
9

Received: 29.01.25; Similarities: 05.03.25: Reviewed: 20.02./19.02.25: Accepted:06.03.25.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 68, Issue I, March, 2025

A RELATIONAL IMPLEMENTATION WITH WEB INTERFACE FOR

STORING ROBOT PROGRAMS

Tiberiu Alexandru ANTAL

Abstract: The paper is using the XAMPP open-source cross-platform web server solution to develop using

the relational database model a free solution to store different categories of robots used in different type of

activities together with their associated programs. As XAMPP integrates a web server as well as relational

database server the application provides a web page based interface for database interactions.

Key words: function, manipulator, parameter, PHP, reuse, routine.

1. INTRODUCTION

The modern industrial and robotic

applications are organized around databases

which play an essential role in efficiently

managing robot programs. The database

provides a centralized location for storing robot

programs, ensuring they are easily accessible to

authorized users. It allows multiple users or

systems to retrieve and update programs

simultaneously, enabling collaboration across

teams. While from a structural point of view

serial robots have well known architectures,

parallel robots still support innovation in terms

of new designs[1-3], adaptable to specific

applications [4-5]. As robotic systems become

increasingly complex and interconnected [6] [7],

the need for organized, scalable, and secure

storage solutions has grown and researches

expanded these concepts to database

management systems integrated in cloud [8], [9]

for system efficient data management and

processing in enhancing robotic functionalities

and for centralized database to store and process

data collected by robots [10], enhancing

efficiency and scalability in data center

management. While cloud solutions provide

robust environments for production, scalability,

and collaboration there are also good tools for

local development and small-scale testing. Many

developers start with XAMPP during

development and migrate to cloud solutions for

deployment. The following approach is based on

XAMPP the open-source software package that

provides a local web server environment for

developing, testing, and running web

applications. The name is an acronym that stands

for:

• X: Cross-platform (works on Windows,

macOS, and Linux)

• A: Apache (a web server)

• M: MySQL (a database system, now

often replaced by MariaDB)

• P: PHP (a server-side scripting

language)

• P: Perl (another scripting language)

The MariaDB database system is using the

relational data [11] model to manage the data

and as well as how the data in organized in the

system. In mathematics a data model is defined

by the formalism used to describe the data

structures and the set of operators used to

validate and manipulate the data structures. The

relational data model is a strict one which means

that all data must be modelled using predefined

categories called types. This approach is used in

systems that prioritize data integrity,

consistency, and strong typing over flexibility.

In a relational database management system

(RDMS) the structure defines how data is

organized (e.g., tables, objects, or graphs). the

10

relationships specify how different pieces of

data are connected and the constraints describe

rules that enforce data integrity and validity. In

RDMS the data structure used to store the data is

the table and the relational algebra operators are

used to manipulate the data. A query is a request

for information or data from a database. It is a

structured way of asking a database to retrieve,

insert, update, or delete data based on specific

conditions. Queries are typically written in

query languages, such as SQL [17], [18]

(Structured Query Language). The relational

algebra operators can be divided into

fundamental and derived categories. These

operators manipulate relations (tables) to

produce new relations. SQL (Structured Query

Language) and Relational Algebra are closely

related. SQL is the implementation of the

relational model, while relational algebra

provides the theoretical foundation. Both use

operators to manipulate and query data, though

their syntax and focus differ [17], [18]. Table 1

is showing briefly the equivalence between the

relational algebra operators and the SQL

language.

Table 1

The relational algebra - SQL equivalence.

Operator / Symbol Meaning Syntax SQL Equivalent

Fundamental operators (core operators to build queries)

Selection / σ Filters rows based on a

condition.

σcondition(R) SELECT ...

FROM ...

WHERE

Projection / π Selects specific columns. πcolumns(R) SELECT

column_names

Cartesian Product / ×

Combines every row of

one relation with every

row of another.

R×S SELECT * FROM

Table1, Table2

Union / ∪

Combines tuples from two

relations.
R∪S UNION

Set Difference / − Finds tuples in one relation

but not in another.

