-33 -

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering
Vol. 68, Issue Special 1, May, 2025

USE OF AI LANGUAGE MODELS IN GENERATING
3D PRINTABLE MODELS

Nicolae-Riazvan MITITELU, Roxana HOBJ ALA,
Vasile ERMOLALI, Marius-Ionut RIPANU, Cristian BISOG

Abstract: This paper presents aspects regarding the integration of artificial intelligence (IA) with
OpenScad to generate STL files used in 3D printing. Conventional CAD modeling and manual writing of
parametric scripts often require advanced technical knowledge and are prone to errors. It simplifies this
process by interpreting the instructions in natural language and the automatic generation of optimized
Openscad scripts. The experimental study focused on the design of a grooved tree-functional bore system,
demonstrating the ability to ensure geometric accuracy, functional adaptability and perfect integration in
the sectioning software. The results obtained confirm the efficiency, reproducibility and flexibility in the
design, positioning as a transforming tool in parametric workflows for 3D printing.

Keywords: Artificial intelligence, 3D parametric design, geometrical optimization, AI CAD design.

1. INTRODUCTION

3D printing has become a key technology in
industrial manufacturing, rapid prototyping, and
even home applications. For a part to be printed
correctly, a 3D models is required, usually in
SLT format (i.e., Standard Tessellation
Language), which is an simplified representation
of the 3D model’s surfaces [1]. However,
exporting an STL file, depends on the CAD
software specifics. In this paper, an alternative
method was addressed, one that does not involve
the use of conventional CAD design sofware for
3D modeling, the method being manual code
writing to define the geometry of objects through
parametric modeling using OpenSCAD [2].

This process is also time-consuming, as in
conventional 3D modeling, being prone to errors
and requiring a deep understanding of geometric
logic and programming language [3].

Artificial Intelligence (Al), through advanced
language models, can simplify this process. Al
can understand commands and transform them
into functional OpenSCAD scripts, thus
democratizing access to parametric design for a
wider range of users [4].

The question underlying the conception of this
paper was: can Al efficiently develop functional

code for generating parametric STL files while
maintaining geometric precision, parameter
adaptability, and production reliability?

The use of artificial intelligence, in the
process of generating STL documents, may be of
interest to different fields such as the following:
the manufacturing industry of additives
necessary in quickly generating mechanical
components and prototypes [5]. In the field of
medicine for the design of personalized medical
devices [6], or in the architectural field for
creating model parameters for complex
structures [7]. Once created, the models can
easily be modified and replicated without
causing repercussions on other variables [3].

An important detail is the fact that by applying
you in the original design phase, companies
could reduce the waste of resources and can
shorten including the production terms. In this
combination of OpenSCAD, together with the
automated generation of Al assisted scripts, it
could allow the producers to adapt the design of
a real -time product to the market requirements
[2]. Generating STL files using OpenSCAD is a
process that requires not only technical
knowledge about the syntax of programming
language, but also solid knowledge about
parametric geometry and how physical objects

-34 -

are transposed into 3D models. Openscad uses a
script code language, based on geometric
definitions and mathematical relationships,
which can be difficult for unpro -experienced
users as the occurrence of small errors in the code
structure or in geometric parameters can generate
defective or impossible printed models [4]. Also,
in the absence of a graphic interface, the
generation of STL files using programming
languages, example Python, requires time and
patience for understanding geometric logic being
unproductive compared to traditional CAD
computer design.

This problems was the main reason to find a
solution by using tools that can intervene to
simplify the process by automating the
generation of the OpenSCAD program. In the
integration process of generating 3D models, the
development of a clear work flow was aimed.
Replicable, which allow wusers to generate
functional STL models based on natural
language instructions. This basic structure
applied in the present work included the
following stages:

a) Defining standardized instructions.

In order to achieve predictable results,
standard instructions models have been
established that you can interpret correctly.
Examples include commands such as: "generates
a grooved cylinder with a diameter of 10 mm, 16
grooves and a tolerance of 0.2 mm".

b) Generation of the OpenSCAD code.

Based on the instructions received, you have
generated codes necessary for the OpenSCAD
program in compliance with the requirements
imposed. At this stage it is necessary to verify
several scenarios to formulate the requirement to
identify the optimal instructions.

c) Optimization of the generated code.

