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Abstract: The blanking test is performed under a variety of process parameters at various levels. 

Uncontrolled burr (Hbv) and the maximum blanking force (Fmax) is measured to predict the fracture 

mechanisms and to design tools. In this paper, design of experiments (DOE) and machine-learning (ML) 

methods were developed in order to predict Hbv and Fmax in blanking test. Hbv and Fmax are affected 

principally by the sheet thickness. Then, microstructural behavior is experimentally analyzed as function 

of sheet thickness. After that, series of experiment-based data into ML models training are elaborated to 

predict Hbv and Fmax. The proposed ML models, Random Forest (RF) and XGBoost (XGB), offer the best 

prediction of the output parameters.  
Key words: Metal blanking, Microstructural analysis, Design of Experiments, Machine-learning models. 

 
1. INTRODUCTION  
  

Various studies have been conducted to predict 
the damage progression in engineering 
components subjected to diverse loading 
conditions [1,2]. These investigations contribute 
significantly to understanding how material 
behavior depends on manufacturing parameters, 
thereby enhancing the durability and efficiency 
of manufacturing equipment. In this context, 
design of experiments (DOE) and machine-
learning (ML) techniques are considered as 
appreciated tools to determine the main factors 
that affected outcomes. In fact, Ben Fraj et al. [3] 
proved the efficiency of the DOE method to 
predict outcomes in sheet forming process. 
Outeiro et al. [4] used the DOE to explore how 
cutting conditions affects outcomes such as 
forces and residual stresses. Preez et al. [5] have 
presented the application of various ML 
methods within cutting processes and analyzed 
their efficiency. Ammar et al. [6] used a full 
factorial as DOE method to determine the 
mechanical properties of printed composites.  

The sheet cutting is an essential operation that 
precedes many sheet metal working processes. 
The blanking process is considered as one of the 

most used techniques in sheet cutting processes 
[7]. In this context, few studies were developed 
in order to optimize blanking parameters [8-10]. 
They used predictive finite element modeling 
and experimental cutting tests with neural 
networks to analyze effectively blanking 
parameters. While blanking processes have seen 
notable technological improvements, the 
development of robust models is still limited. It 
was reported that many factors affect blanking 
process, which leads to variations in its output 
parameters [11,12]. 

Experimental analyses are developed in order 
to study the influence of the clearance, the 
friction and the cutting parameters on the 
obtained geometrical quality and the growth of 
the burr at the sheet edge [13,14]. Other 
researchers focus on the influence of blanking 
parameters on the wear of the punch [15,16].  

The main purpose of this paper is to determine 
the main factors that affect the maximum 
blanking force (Fmax) and the blanking burr 
(Hbv). For various selected levels, these factors 
are the sheet thickness of part, the punch radius, 
the punch speed and the clearance between 
punch and die. The experiment results were 
validated by a microstructural characterization. 
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A series of experimental data is used to train ML 
models for predicting the blanking outcomes. 
  
2. EXPERIMENTAL METHODS AND 

RESULTS 
   
2.1 Experiments and methods  

Blanking tests involve applying punch and die 
pressure to sheet metal. Currently, suitable 
parameters for a new product are identified 
through multiple experimental trials. The 
material used in this study is S235 steel. Sheets 
with different thicknesses are examined. The 
mechanical behavior of the tested steel is 
investigated using blanking test. 

The experiments utilize a specialized blanking 
tool. A universal tensile machine is used to 
conduct the blanking tests at various cutting 
speeds, at room temperature (Fig. 1(a)). The 
experimental procedure involves placing the 
workpiece on the die and applying pressure 
through the descending punch until damage 
occurs. Fig. 1(b) displays the 3D design of the 
specific blanking tool employed for cutting 
metal sheets. 

 
Fig. 1. (a) Blanking trial and (b) 3D scheme of tools 

Previous experimental studies in cutting 
process identify the factors that affect the 
blanking force and the cut part profile. It was 
found that the obtained results are affected by 
sheet thickness and tools geometry such as 
clearance and punch diameter [17,18]. 
Accordingly, the effects of sheet thickness (Th), 
punch diameter (Dp), punch speed (Sp) and 
clearance (Cl) on the maximum force (Fmax) and 
blanking burr (Hbv). The clearance is expressed 
by: 
  

100.
2 . 

