and 

quantified while building up mathematical model for the vibrations of such a bar. It was introduced three 

nonuniformity coefficients in writing the equations of motion for a vibrating multilayer sandwich bar. Only 

the case of a bar with geometric and mass symmetry was considered. Even though this case might be 

considered a very particular one, however the achievement here is that all considerations that have been 

made are in full respect with all requirements of PSDBT theory. 

Key words: composite materials, sandwich multilayer bars, nonuniformity coefficients, mass and stiffness 

parameters, vibrations. 

 

1. INTRODUCTION 

 

A special topic in the study of the dynamics 

of composite materials consists by sandwich 

bars made of multiple superimposed layers, with 

constant thickness. Most studies focus on 

sandwich bars made of three layers, with the 

middle layer exhibiting viscoelastic behavior, 

and the lower and upper layers exhibiting 

superior elastic and strength properties. The vast 

majority of studies have been based on the 

following assumptions regarding the behavior of 

sandwich laminates: 

• there is continuity of displacements and 

stresses on the separation surfaces between 

layers; 

• transverse inertia forces are predominant, 

with longitudinal inertia and rotational inertia of 

the bar section are small enough to be neglected; 

• there are no deformations along the 

thickness of the bar, thus transverse 

deformations are uniform across the entire the 

bar transverse section; 

• the core exhibits elastic or viscoelastic 

behavior, so, absorbing shear (tangential) 

stresses; 

• the outer layers exhibit elastic behavior, 

so, being subjected to pure bending. 

Higher-order deformation theories take into 

consideration the deformation of transverse 

sections and satisfy the conditions of nullifying 

tangential stresses on the outer surfaces, without 

a shear correction factor. In the specialized 

literature, various higher-order shear theories 

that meet these conditions are proposed by 

several researchers. These theories differ 

primarily in the functions that evaluate the 

variation of tangential stresses across the section 

of the bar. The most well-known higher-order 

deformation theories are based on the following 

types of functions: 

• Parabolic, symbolized as PSDBT 

(Parabolic Shear Deformation Beam Theory), 

introduced by [1]; 

• Trigonometric, symbolized as TSDBT 

(Trigonometric Shear Deformation Beam 

Theory), introduced by [2]; 

• Hyperbolic, symbolized as HSDBT 

(Hyperbolic Shear Deformation Beam Theory), 

introduced by [3]; 

• Exponential, symbolized as ESDBT 

(Exponential Shear Deformation Beam Theory), 

introduced by [4]. 

A new higher-order deformation theory, 

symbolized as ASDBT, was proposed more  
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Fig. 1. Beam with geometric and mass symmetry relative 

to the middle layer. 

 

recently by [5], and a comparison of the results  

of these theories was conducted by [6] and, later, 

by [7]. 

It is evident that higher-order deformation 

theories describe the composite's behavior with 

greater accuracy compared to linear deformation 

theories. At first glance, higher-order 

deformation theories appear to be free of 

drawbacks. However, there are cases—by no 

means few—where drawbacks may arise. In this 

context, Savithri and Varadan in [8] note 

significant drawbacks of higher-order 

deformation theories when composite laminates 

(plates or beams) are subjected to concentrated 

forces. 

The reality is that, generally, the shape and 

type of loading of a composite, which in turn 

suggest how it is subjected to stress, directly 

leads to certain assumptions about deformation, 

with the aim of formulating a priori a 

displacement hypothesis. Changing the loading 

or the support conditions for the same composite 

leads to a change in its stress state, and thus to a 

potential need to adopt a different deformation 

hypothesis. The conclusion is that, for a non-

homogeneous and anisotropic material, a 

constitutive equation based on a particular 

loading and support hypothesis may not be 

suitable when the loading or support conditions 

change. Dong and Chun in [9] formulate a 

constitutive equation for laminated plates 

subjected to shear using a method based on a 

priori assumptions of deformation hypotheses 

and the development of an original concept for 

generalizing the notion of shear plane. Results 

are provided for the calculation of shear stiffness 

for various cases of laminated and sandwich 

profiles. 

For a simply supported sandwich beam, 

Xavier Chew and Lee in [10], applying 

Hamilton's principle, developed a mathematical 

model for the vibrations of the beam. The 

mathematical model is based on the HSDBT 

theory. The study is conducted for different 

ratios between the thicknesses of the outer layers 

and between these thicknesses and that of the 

middle layer. Additionally, various scenarios for 

the elastic properties of all the three layers are 

considered. The numerical results analysis 

showed that the natural frequencies and damping 

factors obtained using HSDBT theory are some 

how lower than those obtained using FSDBT 

theory. 

