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Abstract: This paper presents the research and results obtained by authors regarding the modeling of the 

reactor of the fluid catalytic cracking unit (FCCU), using various machine learning techniques based on 

supervised learning algorithms Compared with the analytic mathematic modeling methods, machine 

learning techniques (ML) can solve the difficulties in FCC process modeling, such as strong correlation 

between variables, nonlinearities, the complexity of kinetic models, and feedstock complexity. The ML 

method establishes a mathematical correlation between the input and output variables of the process using 

industrial data. Five supervised learning machine methods are used to model the reactor: random forest 

regression (RFR), decision trees regression (DTR), k-nearest neighbors (KNN), support vector machines 

(SVM) and gradient boosting regression (GBR).  
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1. INTRODUCTION  
  

In a refinery, one of the most important 
processes is fluid catalytic cracking, which can 
convert heavy hydrocarbons from the vacuum 
distillate process into light hydrocarbons, which 
constitute the feedstock for petrochemicals and 
gasoline with a high research octane number 
(COR). The fluid cracking catalytic contains 
four components: preheated furnace, riser, 
stripper, and regenerator as shown in Figure 1 [1, 
2]. 

 
Fig. 1. Process cracking catalytic unit [2]. 

 

An important problem studied by researchers 
is modeling the catalytic cracking process for 
developing a simulator used to evaluate process 
control strategies and analyze the behavior of the 
process under varying operational conditions. 

The first model in the literature is the steady-
state models, which characterize the kinetic 
reactions taking place in riser. The starting point 
of the kinetic models is the 3-lumps model 
developed by Weekman and his coworkers. This 
model can be applied to any type of feedstock 
[3]. Interesting contributions to the basic 3-lump 
were made in the papers [4]. 

Starting from this model, other complex 
kinetic models were developed, based on 4-
lumps [5], 5-lumps [6], 7-lump [7], 10 lumps [8], 
11 lumps [9]. All kinetic models are integrated 
into the material and heat balances on the riser.  

In recent years, machine learning techniques 
are a powerful predictive tool to solve complex 
chemical processes, such as fluid catalytic 
cracking processes.   

In this paper, the authors present the 
conclusions drawn about the modeling the 
reactor using machine learning based on 
different supervised methods. The raw data used 
in this research are from a simulator of the 



- 12 - 
 

 

catalytic cracking process developed by Popa C. 
and presented in the paper [2]. The simulator 
was tested and validated using data from an 
industrial catalytic cracking process from 
Romania. 

Figure 2 shows an input-output 
characterization of the reactor.  The input 
variables are feedstock temperature - Tmp, 
regenerated catalyst temperature -Treg, feedstock 
flow – Qmp, and regenerated catalyst flow -Qcat. 
The output variables are interfusion nod 
temperature -Tnod., reactor temperature Treact, 

yield gasoline- Qgasoline, octane number research- 
COR [10]. 

 
Fig. 2. Input-output characterization of the reactor. 

 
2. MACHINE LEARNING METHODS 

 

Machine learning is a branch of artificial 
intelligence, that aims to develop programs that 
by accessing a dataset, can predict the output 
data based on input data. This prediction is due 
to the ability of machine learning to learn by 
themselves automatically but also to the 
opportunity to become better during the learning 
process [11,12]. Machine learning algorithms 
are categorized into supervised machine 
learning algorithms and unsupervised machine 
learning algorithms. 

The supervised learning algorithms 
determined a correlation between output data and 
input data. The models obtained by supervised 
machine learning are the regression model and 
classification model.  In a regression model, the 
output variables are predicted with a continuous 
function that sets a relation between input 
variables and output variables. In the 
classification model, the relationship between 
output variables and input variables is described 
by a discrete function [13, 14].  

