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Abstract: This paper presents the research and results obtained by authors regarding the modeling of the
reactor of the fluid catalytic cracking unit (FCCU), using various machine learning techniques based on
supervised learning algorithms Compared with the analytic mathematic modeling methods, machine
learning techniques (ML) can solve the difficulties in FCC process modeling, such as strong correlation
between variables, nonlinearities, the complexity of kinetic models, and feedstock complexity. The ML
method establishes a mathematical correlation between the input and output variables of the process using
industrial data. Five supervised learning machine methods are used to model the reactor: random forest
regression (RFR), decision trees regression (DTR), k-nearest neighbors (KNN), support vector machines

(SVM) and gradient boosting regression (GBR).
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1. INTRODUCTION

In a refinery, one of the most important
processes is fluid catalytic cracking, which can
convert heavy hydrocarbons from the vacuum
distillate process into light hydrocarbons, which
constitute the feedstock for petrochemicals and
gasoline with a high research octane number
(COR). The fluid cracking catalytic contains
four components: preheated furnace, riser,
stripper, and regenerator as shown in Figure 1 [1,
2].
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Fig. 1. Process cracking catalytic unit [2].

An important problem studied by researchers
is modeling the catalytic cracking process for
developing a simulator used to evaluate process
control strategies and analyze the behavior of the
process under varying operational conditions.

The first model in the literature is the steady-
state models, which characterize the kinetic
reactions taking place in riser. The starting point
of the kinetic models is the 3-lumps model
developed by Weekman and his coworkers. This
model can be applied to any type of feedstock
[3]. Interesting contributions to the basic 3-lump
were made in the papers [4].

Starting from this model, other complex
kinetic models were developed, based on 4-
lumps [5], 5S-lumps [6], 7-lump [7], 10 lumps [8],
11 Iumps [9]. All kinetic models are integrated
into the material and heat balances on the riser.

In recent years, machine learning techniques
are a powerful predictive tool to solve complex
chemical processes, such as fluid catalytic
cracking processes.

In this paper, the authors present the
conclusions drawn about the modeling the
reactor using machine learning based on
different supervised methods. The raw data used
in this research are from a simulator of the
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catalytic cracking process developed by Popa C.
and presented in the paper [2]. The simulator
was tested and validated using data from an

industrial catalytic cracking process from
Romania.
Figure 2  shows an  input-output

characterization of the reactor. The input
variables are feedstock temperature - Tmp,
regenerated catalyst temperature -Treg, feedstock
flow — Qmp, and regenerated catalyst flow -Qcat.
The output variables are interfusion nod
temperature -Thod, reactor temperature Treact,
yield gasoline- Qgasoline, OCtane number research-
COR [10].
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Fig. 2. Input-output characterization of the reactor.

2. MACHINE LEARNING METHODS

Machine learning is a branch of artificial
intelligence, that aims to develop programs that
by accessing a dataset, can predict the output
data based on input data. This prediction is due
to the ability of machine learning to learn by
themselves automatically but also to the
opportunity to become better during the learning
process [11,12]. Machine learning algorithms
are categorized into supervised machine
learning algorithms and unsupervised machine
learning algorithms.

The supervised learning algorithms
determined a correlation between output data and
input data. The models obtained by supervised
machine learning are the regression model and
classification model. In a regression model, the
output variables are predicted with a continuous
function that sets a relation between input
variables and output variables. In the
classification model, the relationship between
output variables and input variables is described
by a discrete function [13, 14].

In this study, the data are obtained from a
simulator of the catalytic cracking process and
will be considered experimental data in this
research. Therefore, the output variables of the
catalytic cracking process (interfusion nod
temperature -Thod., reactor temperature Treact,

yield gasoline- Qgasoline, OCtane number research-
COR) are estimated using five different
supervised machine learning. These are support
vector machines (SVM), random forest
regression (RFR), decision trees regression
(DTR), gradient boosting regression (GBR), and
k-nearest neighbors (KNN). To implement these
algorithms, specific functions for each method
are from the Scikit-Learns library from Python
software-

In the following subsequent, the used
algorithms are described, together with a
comparison of the experimental data and the
estimated output variables. The evaluation of the
efficiency of each algorithm was done using
specific evolution metrics described by explained
variance score (EVS), R squared error (R?), mean
absolute error (MA), mean absolute percentage
error (MAPE), and median absolute error
(MAE). The equations of performance criteria
are presented in paper [13].