 

2. THEORETICAL CONSIDERATIONS 

 

A sandwich beam of width b, having 

geometric and mass symmetry with respect to 

the middle layer, is considered (see Figure 1). 

Let y�, k = 1, n − 1										 denote the abscissa of the 

separation surface between layers k and k+1 and 

let y
 denote the abscissa of the outer surface of 

layer n. Due to symmetry, it is highlighted the 

base deformations for y≥0. 

Let: 

 B = � 1− 
����� (1) 

and let: 

 B� = A�,��
 ∙ B��
,   k = 1, n					 (2) 

where A�,��
 is the compatibility matrix 

between the stresses and strains of layer k and 

the stresses and strains of layer k+1. It has the 

form: 

A�,��
 = ������������
������������ ∙ y���������������

�����������
�  (3) 

where G� is the shear modulus of the material 

of layer k. 

The inertia and stiffness parameters for the 

bar's section are: 〈EI
〉 = 2b ∑ E� '��(���)�(
� ��*���)�*

+ , B�
�-
  (4) 

 〈EI�〉 = 2b ∑ E�
�-
 ��(���)�(
�  (5) 〈GA〉 = 2b ∑ G�.y� − y��
 y�� − y��
� /B�
�-
  (6) 

 〈ρA〉 = 2b ∑ ρ�.y� − y��
/
�-
  (7) 

 〈ρI
〉 = 2b ∑ ρ� '��(���)�(
� ��*���)�*

+ , B�
�-
  (8) 
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 〈ρI�〉 = 2b ∑ ρ�
�-
 ��(���)�(
�  (9) 

where ρ� is the volume density of layer k. 

Let us denote: 

• cross-sectional area: 

 A = bh (10) 

• geometric moment of inertia: 

 I = 23(

�  (11) 

• medium average density: 

 ρ = 〈45〉5 = �3 ∑ ρ�.y� − y��
/
�-
  (12) 

• medium average rotation: 

 θ = − 
〈78�〉 ∬ yE.x, y/u<.x, y, t/dS.@/  (13) 

• medium average shear modulus: G = 
5 ∬ G.x, y/dS.@/ = �3 ∑ G�.y� − y��
/
�-
  (14) 

• medium average elastic modulus: 

 E = 〈78�〉8  (15) 

With these notations, the equations of motion 

characterizing the transverse vibrations of the 

beam are: 

 ρAwB − KGA 'D�ED<� − DFD<, = p� (16) 

respectively 

 ρI 'K
 DEBD< − K�θB , + KGA 'DED< − θ, + 

 +EI D�FD<� = 0 (17) 

where: 

 K = 〈�5〉�5 ∙ 〈78�〉〈78�〉 (18) 

 K
 = 〈48�〉〈78�〉�〈48�〉〈78�〉48〈78�〉  (19) 

 K� = 〈48�〉〈78�〉48〈78�〉  (20) 

are coefficients that account for the 

nonuniformities of stresses within the section. In 

the case of a homogeneous beam: 

 K = +J , K
 = 0, K� = 1 (21) 

and the equations of motion are identical to 

those in the classical Timoshenko beam theory. 

It should be noted that in the classical 

Timoshenko beam theory, a one and single 

nonuniformity coefficient for stresses is used. In 

the presented model, three coefficients are 

introduced to characterize the nonuniformities 

of stresses within the beam's section. 

If coefficient K accounts for the variations in 

tangential stresses, coefficients K
 and K� assess 

the variations in normal stresses. By specifying 

these coefficients, the math. models composite 

beams presented in [11] and [12] are obtained. 

3. THE SANDWICH BEAM CASE 

 

Consider a beam consisting of three layers: a 

middle layer and two outer layers, arranged 

symmetrically. 

The variation of the nonuniformity 

coefficient K, as a function of the ratios of the 

elastic moduli and the thicknesses of the core 

and the faces, for different values of the ratio 
���� 

is shown in Figure 2. 

 
a) 

���� = 1 

 
b) 

���� = 5 

 

c) 
���� = 10 

 

d) 
���� = 20 

Fig. 2. Variation of the nonuniformity coefficient K for 

different values of the ratio 
����. 
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a) 

���� = 1 

 
b) 

���� = 5 

 
c) 

���� = 10 

 
d) 

���� = 20 

Fig. 3. Variation of the nonuniformity coefficient K� for 

different values of the ratio 
����. 