Therefore it was necessary to apply successive
requirements, until the model Al was able to
respect the capacity of the compatibility of the
code with the particular language of the
OpenSCAD program. This aspect is important
because each programming language has certain
features, which is why a code generated for this
program, in the same form, cannot be compatible
with other similar programs, for example Zoo
Modeling, which is used for the same reason,
Generating 3D models using code language, has
certain features that must be respected.

d) Printing parts and checking compatibility

This stage can be considered less important, if
the generated models do not have to comply with
a high level of precision, but when the
requirements are that the resulting piece respects
a certain precision, this stage becomes the most
important of the whole process.

2. EXPERIMENTAL PART

From the outset, the artificial intelligence
algorithm was employed to determine
compatibility between a shaft and a gear. This
way the functional requirements were specified
as input parameters only for the shaft-type part.
The AI algorithm received instructions to
independently determine the necessary
parameters for the bore-type part and ensure
proper coupling between the two components
through the grooves.

The initial parameters were entered as the
following text: "Generate a code for a cylinder
with a diameter of 10 mm, a height of 2 mm, 16
uniformly distributed grooves, each grooves
having a depth of 4 mm and a width of 1 mm.
Add a tolerance to facilitate assembly. The
cylinder must couple with another bore-type part
for which you need to determine the parameters
to ensure proper coupling of the 3D-printed parts.
The bore-type part must include several holes
with a diameter of 3 mm for mounting dowel
pins, radially arranged on a part diameter of 50
mm". Based on the defined specifications, the
next stage involved generating OpenSCAD code
using Al. Two distinct scripts were generated:
one for the grooves shaft (see Fig. 1) and one for
the mating bore component (see Fig. 2). Each
script was analyzed to ensure clarity, coherence,
and compliance with the technical parameters.

After generation, the codes obtained were
imported into the OpenSCAD software for
rendering and visualization. These three-
dimensional models obtained were visually
analyzed to verify compliance with the initially
established parameters (fig. 3, 4). In the obtained
images, there is a representation of both pieces,
including the respective grooves and dimensions.
The rendering process was carefully checked to
identify any errors before exporting the STL
files.

cylinder_diameter = 10; // Minimum diameter of the cylinder
cylinder_height = 2; // Height of the cylinder
number_of_slots = 16; // Number of evenly spaced slots
slot_depth = 4; // Depth of each slot

slot_width = 1; // Width of each slot

tolerance = 0.2; // Tolerance for fitting

// Module for Splined Cylinder
module splined_cylinder() {
union() {
// Main body of the cylinder
cylinder(h = cylinder_height, d = cylinder_diameter - tolerance, $fn = 100);

// Adding slots

for (i = [0 : 360 / number_of_slots : 360]) {
rotate([@, ©, i])
translate([cylinder_diameter / 2 - slot_depth / 2, @, cylinder_height / 2])
cube([slot_depth, slot_width J,llinder_height], center = true);

}
Fig. 1. The generated script for the grooved shaft.
outer_diameter = 50; // Outer diameter of the piece
piece_thickness = 5; // Thickness of the piece

central_hole_diameter = 10; // Minimum diameter of the central hole

number_of_slots = 16; // Number of slots
slot_depth = 4; // Depth of each slot
slot_width = 1.1; // Width of each slot

cylinder_hole_diameter = 4; // Diameter of circular holes

number_of_holes = 20; // Number of holes distributed radially

// Module for Slotted Hole
module slotted_hole() {
// Base cylindrical hole
cylinder(h = piece_thickness + 2, d = central_hole_diameter, $fn = 100);

// Adding slots
for (i = [@ : 360 / number_of_slots : 360]) {
rotate([©, ©, i])
translate([central_hole_diameter / 2 - slot_depth / 4, o, -1])

cube([slot_depth, slot_width, piece_thickness + 2], center = true);

// Module for Generating the Main Piece with Slotted Hole
module main_piece() {
difference() {
// Main body

cylinder(h = piece_thickness, d = outer_diameter, $fn = 200);

Fig. 2. The generated script for the bore-type part.