2.1. Random forest regression
Random forest regression (RFR) is a
supervised ML algorithm that uses an ensemble

of decision tree h (x; 0x), k=1, k, where x is the
observed input (covariate) vector and Oy are
independent and identically distributed random
vectors [10]. Instead of predicting a single value,
such as in the multiple linear regression (MLR)
case, RFR predicts a mean value of the entire set
of decision trees, represented by formula (1)
[15]:
() = = ZK h(x,60) (1)
So, the final prediction using RFR is derived
from the majority vote of the individual tree
prediction [12].
Table 1 presents the obtained model

evaluation metrics for the RFR algorithm.
Table 1
The model evaluation metrics for the RFR algorithm.

rformance [ EVS | R [ MA | MAPE | MAE
criteria

Output
variable
Tnod 0.74 10.74 | 8.23 0.014 4.56
Treact 0.82 | 0.81 | 5.088 | 0.010 2.61
Qasoline 0.87 10.87 | 0.004 | 0.010 | 0.002
COR 0.93 ]10.92 | 0.064 | 0.0006 | 0.037

The output variables predicted with the RFR
are compared with experimental output dataset
and are shown in Figures 3-6.
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Fig. 3. Comparison between Trod exp and Thod pred
using RFR.
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Fig. 4. Comparison between Treact exp and Treact_pred

using RFR.
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2.2. Decision trees regression

Decision trees regression (DTR) is a
supervised ML algorithm used for regression,
classification, and prediction, the methods that
work for both continuous as well as for
categorical output variables. It uses a tree
structure in which the decision nodes are
conditions, while the end nodes represent the
obtained results [10]. In the decision-making
process, the DT’s learn from if-then rules,
examining all possible tests to identify the one
that provides the most relevant information
about the target variable [15, 16].

Decision tree regression (DTR) predicts data
to produce continuous output by observing an
object feature and by training a model under a
tree structure form. In the decision-making
process, respectively for the prediction task, the
DTR algorithm traverses the tree using each
node test and finds the node leaf i8 which the
new data point falls into [17]. So, a DTR is a
decision tree used for regression tasks,
respectively for predicting continuous outputs
(instead of discrete ones).

The output variables calculated with DTR are
compared with experimental output dataset and
illustrate in Figures 7-10. Table 2 presents the
obtained model evaluation metrics for the DTR
algorithm.
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Fig. 6. Comparison between COR c¢xp and CORpred
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Fig. 8. Comparison between Treact exp and Treact pred
using DTR.
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Fig. 9. Comparison between Qgasoline_exp ad Qgasoline_pred

using DTR.
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Fig. 10. Comparison between COR cxp and CORpreq
using DTR.
Table 2
The model ev(lultion metrics for the DTR [lgorithm.
rform'nce | EVS | R? MO | MOOPE | MTOE
riteril
Output
virilble
Tnod 0.624 | 0.6 10.31 | 0.0183 | 5.483
Treact 0.646 | 0.64 | 9.00 | 0.0176 | 6.399
Ogasoline 0.879 | 0.87 | 0.004 | 0.009 0.003
COR 0.837 | 0.81 | 0.095 | 0.001 0.077
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Fig. 11. Comparison between Thod_exp and Trod_pred
using KNR.
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Fig. 12. Comparison between Treact exp aNd Treact pred
using KNR.
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2.3. The k-nel rest neighbors’ regression

The K-nearest neighbors (KNN) algorithm is
a supervised ML used for prediction and
classification tasks. When used for regression
problems is known as K-Nearest Neighbors
Regression (KNR), in which case the prediction
result is the average target of the K nearest
neighbors [17].

An advantage of using KNR is the fact that it
allows the programmers to understand and then
interpret what happens inside a model, being
very fast to implement [18].

The output variables predicted using KNR are
compared with experimental output dataset and
illustrated in Figures 11-14.

Table 3 presents the obtained model
evaluation metrics for the KNR algorithm.
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Fig. 13. Comparison between Qgasoline_exp and
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Fig. 14. Comparison between COR cxp and CORpreq using

KNR.



Table 3
The model ev[lultion metrics for the KNR [lgorithm.
rformnce | EVC R? M MUPE | MIE
criteril]
Output
virilble
Tnod 0.625 | 0.62 | 11.18 | 0.020 | 7.39
Treact 0.719 | 0.69 | 8.148 | 0.016 | 5.20
QOgasoline 0.590 | 0.59 | 0.008 | 0.019 | 0.005
COR 0.503 | 0.49 | 0.127 | 0.001 | 0.079
2.4. Support Vector M [ chine
Support Vector Machine (SVM) is a

supervised ML method used for solving different
linear problems (even with reduced training data
sets), such as linear and nonlinear regression
(Support Vector Regression- SVR), linear and
nonlinear  classification  (Support  Vector
Classification- SVC) and outlier detection [19].

Support vector regression (SVR) is employed
to address numerical regression problems, where
the input vectors are mapped (using similar
functions named kernels like the Gaussian (RBF)
kernel) into higher dimensional spaces.

Unlike linear regression, SVR defines new
margins that regress along the line with the
margins (called SVR tube), so the points that lie
within the boundaries of the SVR tube
boundaries are not regarded as errors, while the
outside points the SVR tube are considered
errors19].

SVR generates precise regression models by
finding an optimal hyperplane for sample
segmentation, minimizing the difference
between predicted and actual values [18, 19].