In this study, the data are obtained from a 
simulator of the catalytic cracking process and 
will be considered experimental data in this 
research. Therefore, the output variables of the 
catalytic cracking process (interfusion nod 
temperature -Tnod., reactor temperature Treact, 

yield gasoline- Qgasoline, octane number research- 
COR) are estimated using five different 
supervised machine learning. These are support 
vector machines (SVM), random forest 
regression (RFR), decision trees regression 
(DTR), gradient boosting regression (GBR), and 
k-nearest neighbors (KNN). To implement these 
algorithms, specific functions for each method 
are from the Scikit-Learns library from Python 
software.  

In the following subsequent, the used 
algorithms are described, together with a 
comparison of the experimental data and the 
estimated output variables. The evaluation of the 
efficiency of each algorithm was done using 
specific evolution metrics described by explained 
variance score (EVS), R squared error (R2), mean 
absolute error (MA), mean absolute percentage 
error (MAPE), and median absolute error 
(MAE). The equations of performance criteria 
are presented in paper [13]. 

 
2.1. Random forest regression 

Random forest regression (RFR) is a 
supervised ML algorithm that uses an ensemble 
of decision tree h (x; θk), k=1, �, where x is the 
observed input (covariate) vector and θk are 
independent and identically distributed random 
vectors [10]. Instead of predicting a single value, 
such as in the multiple linear regression (MLR) 
case, RFR predicts a mean value of the entire set 
of decision trees, represented by formula (1) 
[15]: 

ℎ(�)������ =



�
∙ ∑ ℎ(�, ��)

�
��
                                  (1) 

So, the final prediction using RFR is derived 
from the majority vote of the individual tree 
prediction [12].  

Table 1 presents the obtained model 
evaluation metrics for the RFR algorithm. 

Table 1 

The model evaluation metrics for the RFR algorithm. 
Performance 

criteria 
Output  

variable 

EVS R2 MA MAPE MAE 

Tnod 0.74 0.74 8.23 0.014 4.56 
Treact 0.82 0.81 5.088 0.010 2.61 
Qgasoline 0.87 0.87 0.004 0.010 0.002 
COR 0.93 0.92 0.064 0.0006 0.037 

The output variables predicted with the RFR   
are compared with experimental output dataset 
and are shown in Figures 3-6. 
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Fig. 3. Comparison between Tnod_exp and Tnod_pred 

 using RFR. 

 
Fig. 4. Comparison between Treact_exp and Treact_pred  

using RFR. 

 
Fig. 5. Comparison between Qgasoline_exp and Qgasoline_pred 

using RFR. 

 
Fig. 6. Comparison between COR_exp and CORpred  

using RFR. 

2.2. Decision trees regression 

Decision trees regression (DTR) is a 
supervised ML algorithm used for regression, 
classification, and prediction, the methods that 
work for both continuous as well as for 
categorical output variables. It uses a tree 
structure in which the decision nodes are 
conditions, while the end nodes represent the 

obtained results [10]. In the decision-making 
process, the DT’s learn from if-then rules, 
examining all possible tests to identify the one 
that provides the most relevant information 
about the target variable [15, 16]. 

Decision tree regression (DTR) predicts data 
to produce continuous output by observing an 
object feature and by training a model under a 
tree structure form. In the decision-making 
process, respectively for the prediction task, the 
DTR algorithm traverses the tree using each 

node test and finds the node leaf i8 which the 
new data point falls into [17]. So, a DTR is a 
decision tree used for regression tasks, 
respectively for predicting continuous outputs 
(instead of discrete ones). 

The output variables calculated with DTR are 
compared with experimental output dataset and 
illustrate in Figures 7-10. Table 2 presents the 
obtained model evaluation metrics for the DTR 
algorithm. 

 
Fig. 7. Comparison between Tnod_exp and Tnod_pred  

using DT. 

 
Fig. 8. Comparison between Treact_exp and Treact_pred  

using DTR. 
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Fig. 9. Comparison between Qgasoline_exp and Qgasoline_pred 

using DTR. 

 
Fig. 10. Comparison between COR_exp and CORpred  

using DTR. 
Table 2  

The model evaluation metrics for the DTR algorithm. 