R−S EXCEPT

Rename / ρ Renames a relation or its

attributes.

ρnewName(R)

Derived operators (built using combinations of fundamental operators and are used to

simplify queries)

Intersection / ∩

Finds common tuples

between two relations.

R∩S constructed as
R−(R−S)

INTERSECT

Natural Join / ⋈ Combines relations based

on common attributes.
R⋈S constructed as
πattributes(σcondition(R×S))

NATURAL JOIN

Theta Join / ⋈θ

Combines relations based

on a condition θ.
R⋈θS construted as

σθ(R×S)
Join with ON or

WHERE clause.

Division / ÷ Finds tuples in one relation

that match all tuples in

another.

R÷S constructed as
πA(R)−πA((πA(R)×S)−

R)

Simulated with

nested queries.

2. CONCEPTUAL MODEL and LOGICAL

DATA MODEL

At the conceptual level, the problem to be

solved is related to a database used to store

robots and robot programs. CRUD [16] (Create,

Read, Update, and Delete) must be provided

with a proper web interface to facilitate

inserting, viewing, updating and changing the

information from the database.

11

The application should be able to store

several robots of different types as well as

several distinct program associated to each robot

depending on the specific tasks the robot should

handle at different moments. An Entity-

Relationship Diagram (ER Diagram) is a

graphical representation of the

entities/concepts/tables,

relationships/associations, and attributes/

characteristics/columns that define a blueprint

for relational database to be designed and are

specific to the conceptual design phase when

defining and understanding the relationships

between data entities.

The ER diagram and database schema are

closely related, but they serve distinct purposes

in the process of database design and

implementation. The database schema is specific

to the logical and physical design when the

database is created together with the tables, data

types, constraints, and indexes. XAMPP

integrates a tool called phpMyAdmin which is a

web-based tool that simplifies the management

of databases, including the design and

implementation of a database schema. Using the

Designer tab from phpMyAdmin in Figure 1 the

database schema is given.

The following tables have undergone the

normalization [17], [18] process to reduce

redundancy and improve data integrity.

Normalization involves dividing a database into

smaller, related tables and defining relationships

between them to ensure that each piece of data is

stored only once and at the same time helps

eliminate anomalies during data operations such

as insertion, update, and deletion.

A Primary Key (PK) is a column or a

combination of columns in a table that uniquely

identifies each row in that table. A Foreign Key

(FK) is a column or a combination of columns in

one table that refers to the PK in another table. It

establishes a relationship between the two

tables.

Fig. 1. The database schema.

The schema shows there tables tableprog,

m2mt1tp, table1 and two relationships. The

tables are defined by the attributes/columns as

follows (the column data types can be seen in

Figure 1. on the right side of the column names

like ID: int(11)):

• tableprog: line, idprog, idline (PK);

• m2mt1tp: id(PK, FK), idprog(PK, FK),

Name;

• table1: ID (PK), Name, Type,

Manufacturer and Price.

The table1 stores the robots and their type and

price with the primary key (PK) ID. The table

m2mt1tp stores the names of the programs

associated to a robot, and as a robot can run more

programs the relationship between table table1

and m2mt1tp is 1 to many (1:M).

The PK of m2mt1tp is composed from id and

idprog at the same time id is a FK for table1.

The tableprog table stores program lines from a

program having the PK as idline and the FK

idprog. As a program is made up from more

lines a 1 to many relationship (1:M) is formed

between the m2mt1tp and tableprog.

2.1 HTML in database data input and output

Using HTML [14] for data input/output with

a MariaDB database typically involves building

a web application that connects a user interface

(UI) to the database. This allows users to input

data via forms and retrieve or display data

dynamically in web pages.

The frontend [16] is handling the data input

using HTML forms while the output is based on

tables. The backend [14], [17], [18] is based on

the PHP server-script language [12], [13], [15].

The database (MariaDB) is used for storing,

retrieving, and managing the data.

2.2 The ‘Main’ menu of the frontend

The start form based only on HTML (no

PHP) is acting as a main menu (see Figure 2),

and the corresponding HTML code follows.