(%)
D Dd p

Th
Cl

−
= .      (1) 

  

Where Dd is the die diameter. In order to 
identify the material microstructure, the X-Ray 
Diffraction (XRD) analysis was performed, at 
the ambient temperature, using a D8 Advance 
diffractometer with Cu Kα radiation (λCu = 1.54 
Å). The XRD samples are the S235 blanks with 
different thicknesses, 1mm and 2mm, and 14mm 
of punch diameter. The same punch speed and 
clearance are applied to obtain these two 
specimens. The diffraction configurations are 
recorded over 2θ ranging from [20°,100°], 
during 30 minutes, by continuous scan with tube 
voltage of 40 kV and tube current of 40 mA. 
  
2.2 Experimental results of sheet blanking 

test  
To avoid the scrap from twisting or getting 

wedged between the die and the punch, the strip 
layout must consider the distance between the 
blanks and the strip edge, as well as the spacing 
between adjacent blanks.  

The input parameter values for blanking tests 
are detailed in Table 1. 

Table 1 

Input factors in blanking tests 

Sp (mm/min) 20 - 25 - 30 - 40 
Dp (mm) 12 - 14 - 18 
Cl (%) 10 - 15 - 20 - 25 
Th (mm) 1 - 1.5 - 2 

 
We selected 43 combinations of these input 

parameters. To ensure result reproducibility, 
each experiment was conducted twice, resulting 
in a total 86 blanking tests. Table 2 lists samples 
of obtained experimental results. 

Table 2 

Samples of experimental results 

Sp 
(mm/min) 

Cl 
(%) 

Th 
(mm) 

Dp 
(mm) 

Hbv 
(mm) 

Fmax 
(kN) 

40 20 1 14 0.26 13.677 
20 15 1.5 12 0.15 17.513 
20 10 2 14 0.83 31.39 
25 20 1.5 12 0.17 18.103 
20 20 2 18 0.75 43.358 
20 15 1 12 0.34 10.473 
30 15 1 12 0.23 10.593 
25 25 2 12 0.42 24.073 
20 20 1 18 0.25 18.207 
20 15 2 12 0.44 23.46 

The result of each blanking test is represented 
by using a load–displacement curve that 
represents the punch movement. The maximum 
force (Fmax) is determined from the following 
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curve (Fig. 2) for Th = 1 mm, Dp = 14 mm, Sp = 
40mm/min and Cl = 20%. 

 
Fig. 2. Experimental Fmax (Th = 1 mm, Dp = 14 mm, Sp 

= 40 mm/min and Cl = 20%) 
As illustrated in Fig. 2, the blanking process 

comprises three distinct phases delineated by the 
load–displacement curve. The initial punch 
phase involves the punch affecting the sheet 
metal, initiating elastic deformation. If stresses 
surpass the material's maximum shear strength, 
plastic deformation occurs. When the shearing 
stress exceeds the material’s fracture threshold, 
tearing occurs and the stored elastic energy is 
suddenly released. In the subsequent push phase, 
the sheet part is entirely expelled from the die, 
with the punch traversing of the bottom dead 
center. Finally, in the withdrawal phase, as the 
punch is extracted from the die, withdrawal 
forces arise due to the interaction between the 
sheet and the punch causing jamming.  

Fig. 3 shows blanking burrs, which can be 
prevented by analyzing the influence of key 
parameters throughout the design and 
manufacturing stages of the blanking process. 

 
Fig. 3. Blanking burr during cutting operation 

 
3. DESIGN OF EXPERIMENTS RESULTS 

FOR BLANKING PROCESS  
  

DOE method is employed to investigate the 
correlation between various input factors and the 
outcomes of the blanking process, specifically 
focusing on Fmax and Hbv. The main objective is 
to facilitate a precise estimation of the influence 
of each factor of the blanking process and to 
understand their impacts on Fmax and Hbv 
evolutions.  

In order to establish a mathematical model for 
Fmax and Hbv, we chose to use a full factorial 
design in which the output results are 
determined for all combinations of factor levels. 
Indeed, two levels for each input have been 
selected. At each level (i), the sheet thickness, 
the punch diameter, the punch speed and the 
clearance are denoted Th-i, Dp-i, Sp-i, and Cl-i, 
respectively. The values of the process factors at 
different levels are presented in Table 3. 

