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Abstract: The design of autonomous robotic systems involves selecting and integrating components while ensuring fea-
sibility across functional and environmental constraints. This study introduces an Explorative Al-driven methodology
for generating and refining modular robotic platform configurations. The Al model analyzed millions of design configu-
rations, identifying over 1400 feasible variants based on mobility constraints, energy consumption, subsystem compati-
bility, operational scalability, and regulatory compliance. A multi-objective optimization process refined these variants,
ensuring compatibility across subsystems while minimizing integration conflicts. From these, a final optimized robotic
system configuration was selected, which was then documented in an extensive 100,000-word engineering specification
covering structural design, functional integration, and system-level justifications. This comprehensive output, covering
every aspect of the design, ensures the system can be implemented with minimal design omissions or integration errors.
The proposed methodology enhances early-stage robotic design by systematically generating, evaluating, and docu-
menting configurations, reducing risks in later development stages.
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1. INTRODUCTION

As autonomous robotic systems become
more common in urban settings, optimizing the
design process is crucial. This involves selecting
and integrating components while addressing
mobility, energy efficiency, scalability, and reg-
ulatory compliance. Early-stage decisions
greatly influence system feasibility and long-
term performance [1].

Traditional design relies on iterative proto-
typing, which is costly, slow, and limits the num-
ber of tested alternatives, risking suboptimal
configurations. Computational approaches ena-
ble broader exploration before physical imple-
mentation, but most optimize predefined struc-
tures rather than dynamically generating and re-
fining architectures [2].

This study presents an Explorative Al model
for systematically generating and evaluating
modular robotic configurations. Unlike conven-
tional Al-assisted design tools [3], it explores a
vast solution space rather than relying on fixed
templates. Using multi-objective optimization, it

refines designs based on predefined constraints,

ensuring subsystem compatibility and functional

flexibility. The model applies to various robotic
design challenges, demonstrated through an ur-
ban service robot case study.

To guide the investigation, the following re-
search questions are addressed:

1. How can an Explorative Al model improve
the conceptual design of autonomous robotic
systems by systematically evaluating signifi-
cant design alternatives?

2. What criteria and constraints must be inte-
grated into an Al-driven design process to en-
sure the feasibility of a modular robotic plat-
form for urban applications?

3. How does the Al-generated design compare
with traditional iterative design approaches
regarding early-stage error reduction and op-
timization efficiency?

The study also incorporates security as a crit-
ical design constraint, ensuring that all generated
configurations comply with safety regulations
for autonomous systems. Security considera-
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tions extend beyond simple operational reliabil-
ity, encompassing aspects such as cybersecurity,
fail-safe mechanisms, and environmental adapt-
ability.

The study highlights how Al-driven design
enhances early-stage development by identify-
ing viable configurations before prototyping, re-
ducing risks, and improving system integration.
The following sections detail the model’s meth-
odology, present a selected robotic configura-
tion, and analyze feasibility and limitations.

Artificial intelligence (Al) integration in ro-
botic design has evolved from assisting in spe-
cific tasks such as motion planning and control
to playing a central role in conceptual design and
system architecture generation. Various Al-
based methodologies have been explored in this
domain, each with distinct advantages and limi-
tations.

1.1 AI-Based Optimization in Robotic System
Design

Traditional robotic design relies on heuristics, ex-
pert judgment, and iterative prototyping, limiting ef-
ficiency in complex, multi-functional systems [4].
Al-driven optimization, including genetic algorithms
(GA) [5], particle swarm optimization (PSO) [6], and
evolutionary strategies (ES) [7], automates design
space exploration by iteratively refining candidates
based on objectives such as power efficiency, mobil-
ity, and structural robustness [9]. However, these
methods operate within predefined solution spaces,
limiting their ability to generate novel configurations
beyond initial assumptions [10]. As a result, they pri-
marily optimize existing designs rather than create
entirely new architectures, restricting their use in
early-stage conceptual design.

1.2 Generative Al and Large Language Mod-
els in Conceptual Design

With the advancement of transformer-based
large language models (LLMs), Al has gained
the ability to assist in creative and conceptual
tasks, including design synthesis and ideation
for complex engineering systems [11]. Models
such as GPT-4, BERT, and T5 have demon-
strated the ability to extract design patterns from
large datasets and generate textual descriptions
of conceptual systems [12].