The experimental output datasets are
compared with output variables predicted using
SVR and are shown in Figures 15-18.
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Fig. 16. Comparison between Treact exp aNd Treact pred
using SVR.
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Fig. 17. Comparison between Qgasoline_cxp ad Qgasoline_pred
using SVR.

Table 4 presents the obtained model
evaluation metrics for SVR algorithm.
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Fig. 18. Comparison between COR cxp and CORpreq
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Fig. 15. Comparison between Tnod exp and Thod pred

using SVR.

Table 4
The model ev(lul tion metrics for the SVR [lgorithm.
erform’nce | EVC | R? Ml | MLPE | MLIE

criteril

Output
virilble
Tnod 0.872 | 0.86 | 3.84 0.006 1.48
Treact 0.654 | 0.64 | 7.45 0.014 3.54
| Ogasoline 0.849 | 0.84 | 0.005 | 0.012 0.003
COR 0.946 | 0.94 | 0.040 | 0.0004 | 0.032

2.5. Grl dient boosting regression
In ML boosting is understood as the
combination of multiple simple models (weak
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learners such as decision trees) into a single and
complete final model (stronger predictor). For
loss minimization the algorithm uses the
gradient descent method, a fact that justifies the
term “gradient” from the boosting method name
[20]. It is a supervised learning algorithm,
applied to classification (when gradient boosting
is used to predict classes) and for regression
(when gradient boosting is used to predict a
continuous value).

The basic idea of the boosting methods is that
the predictors are sequentially trained, each
trained predictor correcting its predecessor. The
most used boosting methods are Adaptive
Boosting and Gradient Boosting [19].

According to [20, 21], the Gradient Boosting
Regression (GBR) uses the algorithm Gradient
Boost regression, utilizing decision trees
technique, enhances prediction accuracy by
adding a sequence of weak classifiers though
iterative repetitions.

Figs. 19-21 presents the comparison between
the output experimental data of the reactor and
output variables predicted using the GBR
algorithm.
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Fig. 19. Comparison between Thod_exp and Trod pred
using GBR.
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Fig. 22. Comparison between COR cxp and CORpreq using

KNR.

Table 5 presents
evaluation metrics for the GBR algorithm.

the obtained model

Table 5
The model evlultion metrics for the GBR [lgorithm.
rform'nce | EVS R? M | MOPE | MLIE
riteril]
Output
virilble
Tnod 0.685 | 0.685 | 8.96 | 0.016 4.38
Treact 0914 | 0.913 | 4391 | 0.008 2.823
Ogasoline 0.924 | 0.920 | 0.004 | 0.008 0.002
COR 0.880 | 0.869 | 0.073 | 0.0007 | 0.047

Summarizing the
results, table 6 presents

previously presented
the parameters of the

models obtained for each reactor output,
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Fig. 20. Comparison between Treact exp and Treact pred USINg
GBR.

with the smallest error was chosen.

Table 6
The model parameters were obtained for different
ML algorithms.
Output ML MOPE
pLrLmeter [lgorithms
Tnod SVR 0.006
COR SVR 0.0004
Treact GBR 0.010
Qgasoline GBR 0.008




3. CONCLUSION

The purpose of this study was to establish
what method of ML is more suitable for
modeling the reactor of the fluid catalytic
cracking process from an industrial refinery. ML
can significantly improve optimization,
maintenance and quality control in catalytic
cracking process, by leveraging the advantages
of regression method analyzed.

The methods that were applied for each
output variable of the reactor. Analyzed the
evolution metric for each method, the best
prediction for interfusion nod and COR was
obtained using Support Vector Machine
regression, while for the reactor temperature and
yield gasoline, the best prediction was obtained
using Gradient Boosting Regression.

The ML model development can be used in
modeling the catalytic cracking process and in
developing data-driven applications useful by
operators in decision-making. Additionally, ML
significantly improves the optimization and
yield of process.
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Aplicarea tehnicilor de invitare automata pentru modelarea reactorului asociat procesului de
cracare catalitica

Aceasta lucrare prezinta cercetdrile si rezultatele obtinute de autori privind modelarea reactorului din cadrul procesului
de cracare catalitica, utilizdnd diverse metode ale tehnicilor de invatare automata bazate pe algoritmi de invatare
supravegheatd. Comparativ cu modelarea experimentald, tehnicile de Invatare automate pot elimina din dezavantajele
modelari experimentale, cum ar fi corelatiilor puternice intre variabile, neliniaritatile modelului, complexitatea modelului
cinetic si diversitatea materie prime. Tehnicile de invatare automata stabileste o relatie matematica intre variabilele de
intrare si cele de iesire ale procesului, pe baza unor date experimentale. in cadrul lucrari au fost aplicate cinci metode de
invétare supravegheata pentru modelarea reactorului: algoritmul bazat pe randomizare(RFR), algoritmul bazat pe arbori
de decizie(DTR), algoritmul celor mai apropriati vecini(KNN), algoritm bazat pe suport vectorial(SMV) si regresia cu
crestara graduala.(GBR).
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