- 321 -

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering
Vol.68, Issue Special 1, May, 2025

STUDY ON THE POSITIONING ACCURACY FOR A NEURAL NETWORK
CONTROLLED ROBOTIC ARM END-EFFECTOR

Cristian Marius BACICAN, Cristian Emil MOLDOVAN, Mihai MICEA

Abstract: This paper explores the potential of using a neural network to position a robotic arm's end
effector. Traditional methods rely on direct and inverse kinematics, but this study draws inspiration from
human hand-eye coordination—how people learn their hand’s workspace and reach for objects. In
robotics, a similar approach could involve using a depth camera to detect and grasp objects directly. The
neural network learns the relationship between joint angles and end-effector positions within the camera’s
field of view, with applications in manipulation, object handling, and collaborative robotics in dynamic
environments. Simulations on a 3-DOF robotic arm tested 10 architectures, revealing feasibility for direct
kinematics but challenges in inverse kinematics requiring further research.

Keywords: Robotics, Neural Networks, Position, Kinematics, Industry 4.0.

1. INTRODUCTION

Modern times are witnessing the rapid
evolution of technology and the emergence of
Industry 4.0 based on the inclusion of cyber
physical systems, interconnected and artificial
intelligence (AI) driven systems. Furthermore,
there is increased emergence of the term
Industry 5.0 focused on a human-centric,
resilient and sustainable approach towards
manufacturing [1, 2].

In this context, robotic systems play a vital
role to achieve these ambitious goals. With this
in mind, we propose a study on the possibilities
of integrating neural networks in robotic-based
systems. Our work studies the possibilities of
using a neural network to position the end
effector of a robotic arm with 3 Degrees of
Freedom (DoF). Of interest is to discover the
limitations of this approach with respect to
positioning accuracy and neural network
configuration. Our approach relies on the
correspondence between joint angles and
resulting tool center point (TCP) position,
approach that is similar to the hand-eye
coordination in human manipulation. Humans,
starting in their infancy, explore their
environment also through touch and learn the

correlation between the reached arm position
and muscle commands. This whole process
takes place at a subconscious level, and is
achieved through the human’s neural network
[3].

For a robotic system, in order to train the
network, we use synthetic data produced using
the kinematic model of the arm, also presented
in this paper.

This method can potentially be used in a
scenario when robotic manipulation is needed in
an unstructured environment with video
feedback. The robot arm and camera calibration
process can be done through exploration, using
machine learning techniques recording the
position in the image. TCP positions could be
sampled in the camera field of view, generating
correspondence points to joint angles,
simplifying the calibration process.

Similar work was done in [4] where different
network architectures were studied to assess the
behavior to control a 2 DoF robotic arm and in
[5] where a 5 DoFs manipulator is controlled,
our paper proposes a robotic arm with 3 DoFs
and we test the positioning accuracy of the
manipulator. In [6] the authors propose a neural
network to control a parallel robot, in
comparison, our research focuses on a serial

-322-

robotic arm. In [7] Duka proposes a 3DoF planar
manipulator, in comparison, we propose a
manipulator capable of moving in 3D space.
More recent work on the use of neural networks
to control a robotic arm is presented in [8] and
[9] papers published in 2024.

This approach, neural networks for robotic
arm control, is suited if the robotic arm operates
in a highly dynamic, uncertain, or unstructured
environment, when the task is too complex for
traditional methods (e.g., learning from vision),
if the system dynamics are difficult to model
mathematically or when wusing human
demonstrations or reinforcement learning to
train the robot.

During the next chapters we will present our
study, starting with the kinematic model of the
robot, training data generation, a presentation on
proposed neural networks architectures and their
benchmarks and finally a conclusion on our
study.

2. 3DOF KINEMATIC MODEL FOR THE
ROBOTIC ARM AND DATA
GENERATION

In order to generate the training data and test
the results, we created a kinematic model for a
3DOF manipulator. The kinematic schema is
presented in Figure 1.

The equations used to determine the TCP
position are shown in (1)

x = L, cos(6,) cos(8,) + L, cos(6,) cos(6, + 65)
{y = L, sin(0;) cos(6,) + L, sin(0,) cos(6, + 65) (1)
z = L, sin(0,) + L, sin(6, + 65)

Using the equations in (1) we developed a
Direct Kinematics (DK) graphical user interface
using the Python environment, shown in Figure.
2

For the data generation is considered the
direct kinematic model, where joint angles are
given and the position of the TCP can be
calculated.