Performance 
criteria 

Output  
variable 

EVS R2 MA MAPE MAE 

Tnod 0.624 0.6 10.31 0.0183 5.483 
Treact 0.646 0.64 9.00 0.0176 6.399 
Qgasoline 0.879 0.87 0.004 0.009 0.003 
COR 0.837 0.81 0.095 0.001 0.077 

 
2.3. The k-nearest neighbors’ regression 

The K-nearest neighbors (KNN) algorithm is 
a supervised ML used for prediction and 
classification tasks. When used for regression 
problems is known as K-Nearest Neighbors 
Regression (KNR), in which case the prediction 
result is the average target of the K nearest 
neighbors [17]. 

An advantage of using KNR is the fact that it 
allows the programmers to understand and then 
interpret what happens inside a model, being 
very fast to implement [18].   

The output variables predicted using KNR are 
compared with experimental output dataset and 
illustrated in Figures 11-14.  

Table 3 presents the obtained model 
evaluation metrics for the KNR algorithm. 

 

Fig. 11. Comparison between Tnod_exp and Tnod_pred  
using KNR. 

 
Fig. 12. Comparison between Treact_exp and Treact_pred  

using KNR. 

 
Fig. 13. Comparison between Qgasoline_exp and  

Qgasoline_pred using KNR. 

 
Fig. 14. Comparison between COR_exp and CORpred using 

KNR. 
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Table 3 

The model evaluation metrics for the KNR algorithm. 
Performance 

criteria 

Output  
variable 

EVC R2 MA MAPE MAE 

Tnod 0.625 0.62 11.18 0.020 7.39 
Treact 0.719 0.69 8.148 0.016 5.20 
Qgasoline 0.590 0.59 0.008 0.019 0.005 
COR 0.503 0.49 0.127 0.001 0.079 

 
2.4. Support Vector Machine 

Support Vector Machine (SVM) is a 

supervised ML method used for solving different 

linear problems (even with reduced training data 

sets), such as linear and nonlinear regression 

(Support Vector Regression- SVR), linear and 

nonlinear classification (Support Vector 

Classification- SVC) and outlier detection [19]. 
Support vector regression (SVR) is employed 

to address numerical regression problems, where 

the input vectors are mapped (using similar 

functions named kernels like the Gaussian (RBF) 

kernel) into higher dimensional spaces.  
Unlike linear regression, SVR defines new 

margins that regress along the line with the 

margins (called SVR tube), so the points that lie 

within the boundaries of the SVR tube 

boundaries are not regarded as errors, while the 

outside points the SVR tube are considered 

errors19]. 

SVR generates precise regression models by 

finding an optimal hyperplane for sample 

segmentation, minimizing the difference 

between predicted and actual values [18, 19].  
The experimental output datasets are 

compared with output variables predicted using 

SVR and are shown in Figures 15-18. 

 
Fig. 15. Comparison between Tnod_exp and Tnod_pred  

using SVR. 

 
Fig. 16. Comparison between Treact_exp and Treact_pred  

using SVR. 

 
Fig. 17. Comparison between Qgasoline_exp and Qgasoline_pred 

using SVR. 
 
Table 4 presents the obtained model 

evaluation metrics for SVR algorithm. 

 
Fig. 18. Comparison between COR_exp and CORpred  

using SVR. 
Table 4 

The model evaluation metrics for the SVR algorithm. 
Performance 

criteria 

 

Output  
variable 

EVC R2 MA MAPE MAE 

Tnod 0.872 0.86 3.84 0.006 1.48 

Treact 0.654 0.64 7.45 0.014 3.54 
Qgasoline 0.849 0.84 0.005 0.012 0.003 
COR 0.946 0.94 0.040 0.0004 0.032 

 
2.5. Gradient boosting regression 

In ML boosting is understood as the 
combination of multiple simple models (weak 
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learners such as decision trees) into a single and 
complete final model (stronger predictor). For 
loss minimization the algorithm uses the 
gradient descent method, a fact that justifies the 
term “gradient” from the boosting method name 
[20].  It is a supervised learning algorithm, 
applied to classification (when gradient boosting 
is used to predict classes) and for regression 
(when gradient boosting is used to predict a 
continuous value).  