In robotic design, LLMs have automatically
generated component specifications, suggested
system configurations, and justified design

choices [13]. Despite these capabilities, LLMs
lack intrinsic engineering validation mecha-
nisms and must be combined with structured op-
timization techniques to ensure feasibility [14].

Their strength lies in generating diverse, text-
based design proposals, but they do not inher-
ently evaluate mechanical constraints, material
properties, or dynamic interactions within a ro-
botic system [15].

1.3 Explorative AI for Conceptual Design of

Complex Systems
Unlike traditional Al optimization and LLM-

driven ideation, Explorative Al integrates struc-
tured clustering, rule-based reasoning, and gen-
erative synthesis to analyze large solution spaces
dynamically [16]. This approach simultaneously
generates and evaluates multiple system archi-
tectures, identifying viable configurations be-
yond predefined templates.

The proposed Explorative Al model in this
study represents an advancement in conceptual
design methodology by combining:

1. Clustering-based feature organization — using
KMeans [17] to structure high-dimensional
design spaces and identify latent relationships
between components.

2. Multi-objective constraint optimization —
evaluating trade-offs between power effi-
ciency, modularity, regulatory compliance,
and operational adaptability in an iterative se-
lection process.

3. Generative knowledge synthesis — utilizing
LLM-driven reasoning to formulate detailed
functional descriptions of components based
on structured engineering principles (e.g.,
SAVE and TRIZ methodologies) [18].

This hybrid Al framework improves early-
stage robotic design by identifying optimal con-
figurations before physical prototyping, reduc-
ing late-stage modifications and integration con-
flicts. While Al-driven techniques are widely
applied in architecture and mechanical engineer-
ing, they primarily optimize predefined struc-
tures rather than generate new system configura-
tions. In architecture, Al assists with spatial
planning, energy-efficient building design, and
structural optimization through generative ad-
versarial networks (GANs) [19] and reinforce-
ment learning [20], ensuring regulatory compli-
ance [21]. Similarly, mechanical engineering



employs Al-based topology optimization and
evolutionary algorithms to refine mechanical
components for material efficiency, aerodynam-
ics, and structural integrity [22]. Unlike these
approaches, the Explorative Al model systemat-
ically generates and evaluates robotic architec-
tures, enhancing modularity and adaptability
across various autonomous robotic systems [23].

1.4 Limitations of Existing AI Models in Ro-

botic Design

Although Al has demonstrated significant po-
tential in robotic system design, existing models
face limitations that hinder their broader appli-
cation in conceptual development:

* Rule-based expert systems require extensive
domain knowledge encoding and cannot au-
tonomously generate novel designs beyond
predefined templates.

* Evolutionary algorithms do not inherently
consider design feasibility in dynamic envi-
ronments.

* LLMs generate text-based design descrip-
tions but lack intrinsic physical validation
without integration with structured engineer-
ing models [24].

By addressing these limitations, Explorative
Al bridges the gap between computational opti-
mization and creative synthesis, enabling scala-
ble, early-stage robotic system development.

1.5 Research Gap and Contribution
The reviewed Al methodologies demonstrate

the increasing role of computational models in

robotic system conceptualization. Still, they ei-
ther lack structured feasibility validation (gener-
ative Al) or operate within restrictive optimiza-
tion frameworks (traditional AI) [25]. This study
advances the field by introducing a generalizable

Explorative Al model capable of:

* Systematically generating novel robotic ar-
chitectures while integrating functional con-
straints.

* Optimizing early-stage design decisions us-
ing structured clustering and multi-objective
evaluation.

* Enhancing modular robotic design flexibility
through Al-driven iterative synthesis.

This framework provides a scalable method
for ensuring early-stage design quality in multi-
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functional robotic platforms while avoiding late-
stage modifications and inefficiencies. A case
study demonstrates the proposed model's effec-
tiveness, showcasing its ability to produce vali-
dated robotic configurations tailored to specific
urban service applications.

2. METHODOLOGY

This section introduces the structured pipe-
line, a key component of our methodology. This
pipeline is instrumental in generating and evalu-
ating modular robotic platform configurations. It
incorporates feature clustering, multi-objective
constraint optimization, and generative synthe-
sis, thereby ensuring an efficient and optimized
early-stage design process.

2.1 Data Processing and Feature Clustering

The input dataset consists of modular robotic
design features categorized based on importance
and functionality. Each feature is defined by:

* A feasibility or priority score indicating its
suitability for integration.

* A cluster classification (e.g., "Basic," "Nice-
to-Have").