12

Fig. 2. The main menu of the frontend.

<html lang="en">
 <head> <style>
ul { list-style-type: none; margin:
0;padding: 0; width: 25%; background-
color: #f1f1f1; position: fixed;
 overflow: auto; border: 1px solid
#555;}
li { display: inline; text-align:
center; border-bottom: 1px solid #555;
}
li:last-child { border-bottom: none; }
li a {display: block; color: #000;
padding: 8px 16px; text-decoration:
none;}
li a.active { background-color:
#04AA6D; color: white; }
li a:hover:not(.active) { background-
color: #555; color: white;
}
</style> </head> <body>
<table>
<th><td>Main</td></th><tr><td>
 View

Insert Edit
 Delete
 <a class="active"
href="prog/programsview.php"> Program
view </td></tr>
</table> </body> </html>

2.3 The ‘View’ menu entry

The ‘View’ menu entry is shown in Figure 3

and is based on the “view.php” code showing the

content of table1. All the

fields/attributes/columns of table1 are visualized

in a HTML table showing the ID (PK),

Manufacturer (of the robot), Name, Price and

Type. The code is executed on the Apache web

server from XAMPP and as it contains the <?php

… ?> tag it must have the php extension [13],

[15] so the sever-side script would be passed to

the PHP interpreter to generate the HTML table

as the output.

Fig. 3. The ‘View’ menu entry frontend.
The code is based on a selection using the SQL

"SELECT * FROM Table1" statement and

returns a dynamic output based on the data

stored in table1.

<?php
 include_once 'con_roboti.php';

 $sql = "SELECT * FROM Table1";
 $result = mysqli_query($conn, $sql);

 if (mysqli_num_rows($result) > 0)
 {
 $row=mysqli_fetch_all($result,
MYSQLI_ASSOC);
 }
?>

<!DOCTYPE html>
<html>
<style>
 td,th {
 border: 1px solid black;
 padding: 10px;
 margin: 5px;
 text-align: center;
 }
</style>
<title>Web page to show data form
MariaDB:roboti;Table:Table1 -
view.php</title>

<body>
 <table>
 <thead>
 <tr>
 <th>ID</th> <th>Manufacturer</th>
 <th>Name</th><th>Price</th>
 <th>Type</th> </tr>
 </thead>
 <tbody>
 <?php
 if(!empty($row))
 foreach($row as $rows) { ?>
 <tr><td><?php echo $rows['ID'];
?></td>

13

 <td><?php echo $rows['Manufacturer'];
?></td> <td><?php echo $rows['Name'];
?></td> <td><?php echo $rows['Price'];
?></td> <td><?php echo $rows['Type'];
?></td> </tr> <?php } ?>
 </tbody></table>
 <p>
 <form action="main.html">
 <input type="submit" value=" Main "
style="background-color:black;
color:white; border-color:white"/>
 </form> </body> </html> <?php
 mysqli_close($conn);
?>

2.4 The ‘Insert’ and ‘Edit’ menu entries

The ‘Insert’ and ‘Edit’ menu entries are

shown in Figure 4 to Figure 6. The frontend of

the ‘Insert’ entry is a HTML form that provides

the data to the SQL "INSERT INTO Table1
(Manufacturer,Name,Price,Type) VALUES

('$man','$nam','$pri','$typ')" statement

responsible to insert the data in table1.

Fig. 4. The ‘Insert’ menu entry frontend.

The ‘Edit’ menu involves a two-step action. The

frontend starts in Figure 5 where the robot to be

edited must be selected using the left radio

button based on the code from the “edit.php”

file. The backend is provided as the form from

Figure 6, based on the ‘formedit.php’ code, and

allows editing and updating the data in table1.

The connection between the frontend and

backend forms is made by the ID (PK) of the row

selected in Figure 5 which is transmitted as a

parameter to the ‘formedit.php’ code that

outputs the record to be edited in Figure 6.

Fig. 5. The ‘Edit’ menu entry frontend.

Fig. 6. The ‘Edit’ menu entry backend.