The basic idea of the boosting methods is that 
the predictors are sequentially trained, each 
trained predictor correcting its predecessor. The 
most used boosting methods are Adaptive 
Boosting and Gradient Boosting [19].  

According to [20, 21], the Gradient Boosting 
Regression (GBR) uses the algorithm Gradient 
Boost regression, utilizing decision trees 
technique, enhances prediction accuracy by 
adding a sequence of weak classifiers though 
iterative repetitions. 

Figs. 19-21 presents the comparison between 
the output experimental data of the reactor and 
output variables predicted using the GBR 

algorithm. 

  

Fig. 19. Comparison between Tnod_exp and Tnod_pred  
using GBR. 

 
Fig. 20. Comparison between Treact_exp and Treact_pred using 

GBR. 

 
Fig. 21. Comparison between Qgasoline_exp and Qgasoline_pred 

using GBR. 

 
Fig. 22. Comparison between COR_exp and CORpred using 

KNR. 
 

Table 5 presents the obtained model 
evaluation metrics for the GBR algorithm. 

Table 5  

The model evaluation metrics for the GBR algorithm. 
Performance 

criteria 

Output  
variable 

EVS R2 MA MAPE MAE 

Tnod 0.685 0.685 8.96 0.016 4.38 
Treact 0.914 0.913 4.391 0.008 2.823 
Qgasoline 0.924 0.920 0.004 0.008 0.002 
COR 0.880 0.869 0.073 0.0007 0.047 

 
Summarizing the previously presented 

results, table 6 presents the parameters of the 
models obtained for each reactor output, 
respectively Tnod, Treact, Qgasoline, and COR. 
For each reactor output variable, the method 
with the smallest error was chosen. 

Table 6 

The model parameters were obtained for different 

ML algorithms. 

Output 
parameter 

ML 
algorithms 

MAPE 

Tnod SVR 0.006 
COR SVR 0.0004 

Treact GBR 0.010 

Qgasoline GBR 0.008 
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3. CONCLUSION 

 

The purpose of this study was to establish 
what method of ML is more suitable for 
modeling the reactor of the fluid catalytic 
cracking process from an industrial refinery. ML 
can significantly improve optimization, 
maintenance and quality control in catalytic 
cracking process, by leveraging the advantages 
of regression method analyzed.  

The methods that were applied for each 
output variable of the reactor. Analyzed the 
evolution metric for each method, the best 
prediction for interfusion nod and COR was 
obtained using Support Vector Machine 
regression, while for the reactor temperature and 
yield gasoline, the best prediction was obtained 
using Gradient Boosting Regression. 

The ML model development can be used in 
modeling the catalytic cracking process and in 
developing data-driven applications useful by 
operators in decision-making. Additionally, ML 
significantly improves the optimization and 
yield of process. 
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Aplicarea tehnicilor de învățare automată pentru modelarea reactorului asociat procesului de 

cracare catalitică 

 
Această lucrare prezintă cercetările și rezultatele obținute de autori privind modelarea reactorului din cadrul procesului 
de cracare catalitică, utilizând diverse metode ale tehnicilor de învățare automată bazate pe algoritmi de învățare 
supravegheată. Comparativ cu modelarea experimentală, tehnicile de învățare automate pot elimina din dezavantajele 
modelări experimentale, cum ar fi corelațiilor puternice între variabile, neliniaritățile modelului, complexitatea modelului 
cinetic și diversitatea materie prime. Tehnicile de învățare automată stabilește o relație matematică  între variabilele de 
intrare și cele de  ieșire ale procesului, pe baza unor date experimentale. În cadrul lucrări au fost aplicate  cinci metode de 
învățare supravegheată pentru modelarea reactorului: algoritmul bazat pe randomizare(RFR),   algoritmul bazat pe arbori 
de decizie(DTR), algoritmul celor mai apropriați vecini(KNN), algoritm bazat pe suport vectorial(SMV) și regresia cu 
crestară graduală.(GBR).     
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