Table 3 

Input factors for DOE analysis 

Factors Level Value 
Th-1 (mm) 1 1 
Th-2 (mm) 2 2 
Dp-1 (mm) 1 14 
Dp-2 (mm) 2 16 
Sp-1 (mm/min) 1 20 
Sp-2 (mm/min) 2 40 
Cl-1 (%) 1 10 
Cl-2 (%) 2 15 

The total number of tests is 16. Each 
experiment was conducted twice, resulting in a 
total 32 blanking tests. For each input factor 
(fact) in level (i), denoted (fact-i), the average of 
each output parameter (Fmax) and (Hbv), 
represented by (X), is calculated as follows: 
  

. (2) 

  
Where Nt is the number of the performed tests 

for each (fact-i). The range between the highest 
and lowest levels of the average (X) is expressed 
as follows:  
  
 . (3) 

   
3.1 Predictive modeling of maximum 

blanking force 
Accurate prediction of fracture mechanisms in 
sheet metal and the effective design of blanking 
tools require a clear understanding of force 
evolution during the blanking process. The 
maximum blanking force (Fmax) depends on 
various factors, principally the punch speed, 
sheet metal thickness, the clearance between die 
and punch, etc. The variation of the average of 
Fmax as function of input factors is presented in 
Fig. 4. 

( ) ( ),
1

Nt
X X fact ip

p
average  −

=
=

( ) ( )Max Min  ( )  ( )
( )

2

average X average X
Xδ

−
=
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Fig. 4. Variation of the average of Fmax  

Examining the data presented in Fig. 4, it is 
showed that as the thickness (Th) and the punch 
diameter (Dp) are increased, there is a significant 
rise in the maximum force (Fmax). This result 
indicates a strong effect of these factors on Fmax 
evolution. In contrast, the impact of the punch 
speed (Sp) and the clearance (Cl) appears to be 
comparatively negligible, suggesting that 
variations in these parameters have a minor 
effect on Fmax evolution. Emphasizing the 
design of experiments, an analytical model of 
the maximum blanking force (Fmax) is proposed. 
The first order polynomial model is developed 
and given by Eq. 4.  

  

 . (4) 

  

We show in Fig. 5, the comparison between 
the theoretical (Fmax-th), calculated by Eq. 4, and 
the experimental (Fmax-exp) results of the 
maximum blanking force. 

 
Fig. 5. Validation of mathematical model of Fmax 

   
3.2 Predictive modeling of blanking burr 
Blanking burr is a phenomenon that allows 

the control of quality in blanking process. It is 
crucial to control aspects of the blanking 
operation leading the burr appearance. For that, 

we measure the burr Hbv as function of the 
selected factors (Table 3). The influence of each 
factor on Hbv will be studied. Fig. 6 illustrates 
how the average Hbv varies with respect to the 
input factors. 

 
Fig. 6. Variation of the average of Hbv with respect to 

the input factors 
From this graph, Dp, Sp, and Cl affect 

moderately the average of Hbv. Otherwise, the 
growth of Th significantly increases Hbv.  

A first order polynomial relation (Eq. 5) 
contains eleven unknown parameters are used to 
define the effect of each input factors and their 
interaction on Hbv. 

  

. (5) 

  

In addition, analytical workpiece burr (Hbv-th) 
is determined by the theoretical model (Eq. (6)) 
and compared, in Fig. 7, with those which were 
experimentally measured (Hbv-exp). 

 
Fig. 7. Validation of theoretical model of Hbv 

The agreement between measured and 
predicted values of blanking burr reveals that the 
developed model (Eq. 4) offers a good 
estimation of this parameter. 
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3.2 Synthesis 
To verify the reliability of the theoretical 

models for Hbv-th and Fmax-th, a comparison is 
made using supplementary tests that were not 
part of the initial blanking experiments. In this 
context, other experiment blanking tests were 
performed (Table 4). 

Table 4 

Blanking experimental tests for validation 
Sp 

(mm/min) 
Cl  

(%) 
Th  

(mm) 
Dp  

(mm) 
Hbv 

(mm) 
Fmax  
(kN) 

20 15 1 12 0.34 10.473 
25 25 1 12 0.16 10.66 
30 25 1 12 0.15 10.633 
30 20 1.5 12 0.24 18.22 
30 25 1.5 12 0.22 17.993 
25 25 2 12 0.42 24.073 

Based on Table 4, a comparison between 
analytical, based on DOE nanlysis and 
experimental results is conducted as follow 
(Figs. 8 and 9). 

 
Fig. 8. Accuracy of mathematical model of Fmax 

 
Fig. 9. Accuracy of mathematical model of Hbv 

When input parameters, not considered in the 
development of the analytical model, are 
changed, errors increase, especially in the 
prediction of Hbv. The analytical model is not 
effective in predicting Fmax and Hbv when an 
input parameter takes a value different from 
those taken in the experimental design. 
 