-35-

-36 -

@ = b O~ = 3= ® aAd

// @ Parameters for Splined Cylinder
2 cylinder_diameter 10;
cylinder

3 cylinder_height = 2; // Height of the cylinder
4 number of slots = 16; // Number of slots
main piece)
5 slot_depth = 4; // Depth of each slot
the main piece)
6 slot_width = 1; // Width of each slot

the main piece)

7 tolerance = 0.2; // Tolerance for

9 // €3 Module for Splined Cylinder

10BEmodule splined cylinder() {

116 union () {

2 // Main body of the cylinder

13 cylinder(h = 20, d = cylinder_diameter - tolerance,

Sfn 100) ;

// Adding slots

for (i [0 : 360 / number_ of_ slots :
rotate ([0, 0, i])

el e
W d o
M
il

4, 0, 1])

cube ([slot_depth,

0

slot_width

=

cylinder_height], center = true):;
20 }
21 }
22 |}
23 -
24 // Invoke the Splined Cylinder Module
25 Isplined_cylinder)2

// Minimum diameter of the
(matches the central hole of the piece)

(must match the
(must match
(must match

an optimal fit

360]) {
translate([cylinder_diameter / 2 - slot_depth /

- tolerance,

9P R]QA_RD & ¢

Console
Geometries in cache: 627
Geometry cache size in bytes: 20139840
CGAL Polyhedrons in cache: 115
CGAL cache size in bytes: 78455488
Total rendering time: 0:00:00.182
Top level object is a 3D object:
Simple: yes
Vertices: 328

|

Fig. 3. Generating the tree-type landmark.

6 W O

o

1 // €3 Parameters for General Piece with Slotted Hole

2 outer_diameter = 50; // Outer diameter of the piece

3 piece_thickness = 5; // Thickness of the piece

4 central hole diameter = 10; // Minimum diameter of the 2
central hole

5 number_of_slots = 16; // Number of slots

6 slot_depth = 4; // Depth of each slot

7 slot_width = 1.1; // Width of each slot

8 cylinder_hole_diameter = 4; // Diameter of circular holes

9 number_of_holes = 20; // Number of holes distributed a
radially

10

11 // €3 Module for Slotted Hole

12@module slotted hole() {

13 // Base cylindrical hole

14 cylinder(h = piece_thickness + 2, d = 2
central_hole_diameter, $fn = 100);

15

16 // Adding slots

17’ for (i = [0 : 360 / number_of_slots : 360]) {

18 rotate ([0, 0, i])

19 translate([central_hole_diameter / 2 - slot_depth 3
/ 4, 0, -1])

20 cube ([slot_depth, slot_width, piece_ thickness + 2 2
], center = true);

21} }

22 |y

23 -

24 // Module for Generating the Main Piece with Slotted Hole

25E;|module main_piece() {

26H difference() {

27 // Main body

28

cylinder (h =
200) ;

piece_thickness, d = outer_diameter, 2

$fn =

// Central slotted hole
slotted_hole()

v

Yy@a_RQA0D 9P Ped g~/

Console

Geometries in cache: 627
Geometry cache size in bytes: 20139840
CGAL Polyhedrons in cache: 115
CGAL cache size in bytes: 78455488
Total rendering time: 0:00:00.274

Top level object is a 3D object:

Simple: yes
Vertices: 2728
Halfedges: 8184
Edges: 4092

Halffacets: 2732
Facets: 1366
Volumes: 2
Rendering finished.

Fig. 4. Generation of the bore type reference.

Next, the models were exported as STL files
directly from the software. The export was made
without errors, which means that the model is a
successful one, and the resulting STL files have

also been checked to respect the geometric
conditions and defined parameters.

3. 3D MODELS SLICING AND PRINTING

After exporting the STL files, they were
imported into PrusaSlicer 2.9.0 slicing software,
to prepare the models for printing (see Fig. 5).
Slicing parameters such as layer thickness, infill
density, and printing speed were customized. The
resulting image 3D model preview shows that the
models were processed without errors and that
the slicing can be performed correctly.

Fig. 5. 3D models import into PrusaSlicer.

The models were then physically validated
using a Prusa i3 MK3S+ printer, using a red (for
the saft) and a green (for the wheel) PolyTerra
PLA as shown in Fig. 6 and Fig. 7.

|5mm

Fig. 6. 3D Printed shaft-type component.

The resulting parts were physically analyzed
to verify compliance with the dimensional
parameters, the structural integrity and the
quality of the surfaces.

l 5mm

Fig. 7. 3D Printed bore-type component.

-37 -

An important detail is the configuration of the
bore, ensuring that the shaft-type part can
interlock. This detail was also automatically
generated by artificial intelligence, aiming to
introduce additional improvements that were
initial

accepted from the
preparation (see Fig. 8).

stage of code

Fig. 8. Self-Locking shaft configuration.