* A textual description detailing its functional-
ity.

The KMeans clustering algorithm structures
the design space by grouping features based on
functional dependencies, importance, and feasi-
bility constraints. This ensures that critical com-
ponents are prioritized while additional modules
are classified for advanced configurations.

2.2 Multi-Objective Optimization of System

Configurations
Following feature clustering, a multi-objec-

tive optimization framework evaluates possible

system configurations. Four key constraints
guide the optimization process:

1. Energy efficiency — The power system can
support all selected modules.

2. Subsystem compatibility — Avoiding con-
flicts between navigation, communication,
and operational modules.

3. Scalability — Ensuring the robotic platform
remains adaptable for future modifications.
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4. Regulatory compliance — Filtering out con-
figurations that do not meet industry and de-
ployment regulations.

5. Security constraints — Ensuring compliance
with cybersecurity, fail-safe mechanisms,
and environmental adaptability.

Each candidate configuration is scored using

a weighted objective function, enabling the sys-

tem to eliminate infeasible options and prioritize

optimal designs systematically.
The methodology that is used in this work is
presented in Figure 1 - Methodology Flowchart.

Data Processing & Feature Clustering

v

Multi-Objective Optimization

v

Security & Compliance Checks

v

Generative Al for Engineering
Specification

.

Final Selection & System Configuration

v

Optimized Robotic Platform

Fig. 1. Methodology Flowchart.

2.3 Generative Synthesis for Engineering
Specification
After optimization, Generative Al is em-
ployed to generate comprehensive engineering
documentation. A language model (LLM),
guided by SAVE and TRIZ principles, ensures
that each final design includes:
* Component functionality — Explanation of
how each module contributes to the system.
* Operational scenarios — How the robotic plat-
form behaves in different environments.

* Integration constraints — Identification of po-
tential issues and solutions for system assem-
bly.

An example of generating the Base Platform
Module is given to understand the application of
this method.

The use of TRIZ principles, such as Principle
40 (Composite Materials), which suggested a
hybrid construction of aluminum and reinforced
carbon fiber, and Principle 1 (Segmentation),
which motivated the development of a modular
interlocking system, played a significant role in
the design process. In contrast, Principle 31 (Po-
rous Materials) used a honeycomb internal struc-
ture to reduce weight without sacrificing
strength.

After the initial concepts were developed,
SAVE principles enhanced and confirmed the
designs: a. Modular design for easier manufac-
turing and assembly to guarantee production ef-
ficiency; b. Flexibility for different robotic set-
ups to support varying operational requirements;
c. Cost-benefit evaluations verifying the ad-
vantages of composite materials regarding dura-
bility and energy efficiency.

By integrating TRIZ-inspired innovations
with SAVE’s practical assessments, Explorative
Al developed a lightweight, robust, and versatile
Base Platform Module that balances technical
performance with economic viability. This pro-
cess extends beyond conceptual design, generat-
ing detailed engineering  specifications
(~100,000 words) that provide engineers with
implementation-ready guidance.

2.4 Selection and Final System Configuration
The model generated over 1400 viable con-

figurations, from which the final system archi-

tecture was selected based on the following:

1. Cluster-wide optimization performance —
Highest-ranked solutions were prioritized.

2. Expert evaluation of subsystem integration
feasibility system — Ensuring a balanced and
coherent system.

3. Detailed generative synthesis — Ensuring
completeness of engineering documentation.
The final robotic platform design represents

an optimized, fully documented system that

minimizes late-stage modifications and integra-



tion challenges. This structured Al-driven meth-
odology enhances early-stage robotic develop-
ment, reduces costs, and accelerates deployment
while ensuring adaptability to evolving opera-
tional needs.

3. RESULTS AND DISCUSSION

This section presents the outcomes of the Ex-
plorative Al-driven conceptual design, demon-
strating its ability to generate a fully functional
robotic platform while overcoming the limita-
tions of traditional Al-assisted methods. The dis-
cussion systematically addresses the research
questions from the Introduction, comparing this
model with conventional approaches.

3.1 From Design Space Exploration to Final

Robot Selection
The implementation of the Explorative Al

model integrates machine learning algorithms,
optimization techniques, and generative Al
models, leveraging Python-based frameworks
for computational efficiency. The core cluster-
ing and optimization processes rely on:

a. Scikit-learn’s KMeans algorithm to structure
high-dimensional design spaces and identify
latent relationships between system compo-
nents.

b. Custom constraint-solving algorithms — for
multi-objective  optimization,  balancing
power efficiency, subsystem compatibility,
scalability, and regulatory compliance.

c. Generative synthesis using Large Language
Models (LLMs) — to produce comprehensive
engineering specifications.