Figure 3 shows the variation of the 

nonuniformity coefficient K� for 
4�4� = 2 and 

different values of the ratio 
����. 

Figure 4 shows the variation of the 

nonuniformity coefficient K� for 
4�4� = 2 and 

different values of the ratio 
����. 

 
a) 

���� = 1 

 
b) 

���� = 5 

  
c) 

���� = 10 

 
d) 

���� = 20 

Fig. 4. Variation of the nonuniformity coefficient K
 for 

different values of the ratio 
����. 
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The nonuniformity coefficient K depends 

only on the elastic properties and dimensions of 

the constituent layers, whereas the coefficients K
 and K� also depend on the material volume 

densities. Coefficients K and K� have strictly 

positive values, while the coefficient K
 can take 

negative values or be zero. 

To ensure the rigidity of sandwich-type 

composite materials, the core material does not 

have to exhibit too much weak mechanical 

properties. That’s why a maximum value of the 

ratio 
���� = 20 comes as big enough for the 

analysis of real composite materials. Even 

further, watching Figures 2, 3, and 4, one can 

observe that the values of coefficients K, K
, and K� corresponding to 
���� ratios of 1, 5, and 10 do 

not show significant variations. However, for a 

ratio of 
���� = 20, the values of the three non-

uniformity coefficients increase significantly. 

Thus, a 
���� ratio greater than 20 leads to 

excessively high non-uniformity coefficients 

and this kind of situation is not advisable in 

manufacturing sandwich composite materials. 

 

4. CONCLUSIONS 

 

The proposed mathematical model for 

studying the vibrations of multilayer composite 

beams generalizes the Timoshenko model by 

accounting for both nonuniformities in the 

section of tangential stresses and 

nonuniformities in normal stresses. Tangential 

and normal stresses are considered in all layers, 

satisfying all continuity conditions on the 

separation surfaces between layers, for both 

stress tensor components and strain tensor 

components. It is also considered that the 

stresses on the outer surfaces are zero. While the 

Timoshenko theory introduces a coefficient to 

account for nonuniformities in tangential 

stresses, the proposed mathematical model 

introduces three such coefficients, which also 

account for nonuniformities in normal stresses. 

The proposed model, by varying the stresses 

and strains within the section, can be 

incorporated into theories such as PSDBT 

(Parabolic Shear Deformation Beam Theory). 

The analysis of the graphical representations 

for the three nonuniformity coefficients and the 

ratios between the mass and stiffness 

characteristics of the beam, in the case of the 

sandwich beam, shows significant variations 

both with respect to the mass and elastic 

properties of the constituent layers and with 

respect to their relative thicknesses. 

If the mass and elastic properties of the layer 

materials are very similar, the values of the 

nonuniformity coefficients correspond to those 

for homogeneous materials. For K = +J , K
 = 0,K� = 1, the mathematical model coincides with 

the classical Timoshenko model. Similar results 

are obtained when the ratio of the layer 

thicknesses 
���� approaches zero or is very close 

to one. The largest variations for both the 

nonuniformity coefficients and the ratios 

between the mass and stiffness characteristics of 

the beam occur for values of the ratio 
���� within 

the range 0.8 to 0.9. 
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Introducerea coeficienților de neuniformitate la studiul vibrațiilor barelor compozite 

multistrat 
 

Barele compozite de tip sandwich sunt utilizate pe scară largă în structuri mecanice care conțin subansambluri realizate 

din materiale compozite. Este un fapt verificat că orice tip de bară sandwich prezintă un anumit număr de neuniformități 

pe secțiunea sa transversală. Neuniformitățile trebuie evaluate și cuantificate la construirea modelului matematic pentru 

vibrațiile unei astfel de bare. Introducem trei coeficienți de neuniformitate în formularea ecuațiilor de mișcare pentru o 

bară sandwich cu mai multe straturi care vibrează. A fost considerat doar cazul unei bare cu simetrie geometrică și 

masică. Deși acest caz ar putea fi considerat unul foarte particular, realizarea este că toate considerațiile pe care le-am 

făcut respectă pe deplin și se potrivesc perfect cu toate cerințele teoriei PSDBT. 
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