The three joint angles were considered in all
possible positions considering 1, 5 and 10 degree
steps. Rotation angle Theta_1 is considered to be
within a range from [0,217] [radians], while
Theta_2 rotation angle is in range [0, Tr]. This
limit is considered to simulate a mechanism for

collision avoidance with the surface on which
the robot arm is installed. The angle between
links L1=100 [mm] and L2=200 [mm] is
Theta_3, is assuring the 3rd DOF, is limited to
[0, T1/2].

Fig. 1. Kinematic schema for the proposed 3DOF arm.

Thetal 180
Theta2 90
Theta3 45

Base: 000; Joint1:-0.00, 0.00, 100.00; Joint2: 141.42, -0.00, 241.42

S 200

Fig. 2. Graphical user interface for the robotic arm

If all values of all three angles are put into
equations, with a change step of 1, 5 and 10
degrees, the total number of end-effector
positions will result - see Table 1.

The number of data points increases
exponentially with the resolution of the
movement. It can be observed that decreasing
two times the step of robot movement, from 10
to 5 deg., the number of points is 8 times bigger
while decreasing the resolution 10 times, to 1
deg., the number of data points is three orders of
magnitude higher.

Table 1
End-effector positions (Data points) and the split
considered for the ML model training and test.

Angles Number | Number of | Number
change step of data points of of points
[deg] points training for test
10 5832 5000 832
5 46656 40000 6656
1 5832000 - -

Fig. 3. Plot of all end effector positions.

The study was made with changes of input
angles of 10 deg. generating a dataset with 5832
entries. Values were split 5000 for training
(~86% of total) and 832 for test (~14% of total).

Even though the machine learning (ML)
model is trained with angle values that are
divisible with 10 this does not necessarily mean
that good predictions cannot be obtained for any
angle in between. This implies that the model
offers predictions of end-effector position in 3D
space for any input angles values even if they are
not divisible by 10.

All 5832 data points corresponding to 10 deg.
steps were rendered for a brief visual verification
in Fig 3, with blue are the end-effector positions
and with red the joint between L1 and L2 links
of the arm. In other words, the blue points show
all possible locations of the end-effector while
the red ones represent the corresponding
location of the joint of L1 and L2 links, given
that all 3 angles swipe in their specific range
with a resolution step of 10 deg. The origin of
the robot arm, the bottom end of L.1 link (the end
that is not connected with L2) is in the origin of
the coordinate system - point [0, 0, 0].

-323 -

3. THE NETWORK EVALUATION

For this problem, a fully connected network
was considered, shown in Figure 4.

r—\

Output
RelU
T FC L1k 3
FC Layer 1024 ;yer
T
RelU Re?I_U
t F 4
FC Layer 256 € La;e’ s
T
RelU ReTLU
T FCL 256
FC Layer 64 aXe’
T RelU
FC Layer 3 T
T FC Layer 1024
Input T

Fig. 4. Neural Network architecture with best
performance.

Beforehand, several configurations we tested
and results are compared in Table 2, winner
being configuration 6. All variants share the
same input and output layer configuration.

Table 2

Experiments with different configurations of the

network. With bold the best configuration according
to RMSE applied on the test set.
No. of

hidde Test set
No n RMSE
layers Nodes [mm]
64,128,512,1024,1024,512,
1 8 128,64 9,56
2 7 | 64,128,512,1024,512,128,64 | 4,81
3 7 64,128,256,512,256,128,64 | 5,10
4 7 64,128,128,256,256,128,64 | 5,72
5 6 64,128,128,256,128,64 6,73
6 6 64,256,1024,1024,256,64 4,48
7 5 64,512,1024,512,64 6,80
8 5 64,128,256,128,64 9,88
9 5 64,256,2048,256,64 5,11
10 4 256,128,64,32 12,52
The input layer has three neurons

corresponding to the three variable angles of the
arm. Output layer also has three neurons, each

-324 -

representing a coordinate of the end-effector in
3D space. In order to find a model that best fits
the training data, the network architecture was
modified in the sense of number or hidden
layers, number of parameters, or both. In all
cases after each hidden layer activation function
Rectified Linear Unit (ReLU) is wused.
Implementation was done using the PyTorch

library.