Multi-objective optimization is executed
through tailored constraint-solving algorithms,
ensuring balanced performance across multiple
design parameters. The integration of LLMs,
such as OpenAI’s GPT-based systems, enables
generative synthesis, structuring domain-spe-
cific prompts to evaluate configurations using
TRIZ and SAVE principles. TRIZ contradic-
tions and inventive principles assess potential
design improvements, while SAVE principles
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align optimization strategies with structured in-

novation methodologies.

The final implementation phase integrates au-
tomated evaluation pipelines with expert valida-
tion loops, ensuring that generated designs are
computationally optimized and practically feasi-
ble for real-world deployment.

The Explorative Al model analyzed millions
of potential configurations, filtering them
through a multi-objective optimization frame-
work. This resulted in over 1,400 feasible ro-
botic system architectures, from which an opti-
mal configuration was selected based on three
key criteria:

1. System feasibility — Ensuring all selected
modules met power, weight, and structural
compatibility constraints.

2. Performance metrics—We Prioritized mod-
ules that scored highest in mobility, naviga-
tion accuracy, operational efficiency, and
safety.

3. Scalability and modularity — Selecting com-
ponents that allow for future upgrades with-
out requiring fundamental design changes.

Navigation module  Water storage for wet cleaning Storage locking and Unlocking system

Cleaning Module

Interactive interface \_' A
[
\

Cleaning Module,

Fig. 2. Conceptual design of the robotic platform.
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The final robotic platform integrates a bal-
anced set of hardware and software modules into
50 modules, ensuring robust urban operations.
Figure 2 shows only the system's significant
modules.

The final robotic platform integrates three
levels of features:

1. Basic features — Essential for autonomous op-
eration (navigation, power management,
safety modules).

2. Advanced features — Enhancing real-world
adaptability (surface cleaning, pedestrian de-
tection, IoT connectivity).

Nice-to-Have features — Optimizing usability
(gesture recognition, cloud monitoring, branding
customization).

Each of the 50 modules was evaluated based
on feasibility (F), ease of implementation (E),
and manufacturability (M), ensuring a balanced
final selection. The final system integrates fea-
tures such as dynamic route planning, pedestrian
avoidance, high-capacity batteries, energy har-
vesting modules, biometric access control, anti-
theft tracking, and a modular attachment system
for future expansions. Each module was de-
scribed in 16,000-20,000 words by the Al sys-
tem, detailing structural specifications, func-
tional requirements, integration constraints, ma-
terial selection, manufacturing processes, opera-
tional scenarios, maintenance guidelines, and in-
dustry compliance. This level of detail ensures a
fully implementation-ready blueprint, reducing
integration conflicts and late-stage modifica-
tions.

3.2 Addressing Research Question 1

How can an Explorative AI model improve
the conceptual design of autonomous robotic
systems by systematically evaluating ample
design alternatives?

Existing Al-based optimization methods are
limited by predefined architectures, meaning
they can only refine pre-existing designs rather
than generate new robotic system architectures.
The Explorative Al model, in contrast, actively
explored novel configurations, ensuring that:

* No viable design alternatives were over-
looked due to human bias or constraints in
manual testing.

* Latent relationships between subsystems
(e.g., navigation modules requiring more sub-
stantial computational power for real-time
adjustments) were automatically identified.

* The entire robotic architecture was optimized
holistically, not just individual components.
For instance, while traditional modular de-

signs emphasize individual mobility systems,
the Al-generated platform synchronizes naviga-
tion, obstacle avoidance, and pedestrian interac-
tion, ensuring greater adaptability in urban envi-
ronments.

3.3 Addressing Research Question 2

What criteria and constraints must be inte-
grated into an Al-driven design process to en-
sure the feasibility of a modular robotic plat-
form for urban applications?

The feasibility of a robotic platform depends
on both technical and operational constraints.
The Explorative Al model incorporated four key
evaluation metrics, as shown in Table 1.

As a result, the final robot met all operational
requirements before prototyping, eliminating the
need for costly late-stage revisions.