When the ‘edit’ button (see Figure 6) is pressed

the code will update the modified data of the row

identified by the ID (PK).

2.5 The ‘Delete’ menu entry

The ‘Delete’ menu entry is shown in Figure 7

and is generated by the ‘delete.php’ code.

Compared to previous menus, where only one

operation was possible with a single row in the

table, in this menu it is possible to

simultaneously mark several rows (using

checkboxes) for deletion and delete them by

pressing the ‘Delete’ button. This means that

multiple IDs need to be sent from the frontend to

the delete code 'del.php'. In the examples so far

in the frontend, the interface elements stored a

single value in a single name, however in this

case several ID values will be stored in the

'chechbox[]' array name (see Figure 7). The

[] notations transforms the scalar variable

named 'chechbox' to an array.

The 'del.php' code in the backend is using a for

loop with the number of elements extracted in

the $count variable to delete one by one each of

the rows with the IDs stored in the 'chechbox'

variable.

14

Fig. 7. The ‘Edit’ menu entry frontend.

<?php
 include_once 'con_roboti.php';
 $sql = "SELECT * FROM Table1";
 $result = mysqli_query($conn,
$sql);
 if ($count =
mysqli_num_rows($result) > 0)
 {
 $row=mysqli_fetch_all($result,
MYSQLI_ASSOC);
 }
?>
<!DOCTYPE html>
<html>
<title>Web page delete data form
MariaDB:roboti; Table:Table1 -
delete.php</title>
<body>
<form action='del.php' method='post'>
 <table><thead> <tr>
<th>Delete</th> <th>Manufacturer</th>
 <th>Name</th> <th>Price</th>
 <th>Type</th> </tr> </thead>
<tbody>
<?php if(!empty($row))
 foreach($row as $rows){?> <tr>
 <td> <input type='checkbox'
name='chechbox[]' value='<?php echo
$rows["ID"]; ?>'/> </td>
 <td><?php echo
$rows['Manufacturer']; ?></td>
 <td><?php echo $rows['Name'];
?></td>
 <td><?php echo $rows['Price'];
?></td>
 <td><?php echo $rows['Type'];
?></td>
 </tr>
 <?php } ?></tbody></table>

<!-- DELETE BUTTON -->
 <p><input type='Submit' id="Delete"
value='Delete' name='Delete' />
 </form> </body> </html>
<?php mysqli_close($conn); ?>

<?php
include_once 'con_roboti.php';

echo var_dump($_POST['chechbox']);
if(isset($_POST['Delete']))
{ $count= count($_POST['chechbox']);
$checkbox= $_POST['chechbox'];
for($i=0;$i<$count;$i++)
{ $del_id = $checkbox[$i];
$del = "DELETE FROM Table1 WHERE
ID='$del_id'";
$result = mysqli_query($conn, $del);
}
if($result)
{ echo "<meta http-equiv=\"refresh\"
content=\"0;URL=view.php\">"; }}
mysqli_close($conn);
?>

2.5 The ‘Program view’ menu entry

The ‘Program view’ entry is based generated

by the ‘programsview.php’ code which is stored

in the prog subdirectory of the application and

integrates all the actions related to the programs

associated with a robot using links. In Figure 8

by selecting the proper link we can delete, add

or view programs associated to robots.

Fig. 8. The ‘Program view’ menu entry frontend.

Fig. 9. The ‘Program view/add’ menu entry frontend.

To add a program to a robot the link with the

‘Manufacturer’ name (the second column from

left - see Figure 8) must be selected and the page

from Figure 9 is generated. Here, the name of the

program must be given and the text file from the

local drive must be chosen. To delete a program

15

associated to a robot the proper link, containing

the program name we wish to erase should be

selected from the first column in Figure 8

To view the content of a program file the proper

link from the last column in Figure 8 must be

selected and the content will be generated in a

table as shown in Figure 10. The code

corresponding to the ‘add’ link follows and

compared to the rest the codes this has two

specific characteristics. It need two parameters

from the dynamic frontend in Figure 8, the ID of

the robot from table1 and the idprod of the

program which is going to be processed (with

add, delete or view) from m2mt1tp and It’s using

and SQL statement which operates on the two

mentioned tables or only one table if there are no

program associated yet to the robot (see Figure

8 with ID=12).