3.1 Network Training and evaluation

For training the 10 deg. change in angle was
considered resulting in 5832 data points. At
training time, 5000 entries are used and 832 are
kept for testing. Even though the dataset is
generated with angles having ordered values,
with increment of 10, during training, the angles
- positions pairs are fed to the network in a
randomized order, and this order changes at each
training epoch. This is normal for the machine
learning training process and contributes to a
better training performance thus Dbetter
generalization over new data during inference
time.

However, in the robot arm case, each end-
effector position is related to the previous one
and influences the following since the values of
the input angles are consecutive. Unfortunately,
this information is lost by randomization thus,
the network has no chance to learn the
correlation. A more complex architecture could
benefit from the relation of consecutive points
and expectation is that prediction performance
would improve.

At every training step a batch of 32 data
entries are used (batch size = 32). Training loss
function used is Mean Squared Error (MSE) and
the optimizer is Adaptive Moment Estimation
(ADAM) configured with a learning rate of
0.001. Each configuration of the network is
trained for 100 epochs.

For all models the inference performance is
measured using 832 inputs and predictions are
checked against the analytic generated values
using Root Mean Squared Error (RMSE)
method. RMSE was chosen since it has the same
unit as the predicted variable making the result
more intuitive for understanding model
performance.

The results of the experiment are presented in
Table 2 and the architecture of the configuration
with best RMSE is shown in detail in Figure 3.
3.2 Analysis of the results

Table 3 contains five examples of predictions
using the model from Figure 1. Best and worst
predictions and their errors are highlighted with
bold.

Table 3
Examples of predictions for five different angle
configurations.

Point 1 2 3 4 5
Theta 1 150 190 40 280 290
Theta 2 70 60 90 170 90
Theta 3 70 0 30 30 70
X pred. 104,72 -149,21 -74,39 -51,86 -72,5
ypred. | -5657 225,72 60,14 | 274,64 | 171,84
zpred. | 21399 | 261,58 | 270,82 | -53,59 | 161,22

x GT 103,06 -147,72 -76,60 -49,74 -64,28

y GT 59,50 | -26,05 6428 | 282,07 | 176,60

zGT 222,53 259,81 273,21 -51,04 168,40
error x 1,61 1,01 2,8 426 12,79

[%1 | " ’ N ’
error y 4,92 1,27 6,44 2,63 2,70
% | * ’ ’ ’ ’

error z
3,84 0,68 0,87 5,00 426
[%]

Figure 5 is the graphical representation of the
five input angle configurations from Table 3.

Corresponding end-effector position given by
analytical method is represented with blue
circles while the network predicted end-effector
position is represented with green squares.

0
K 0!

y N o

Fig. 5. Positions of éild—effector (blue circle) and model
prediction (green square) corresponding to values from
Table 3.

However, this is just for the five values
randomly extracted from the total of 832 test
values. From the experiments, we can conclude
that the mean error for all 3 predicted values (x,
y, z) for all 832 cases is 4.48mm, in the context
of an arm with a maximum extension of 300mm
(L1 link configured to 100 mm and L2 link to
200 mm).

3.3 Inverse kinematics (IK)

Another experiment is to use the same
network architecture and number of hyper
parameters for inverse kinematics. It is to note
that the network is retrained with input-output
pairs on TCP [x, y, z] position and joint angles
[61,0,,605] values. The results show that over
832 positions the mean error of all three angles
is 57.29 [deg]. This is a very high value, which
demonstrates that the simple approach for IK has
significant less accuracy making is not usable.

Since we use the neural network as a function
approximator, the mapping between joint and
TCP position is a non-injective surjective
function which causes problems in the situation
of inverse kinematics. To be more explicit, for
the direct kinematics, one set of joint angles
produces one TCP position, while for the inverse
kinematics, one position can be reproduced by
multiple sets of joint angles, this situation is
shown in Figure 6.

Fig. 6. TCP Positions reached in two configurations

-325-

4. CONCLUSION

The analytic and Machine Learning approach
for direct kinematic method show rather similar
results thus proving that the correlation between
input angles and end-effector position can be
learned effectively even by a relatively simple
deep learning model with fully connected layers.

As per the results shown in paragraph 3.2 and
3.3 the predictions for direct kinematics are far
more accurate than inverse kinematics thus a
more adequate approach for inverse kinematics
is needed rather than just a fully connected deep
learning model.

Future research could address this problem by
taking into consideration motion, not just points.
When in motion, the robotic arm follows a
sequence of arm configurations that change
minimally when moving from one point to the
next in order to reproduce the whole trajectory.
Considering this, a restricted model could be
developed.