Table 1
Comparative analysis of approaches.
Constraint Al Integration Traditional
Limitations
Energy Evaluated based on | Often optimized
Efficiency battery autonomy after selecting
vs. module the design.
consumption.
Subsystem Ensured no Manually
Compatibility | conflicts between verified,
navigation, power, increasing the
and payload risk of
modules. overlooked
conflicts.
Scalability Selected modular Fixed
components that architectures,
allow future requiring
upgrades. redesign for
modifications.
Regulatory Filtered out non- Addressed post-
Compliance compliant design, leading
configurations to potential legal
before final issues.
selection.




3.4 Addressing Research Question 3

How does the Al-generated design compare
with traditional iterative design approaches
regarding early-stage error reduction and op-
timization efficiency?

A comparative analysis evaluated the Explor-
ative Al model against a traditional iterative de-
sign approach. The evaluation focused on design
space coverage, feasibility validation, and the
risk of late-stage design errors.

The Al-driven process significantly reduced
design errors, ensuring all critical elements were
optimized before prototyping. By contrast, man-
ual iteration often led to late-stage failures, re-
quiring additional development time and in-
creased costs.

Table 2
Comparison of AI-Driven vs. Traditional
Design Approaches.
Evaluation | Explorative Al | Traditional
Criterion Model Approach
Design Explored millions | Limited to man-
Space of configurations, | ually tested con-
Coverage resulting in 1400+ | figurations
viable options. (~10-50 op-
tions).
Feasibility Integrated power, | Checked post-
Validation compatibility, design, leading
scalability, and | to frequent re-
compliance before | work.
design selection.
Optimiza- Completed design | Required weeks
tion Time generation in hours. | to months for
manual  itera-
tions.
Error Eliminated  con- | Often resulted in
Prevention flicts between sub- | late-stage  de-
systems early. sign failures.

3.5 Economic and Practical Impact
Last-mile delivery accounts for over 50% of

total logistics costs [26][27], with urban deliver-
ies projected to grow by 78% by 2030 [28]. Tra-
ditional delivery methods, relying on trucks
alone, face challenges like congestion, ineffi-
ciencies, and high operational costs. The indus-
try is shifting toward hybrid models, integrating
trucks with autonomous delivery robots, which
can reduce last-mile delivery costs by up to 68%
[29].

To boost this efficiency further, our work in-
tegrates Explorative Al a cutting-edge approach
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to designing and optimizing last-mile delivery
robots. Unlike traditional design methods, which
require engineers to test and refine prototypes
manually, Explorative Al generates and evalu-
ates thousands of potential designs autono-
mously. This means it can find the most cost-ef-
fective, lightweight, and energy-efficient config-
urations, saving significant costs in a fraction of
the time.

The benefits of using Explorative Al in last-
mile robot development are clear:

Al's role in reducing costs is significant. Au-
tomating the design process slashes develop-
ment expenses and material waste, making pro-
duction more affordable. Al-driven exploration
is not just about finding designs but also about
finding the best ones. These optimal designs, tai-
lored for real-world conditions, ensure the effi-
ciency and durability of the robots, giving you a
sense of security in their performance. Explora-
tive Al's unique ability to continuously refine ro-
bots based on real-world data is a game-changer.
It ensures that the robots perform well and excel
in different urban settings, giving you a strong
sense of confidence in their adaptability.

By integrating Explorative Al, last-mile de-
livery becomes scalable, efficient, and econom-

ically viable, shaping the future of logistics au-
tomation.

3.6 Broader Implications and Future Direc-
tions

The findings demonstrate that Explorative Al
is a design tool and an end-to-end system archi-
tecture generator. Its potential applications ex-
tend beyond this robotic platform, including in-
telligent city automation (e.g., optimized service
robots for urban environments), industrial robot-
ics (e.g., automated assembly systems with high
modularity), and healthcare & assistive robotics
(e.g., Al-driven robotic caregivers with adapta-
ble architectures).

Despite its advantages, the current model
does not yet incorporate real-time deployment
feedback. Future improvements will focus on:

* Integrating real-world operational data to re-
fine designs dynamically.
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* Extending the AI’s capability to assess eco-
nomic feasibility alongside technical con-
straints.

* Enhancing human-Al collaboration to bal-
ance automated optimization with domain ex-
pertise.

4. CONCLUSION

This study introduced an Explorative Al-
driven methodology for conceptualizing a multi-
functional autonomous robotic  platform,
demonstrating its effectiveness in systemically
generating, evaluating, and optimizing modular
configurations. The model analyzed millions of
possible configurations, identified over 1400
feasible designs, and selected a final optimized
robotic system, documented with a 100,000-
word engineering specification to guide real-
world implementation.