Fig. 10. The ‘Program view/add’ menu entry backend

result.

<?php
 include_once 'con_roboti.php';
 $p1 = $_GET['p1']; $p2 = $_GET['p2'];
 $l=1; if ($p1 != null)
 $sqlnmt = "SELECT `table1`.`Name`,

`table1`.`Manufacturer`,

`table1`.`Type`, `m2mt1tp`.`idprog`,

`m2mt1tp`.`Name` AS `program` FROM

`table1` LEFT JOIN `m2mt1tp` ON

`m2mt1tp`.`id` = `table1`.`ID` where

`idprog`=".$p1;

 else
 $sqlnmt = "SELECT * from table1

WHERE id = ".$p2;

 $result = mysqli_query($conn,
$sqlnmt);
 if (mysqli_num_rows($result) > 0) {
 $NMT=mysqli_fetch_all($result,
MYSQLI_ASSOC); }
 echo 'New program will be added to
>>>> '.$NMT[0]['Name'],' | ',
$NMT[0]['Manufacturer'], ' |
',$NMT[0]['Type'] ;
?>

 <form action="programupload.php"
method="post" enctype="multipart/form-
data"> <input type=hidden
name="idrobot" value=<?php echo $p2;
?>> <input type=hidden name="idp1"
value=<?php echo $p1; ?>>
 <table width="" height="" border="2"
align="left">
 <tr> <td width="">Prog name:</td>
<td><input type=text name="pname"
value="name of the new prog"></td>
/tr><tr> <td width="">Upload File (.txt
only): </td> <td width=""><input
type="file" name="upload"></td></tr>
 <tr><td colspan="3"><button
type="submit">Upload</button></td></tr
> <tr><td colspan="3">
 <?php if(!empty($_GET['msg'])){
 echo $_GET['msg'];}?></td></tr>
 </table>
 </form>

3. CONCLUSIONS

XAMPP is an excellent package for the

development of a robotic related database. It

provides tools for the Frontend using HTML

forms; the Backend using the server processes

with SQL commands for data interaction and the

Database to store and retrieve data.

4. REFERENCES

[1] Vaida, C., Pisla, D., Schadlbauer, J., Husty, M.,

Plitea, N. Kinematic analysis of an innovative

medical parallel robot using study parameters.

In New Trends in Medical and Service Robots.

Mechanisms and Machine Science; Wenger, P.,

Chevallereau, C., Pisla, D., Bleuler, H., Rodić,

A., Eds.; Springer: Cham, Switzerland, 2016;

Volume 39.

[2] Pisla, D.; Plitea, N.; Videan, A.; Prodan, B.;

Gherman, B.; Lese, D. Kinematics and design of

two variants of a reconfigurable parallel robot.

In Proceedings of the ASME/IFToMM

International Conference on Reconfigurable

Mechanisms and Robots, London, UK, 24 July

2009.

[3] Klimchik, A., Chablat, D., Pashkevich, A.

Stiffness modeling for perfect and non-perfect

parallel manipulators under internal and external

loadings, Mech. Mach. Theory, 79 (2014), pp. 1-

28, doi: 10.1016/j.mechmachtheory.2014.04.002

[4] Plitea, N.; Hesselbach, J.; Vaida, C.; Raatz, A.;

Pisla, D.; Budde, C.; Vlad, L.; Burisch, A.;

Senner, R. Innovative development of surgical

16

parallel robots. Acta Electron. Mediamira Sci.

Cluj Napoca 2007, 4, 201–206.

[5] Plitea, N.; Hesselbach, J.; Pisla, D.; Raatz, A.;

Vaida, C.; Wrege, J.; Burisch, A. Innovative

Development of Parallel Robots and

Microrobots. Acta Teh. Napoc. Ser. Appl. Math.

Mec. 2006, 49, 5–26.