4. MICROSTRUCTURAL ANALYSIS 
  

It was proved, in section 3, that the sheet 
thickness is the most influent among the selected 
input factors since it has a great influence on 
both Hbv and Fmax. For this reason, the 
microstructural characterization of the punched 
parts is performed to investigate the effect of the 
sheet thickness on the microstructural behavior 
of S235 under blanking test. XRD pattern of the 
obtained parts is presented in Fig. 10 as function 
of the thickness.  

 

Fig. 10. XRD analysis of punched S235 steel at two 
specimen thicknesses: (a) 1 mm and (b) 2 mm 

Fig. 10 shows that the martensite phase 
characterizes the microstructure of the thinnest 
specimen. Three characteristic peaks were 
revealed in Fig. 10(a). Nevertheless, for the 
specimen which having 2mm of thickness, the 
S235 behaves differently from microstructural 
point of view Fig. 10(b). In addition to 
martensitic peaks, a strong and narrow 
diffraction peak was exhibited at 2θ equal to 
35.54° and indexed to (020) crystallographic 
plane of cementite (Fe3C) with another peak 
indicating the same phase at 43.16°. The weaker 
diffraction peaks at 30.2° and 57.11°, 
corresponding respectively to (101) and (112) 
crystallographic planes, show the presence of a 
third phase in the material microstructure which 
is the upper bainite (Fe3C). The volume 
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fractions of the detected phases are mentioned in 
Fig. 11. 

 
Fig. 11. Volume fractions of cementite, martensite and 
bainite phases in the punched parts microstructure: (a) 

1mm; (b) 2mm 
The obtained XRD pattern was compared 
with that of the unpunched one [19] as well 
as with that of the low carbon steel (0.2% C) 
[20] (Fig. 12).  

 
Fig. 12. XRD pattern of low carbon steel (Ferritic 

microstructure) [20] 
It can be concluded that the blanking test has 

a great effect on the microstructural behavior of 
this metal. As cast, before blanking test, the 
S235 XRD pattern exhibits ferrite phase as the 
initial phase [19]. The XRD analyses, in Fig. 10, 
indicate that a stress induced phase 
transformation takes place during the blanking 
test, which, depends on the specimen thickness. 
Regarding the thickness of 2 mm, the 
appearance of bainite and cementite phases in 
Fig. 10(b) can be attributed to the presence of 
thermal effect due to a thermo-mechanical phase 
transformation or to an eventual internal 
frictional energy. 

To improve the understanding of this result, 
the microstrain and the crystallite size of the 
punched S235 steel, with the two thickness 
levels, were determined for each peak. The 
averages of these microstructural parameters are 
summarized and inserted in Table 8. 

- The Full Width at Half Maximum 
(FWHM), denoted as β, represents the width of 
a diffraction peak measured at 50% of its 
maximum intensity. It is used to characterize 
different material properties. It must be 

converted into radians in the following 
calculation. 

- D is the crystallite size, expressed by 
Scherrer’s equation:  
  

. (6) 

  
K is the shape factor (K = 0.94) and λ is the 

X-ray wavelength (λ = 1.54 Å). 
- ε is the microstrain which was determined 

by: 
  

. (7) 

  
Microstrains are often attributed to the 

presence of the dislocations already created 
during the blanking test. The dislocation density 
can be influenced by the selected input factors as 
the punch speed, thickness and punch diameter; 
and can be able, simultaneously, to influence 
Fmax and Hbv. From the determined parameters, 
the dislocation density (δ) may be determined by 
the following relationship (Eq. (8)).  
  

. (8) 

  
Where Da is the average crystallite size. 

Table 5 

Variation of microstrain, crystallite size, and 

dislocation density with sheet thickness in punched 

parts. 

 Average 
microstrain 
εa (x10-3) 

Average 
crystallite 

size  
Da (nm) 

Dislocation 
density 

δ (x10-3 nm-2) 

Th-1= 1 mm 6.69 11.57 7.47 
Th-2 = 2 mm 2.28 40.27 0.61 

 

The obtained results from Table 5 confirm that 
the increase of specimen thickness, from 1mm to 
2mm, is followed, under blanking test, by a great 
increase of crystallite size and also a 
considerable decrease of both microstrain and 
dislocation density which improves the ductile 
behavior of the tested material. These findings 
defend and explain the observed thickness effect 
on Fmax and Hbv. 