The results demonstrate that Explorative Al
outperforms traditional iterative design meth-
ods, often constrained by limited manual testing
and late-stage feasibility validation. Unlike con-
ventional approaches that refine predefined ar-
chitectures, this model enables comprehensive
design space exploration, ensuring no viable
configurations are overlooked. Before prototyp-
ing, the automated multi-objective optimization
process integrates power efficiency, subsystem
compatibility, scalability, and regulatory com-
pliance. The outcome is a fully defined imple-
mentation-ready robotic platform that minimizes
development risks and late-stage design errors.

This study presents a new Al-driven concep-
tual design methodology combining clustering,
multi-objective optimization, and generative
synthesis to systematically generate and refine
robotic system architectures. Empirical valida-
tion was achieved by developing a fully func-
tional robotic platform, demonstrating how this
methodology facilitates the creation of a func-
tionally optimized, modular, and scalable sys-
tem for innovative urban services. The study
also provides a structured comparison with tra-
ditional design approaches, highlighting the ef-
ficiency, accuracy, and comprehensiveness of
Al-assisted conceptualization in contrast to con-
ventional iterative methods.

While the Explorative AI model successfully
produced an optimal robotic system, certain lim-
itations remain. Real-world performance valida-
tion is required, and future work should involve
physical prototyping and testing to assess real-
time behavior and adaptability in dynamic urban
environments. Economic feasibility constraints
need further integration, as the current model op-
timizes technical feasibility but does not fully in-
corporate cost-effectiveness and manufactura-
bility metrics. Expanding the AI model’s adapt-
ability by enhancing real-time learning capabili-
ties would allow it to adjust system configura-
tions based on operational data dynamically.

This research demonstrates the potential of
Explorative Al as a transformative tool in ro-
botic system design, bridging the gap between
automated conceptualization and practical im-
plementation. By eliminating design inefficien-
cies, reducing late-stage modifications, and en-
suring high modularity, the methodology sets a
new standard for Al-driven engineering innova-
tion. Future advancements will re-fine its ap-
plicability across robotics, automation, and in-
novative infrastructure domains, positioning it
as a key enabler for next-generation autonomous
systems. The economic impact analysis shows
that Al-driven design optimization can signifi-
cantly reduce development costs and time-to-
market, making autonomous robotic platforms
more accessible for various urban applications.

The integration of security constraints
throughout the design process ensures that the
resulting robotic platform not only meets func-
tional requirements but also complies with cy-
bersecurity standards, fail-safe mechanisms, and
environmental adaptability needs. This compre-
hensive approach to robotic system design rep-
resents a significant step forward in addressing
the growing demand for efficient, adaptable, and
secure autonomous solutions in urban environ-
ments.
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Inteligenta artificiala exploratorie pentru proiectarea conceptuali si ingineria specificatiilor
unei platforme robotice autonome multifunctionale pentru servicii urbane inteligente

Proiectarea sistemelor robotice autonome implicd selectarea si integrarea componentelor, asigurdnd in acelasi timp
fezabilitatea acestora in raport cu constrangerile functionale si de mediu. Acest studiu introduce o metodologie
exploratorie bazata pe inteligenta artificiald pentru generarea si rafinarea configuratiilor platformelor robotice modulare.
Modelul de inteligenta artificiald a analizat milioane de configuratii de design, identificand peste 1400 de variante fezabile

conformitatii reglementare. Un proces de optimizare multi-obiectiv a rafinat aceste variante, asigurand compatibilitatea
intre subsisteme si minimizand conflictele de integrare. Dintre acestea, a fost selectatd o configuratie optimizata finala a
sistemului robotic, care a fost apoi documentata intr-o specificatie inginereasca detaliatd de 100.000 de cuvinte, acoperind
designul structural, integrarea functionald si justificarile la nivel de sistem. Acest rezultat cuprinzator garanteaza ca
sistemul poate fi implementat cu omisiuni minime de design sau erori de integrare. Metodologia propusa imbunatéteste
procesul de proiectare timpurie a sistemelor robotice prin generarea, evaluarea si documentarea sistematicd a
configuratiilor, reducand riscurile in etapele ulterioare de dezvoltare.

Cuvinte cheie: Al explorativa, design conceptual, roboticd autonomd, inginerie de sistem modular, servicii

rbane inteligente.
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