The neural network control for robotic arm
methods could have potential impact in
situations where visual feedback is used to allow
automatic handling of objects and the
environment is highly unstructured. Potential
industries that could benefit from this
technology are smart manufacturing and
assembly, for example in the automotive
industry, the production of wiring harness
systems; warehouse automation and logistics,
pick, sort and pack operations; agriculture and
smart farming; food processing and packaging;
construction, such as brick or tiles laying;
recycling and waste management.

This method extends the state of the art and
provides an additional option to solve tasks that
can be automatized using robotics

5. REFERENCES

[1] Xu, X., Lu, Y., Vogel-Heuser, B., Wang, L.,
Industry 4.0 and Industry 5.0—Inception,
conception and perception, Journal of
Manufacturing Systems, ISSN 0278-6125,
2021.

[2] Mocan, B., Fulea, M.,
Buchmiiller, M., From

Olaru, M.,
Intuitive

- 326 -

Programming of Robotic Systems to Business
Sustainability of Manufacturing SMEs.
Amfiteatru Economic, 18(41), pp. 215-231.
2016.

[3] Hoffmann, M., Marques, H., Arieta, A.,
Sumioka, H., Lungarella, M., Pfeifer, R.,
Body Schema in Robotics: A Review, IEEE
Transactions on Autonomous Mental
Development, vol. 2, no. 4, pp. 304-324, Dec.
2010.

[4] Calin, A, Pop,a C., Moldovan, C, Davidescu,
A., Model-Free Reaching of a 2-DOF
Robotic Arm Using Neural Networks,
Mechanisms and Machine Science, Springer,
ISBN978-3-031-25655-4, 2023.

[5] Aravinddhakshan, S., Apte, S., Akash, S.M,
Neural Network Based Inverse Kinematic
Solution of a 5 DOF Manipulator for

Industrial Application, Journal of Physics:
Conference Series, 2021.

[6] Gholami, A., Homayouni, T., Ehsani, R.,
Sun, J.Q., Inverse Kinematic Control of a
Delta Robot Using Neural Networks in Real-
Time, Robotics, 2021.

[7] Duka, AV, Neural network based inverse
kinematics solution for trajectory tracking of
a robotic arm, Procedia Technology 12,
2014.

[8] Dorman, J,D,, Gupta, A., Gill H,S., FNN-
Based Inverse Kinematics for Efficient
Trajectory Planning in Industrial Robots,
TACIS, ISBN:979-8-3503-6066-0, 2024.

[9] Ojer, M, Etxezarreta, A, Kortaberria, G., et
al., High accuracy hybrid kinematic modeling
for serial robotic manipulators, Robotica.
2024,

Studiu cu privire la precizia de pozitionare a unui brat robotic controlat cu retele neuronale

In aceasta lucrare de cercetare se exploreazi posibilitatea utilizirii unei retele neuronale artificiale pentru a pozitiona
efectorul final al unui brat robotic. Metoda clasica utilizeazd modelul cinematic direct si invers pentru a realiza aceasta
sarcind, dar inspiratia pentru acest studiu provine din analiza modului 1n care omul rezolva aceastd problema, anume
coordonarea ochi-ména. Situatia echivalenta in robotica ar fi utilizarea unei camere video pentru detectarea si apucarea
obiectelor. Abordarea bazata pe retele neuronale artificiale ar permite Invatarea functiei de corespondenta intre valorile
unghiurilor articulatiilor robotului si pozitia efectorului final in imagine, permitand realizarea de aplicatii de manipulare.
Experimentele cu retele neuronale artificiale din aceasta lucrare au fost realizate pe un model matematic al unui brat
robotic cu trei grade de libertate. Acesta a fost folosit pentru generarea setului de date de antrenament, dupa care s-au
evaluat 10 arhitecturi de retele neuronale din punct de vedere al performantei.
Cuvinte cheie: roboticd, refele neuronale, pozitie, cinematicd, industrie 4.0.

Cristian Marius BACICAN, PhD candidate, Eng., University Politehnica Timisoara, Department of
Computer and Information Technology, cristian.bacican @student.upt.ro

Cristian Emil MOLDOVAN, PhD, Associated Professor, University Politehnica Timisoara,
Department Mechatronics, cristian.moldovan @upt.ro, 0744575840

Mihai MICEA, PhD, Professor, University Politehnica Timisoara, Department of Computer and
Information Technology, mihai.micea@upt.ro, 0725890914