  

( )cos

K  
D

 

λ
β θ

=

( )4 tan 

βε
θ

=

2

1
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5. OPTIMIZATION METHOD USING 

MACHINE-LEARNING MODELS 
  

In recent years, the field of optimizing 
manufacturing processes has witnessed a 
remarkable transformation fueled by 
advancements in machine-learning (ML) 
technologies. As researchers strive to unravel 
the complex relationships governing 
manufacturing parameters, the integration of 
ML techniques has developed as a great tool for 
accelerating discovery and optimizing 
manufacturing process. In this study, we 
concentrate on the application of ML models for 
regression tasks, specifically aiming to predict 
Fmax and Hbv. We explore and compare the 
efficacy of four regression ML models in this 
context: XGBoost regression (XGB), Random 
Forest regression (RF), Support Vector 
Regression (SVR), and Artificial Neural 
Network regression (ANN). The Root Mean 
Squared Error (RMSE) is calculated (Eq. 9) to 
assess the accuracy of each ML model.  
  

. (9) 

  
Where N is the number of observations, yj is 

the actual value of observation j and ��� is the 
model’s prediction for observation j. 
  
5.1 Predicted Fmax 
The RMSE(%) is calculated for each ML model 
in order to predict Fmax in the blanking process. 
The obtained results are presented in Fig. 13. 
Given the low RMSE(%) observed in the XGB 
and RF models, it is evident that these models 
outperform the ANN and SVR models in terms 
of predictive accuracy. 

 

Fig. 13. RMSE(%) for each ML model 
The XGB and RF models are more reliable in 
predicting Fmax with outliers. The predicted 
results (test dataset) of RF and XGB models are 
showed in Fig. 14. 

 

 
Fig. 14. Predicted Fmax with two models (a) RF ; (b) 

XGB 
RF and XGB models are deemed as suitable 
choices, underscoring their reliability and 
effectiveness in predicting Fmax in the blanking 
process. 
  
5.2 Predicted Hbv 
We delve into the analysis of predicted Hbv 
values. For every ML model, we compute the 
RMSE(%). Figure 15 presents the outcomes 
derived from this analysis. 

 

Fig. 15. RMSE(%) for each ML model 
The XGB and RF models exhibited notably low 
RMSE(%) values, showcasing their strong 

( )2

1

1 ˆ
N

j j

j

RMSE y y
N =

= −
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predictive capabilities. Interestingly, RF 
outperformed XGB in terms of predictive 
accuracy. Conversely, the ANN and SVR 
models showed considerably higher RMSE(%) 
scores, indicating inferior performance. The 
predicted results of the following models, RF 
and XGB, are illustrated in Fig. 16. 

 

 
Fig. 16. Predicted Hbv (a) RF model ; (b) XGB model 

These models are more reliable in predicting 
Hbv with outliers. In fact, XGB and RF are the 
best ML models used for regression tasks and 
provide robust predictions.  
  
  
5. CONCLUSION  
  

Design of experiments method determines 
the necessary data that contribute significantly 
and the interaction between different variables 
with a minimum number of experiments. This 
study aims primarily to examine how various 
experimental parameters influence the 
workpiece burr height (Hbv) and the maximum 
blanking force (Fmax). The investigated input 
variables, which are punch speed, punch 
diameter, clearance between die and punch, and 
sheet thickness, were identified as key factors 
affecting these two output responses. New 
analytical models were proposed and developed 

in order to support analytical and experimental 
findings. From the obtained results, it was 
proved that thickness has a great influence on 
Fmax while for Hbv. Then, XRD analysis of the 
punched parts was conducted to examine the 
impact of sheet thickness on the microstructural 
behavior of S235 during the blanking test. In 
addition, ML models were implemented to 
predict Hbv and Fmax in the blanking process. 
A good prediction of Fmax is achieved through 
the DOE method and RF and XGB models. 
However, Hbv is not well predicted by the DOE 
method. Conversely, RF and XGB models yield 
good results. 
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Analiza microstructurală și mecanică a tăierii blancurilor din tablă metalică 
  

Rezumat. Testul de tăiere este realizat sub o varietate de parametri de proces la diferite niveluri. 
Bavura necontrolată (Hbv) și forța maximă de tăiere (Fmax) sunt măsurate pentru a prezice 
mecanismele de fractură și pentru a proiecta uneltele. În această lucrare, metodele de planificare a 
experimentelor (DOE) și de învățare automată (ML) au fost dezvoltate pentru a prezice Hbv și 
Fmax în testul de tăiere. Grosimea tablei este factorul cu cea mai mare influență asupra Hbv și 
Fmax. Apoi, comportamentul microstructural este analizat experimental în funcție de grosimea 
tablei. Ulterior, o serie de date experimentale sunt utilizate pentru antrenarea modelelor ML în 
scopul prezicerii lui Hbv și Fmax. Modelele ML propuse, Random Forest (RF) și XGBoost (XGB), 
oferă cea mai bună predicție a parametrilor de ieșire. 
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