The assembly of the two components was
tested to confirm their functionality. The results
showed a precise fit between the two
components, with proper clearance and relatively
low- alignment errors (see Figs. 9 and 10).

Fig. 9. Front view assembled parts.

Fig. 10. Back view assembled parts.

4. CONCLUSION

The integration of Al with OpenSCAD for
generating 3D printable models represents an
alternative approach to traditional methods for
creating 3D models, showing good efficiency

-38 -

and providing access for users without advanced
programming or CAD design experience.

This method enables parametric adaptability,
reproducibility, and geometric precision. Even
s0, there are some limitations: Al struggles with
generating organic shapes, relies on clear and
precise instructions, and the final validation of
models still requires human intervention for
geometric and functional verification.

S. REFERENCES

[1] Gangl, H., Ren, Y., Urbancic, Z., Hands-on
Tropical Geometry, Arxiv, 2023.

[2] Gonzalez, J.F., Pietrzak, T., Girouard, A.,
Casiez, G., Facilitating the Parametric
Definition of Geometric Properties in
Programming-Based CAD, Arxiv, 2024.

[3] Jignasu, A., Marshall, K.C., Krishnamurthy,
Ganapathysubramanian, B., Balu, A., Hegde,
A. Towards Foundational Al Models for
Additive Manufacturing: Language Models

for G-Code Debugging, Manipulation, and
Comprehension, Arxiv, 2023.

[4] Feng, G., Yan, W., Generative Al for Visual
Programming and Parametric Modeling,
Arxiv, 2024.

[5] Li, J., Pepe, A., Gsaxner, C., Egger, J., An
Online Platform for Automatic Skull Defect
Restoration and Cranial Implant Design,
2020.

[6] Ko, J., Ajibefun, J., Yan, W., Experiments on
Generative AI-Powered Parametric Modeling
and BIM for Architectural Design, 2023.

[7] Alrashedy, K., Tambwekar, P., Zaidi, Z.,
Langwasser, M., Xu, W., Gombolay, M.,
Generating CAD Code with Vision-Language
Models for 3D Designs, 2024.

[8] Mititelu, N.R,, Theoretical — Aspects
Regarding Al Implementation in Optimized
STL File Generation, International Journal of
Engineering Research & Technology, 2024.

Utilizarea modelelor de inteligenta artificiala de limbaj in generarea
de modele imprimabile 3D

Lucrarea prezinta aspecte privitoare la integrarea Inteligentei Artificiale (IA) cu OpenSCAD pentru
generarea fisierelor STL utilizate in imprimarea 3D. Modelarea traditionala CAD si scrierea manuala
a scripturilor parametrice necesitd adesea cunostinte tehnice avansate si sunt predispuse la erori. IA
simplificd acest proces prin interpretarea instructiunilor in limbaj natural si generarea automata de
scripturi OpenSCAD optimizate. Studiul experimental s-a concentrat pe proiectarea unui sistem
arbore canelat — alezaj functional, demonstrand capacitatea IA de a asigura precizie geometrica,
adaptabilitate functionald si integrare perfectd in software-ul de sectionare. Rezultatele obtinute
confirm eficienta, reproductibilitatea si flexibilitatea In proiectare, pozitionand IA ca un instrument
transformator 1n fluxurile de lucru parametrice pentru imprimarea 3D.

Nicolae-Razvan MITITELU, PhD student, “Gheorghe Asachi” Technical University of lasi, Romania,
Department of Machine Manufacturing Technology, e-mail: nicolae-razvan.mititelu@student.tuiasi.ro,
+40746875540

Roxana HOBJALA, PhD student, “Gheorghe Asachi” Technical University of lasi, Romania, Department of
Machine Manufacturing Technology, e-mail: roxana.hobjala@yahoo.com, +40769683755

Vasile ERMOLAI, Associate Professor, “Gheorghe Asachi” Technical University of lasi, Romania,
Department of Machine Manufacturing Technology, e-mail: vasile.ermolai@academic.tuiasi.ro,
+40754362102

Marius-Ionut RIPANU, Professor, “Gheorghe Asachi” Technical University of lasi, Romania, Department
of Machine Manufacturing Technology, e-mail: marius-ionut.ripanu@academic.tuiasi.ro, +40764556149

Cristian BISOG, PhD student, Department of Machine Manufacturing Technology, “Gheorghe Asachi”
Technical University of lasi, Romania, e-mail: cristian.bisog@student.tuiasi.ro, +40741404419