[6] Pisla, D.; Plitea, N.; Gherman, B.; Pisla, A.;

Vaida, C. Kinematical analysis and design of a

new surgical parallel robot. In Proceedings of

the 5th International Workshop on

Computational Kinematics, Duisburg, Germany,

6–8 May 2009; pp. 273–282.

[7] Reiter, A., Muller, A., Gattringer, H. On Higher

Order Inverse Kinematics Methods in Time-

Optimal Trajectory Planning for Kinematically

Redundant Manipulators. IEEE Trans. Ind.

Inf. 2018, 14, 1681–1690.

[8] Vijaykumar S, Saravanakumar S G, Future

Robotics Database Management System along

with Cloud TPS, International Journal on Cloud

Computing: Services and

Architecture(IJCCSA),Vol.1, No.3, November

2011, https://doi.org/10.48550/arXiv.1112.202.

[9] S. Alirezazadeh and L. A. Alexandre, Optimal

Algorithm Allocation for Single Robot Cloud

Systems, in IEEE Transactions on Cloud

Computing, vol. 11, no. 1, pp. 324-335, 1 Jan.-

March 2023, doi: 10.1109/TCC.2021.3093489.

[10] Russo, L.O.; Rosa, S.; Maggiora, M.; Bona, B.

A Novel Cloud-Based Service Robotics

Application to Data Center Environmental

Monitoring. Sensors 2016, 16, 1255.

https://doi.org/10.3390/s16081255.

[11] E. F. Codd, A relational model of data for

large shared data banks, E. F. Codd. Commun.

ACM 13, 6 (June 1970), 377–387.

https://doi.org/10.1145/362384.362685.

[12] Rasmus Lerdorf, Kevin Tatroewith, Bob

Kaehms and Ric McGredy, Programming PHP,

O’Reilly, 2002, p. 507, ISBN 1-56592-610-2.

[13] ANTAL, Tiberiu Alexandru. A review of the

PHP server-side scripting language compared to

C, C++ and Java for numerical engineering

applications. ACTA TECHNICA

NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, v. 66, n. 1, 2023. ISSN 2393–

2988.

[14] ANTAL Tiberiu Alexandru, Proiectarea

paginilor Web cu HTML, VBScript şi ASP -

ediţia a II-a, Editura RISOPRINT, 2006, p.264,

ISBN 973-751-349-5.

[15] ANTAL, Tiberiu Alexandru. Generalization by

parameterization with associated arrays, in

PHP, in a manipulator computation. ACTA

TECHNICA NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, v. 67, n. 1, mar. 2024. ISSN

2393–2988.

[16] ANTAL, Tiberiu Alexandru. A CRUD

implementation in JDeveloper and MS Access of

a flat database for storing robot programs.

ACTA TECHNICA NAPOCENSIS - Series:

APPLIED MATHEMATICS, MECHANICS,

and ENGINEERING, v. 66, n. 1, May. 2023.

ISSN 2393–2988.

[17] Thomas Connolly, Database Systems: A

Practical Approach to Design, Implementation,

and Management, 6th edition, PEARSON

INDIA, 6th edition, 2019, p. 227, ISBN-13: 978-

93534389.

[18] ANTAL Tiberiu Alexandru, Microsoft Access

97 şi 2000 în 14 cursuri, Editura Todesco, 2000,

p. 299, ISBN 973-99779-6-0.

.

O implementare relațională cu interfață web pentru stocarea programelor robot

Rezumat. Lucrarea folosește soluția de server web multiplatformă open-source, gratuită, XAMPP

pentru a dezvolta folosind modelul bazei de date relaționale o soluție gratuită pentru a stoca diferite

categorii de roboți utilizați în activități de diferite tipuri împreună cu programele asociate acestora.

Deoarece XAMPP integrează un server web, precum și un server de baze de date relaționale,

aplicația oferă o interfață bazată pe pagini web pentru interacțiunile cu baza de date.

Cuvinte cheie: funcție, manipulator, parametru, PHP, reutilizare, rutină

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca,

Department of Mechanical System Engineering, antaljr@mail.utcluj.ro, 0264-401667, B-dul

Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

