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Abstract: This paper explores the potential of using a neural network to position a robotic arm's end 

effector. Traditional methods rely on direct and inverse kinematics, but this study draws inspiration from 

human hand-eye coordination—how people learn their hand’s workspace and reach for objects. In 

robotics, a similar approach could involve using a depth camera to detect and grasp objects directly. The 

neural network learns the relationship between joint angles and end-effector positions within the camera’s 

field of view, with applications in manipulation, object handling, and collaborative robotics in dynamic 

environments. Simulations on a 3-DOF robotic arm tested 10 architectures, revealing feasibility for direct 

kinematics but challenges in inverse kinematics requiring further research. 
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1. INTRODUCTION  
  

Modern times are witnessing the rapid 
evolution of technology and the emergence of 
Industry 4.0 based on the inclusion of cyber 
physical systems, interconnected and artificial 
intelligence (AI) driven systems. Furthermore, 
there is increased emergence of the term 
Industry 5.0 focused on a human-centric, 
resilient and sustainable approach towards 
manufacturing [1, 2].  

In this context, robotic systems play a vital 
role to achieve these ambitious goals. With this 
in mind, we propose a study on the possibilities 
of integrating neural networks in robotic-based 
systems. Our work studies the possibilities of 
using a neural network to position the end 
effector of a robotic arm with 3 Degrees of 
Freedom (DoF). Of interest is to discover the 
limitations of this approach with respect to 
positioning accuracy and neural network 
configuration. Our approach relies on the 
correspondence between joint angles and 
resulting tool center point (TCP) position, 
approach that is similar to the hand-eye 
coordination in human manipulation. Humans, 
starting in their infancy, explore their 
environment also through touch and learn the 

correlation between the reached arm position 
and muscle commands. This whole process 
takes place at a subconscious level, and is 
achieved through the human’s neural network 
[3].  

For a robotic system, in order to train the 
network, we use synthetic data produced using 
the kinematic model of the arm, also presented 
in this paper.  

This method can potentially be used in a 
scenario when robotic manipulation is needed in 
an unstructured environment with video 
feedback. The robot arm and camera calibration 
process can be done through exploration, using 
machine learning techniques recording the 
position in the image. TCP positions could be 
sampled in the camera field of view, generating 
correspondence points to joint angles, 
simplifying the calibration process. 

Similar work was done in [4] where different 
network architectures were studied to assess the 
behavior to control a 2 DoF robotic arm and in 
[5] where a 5 DoFs manipulator is controlled, 
our paper proposes a robotic arm with 3 DoFs 
and we test the positioning accuracy of the 
manipulator. In [6] the authors propose a neural 
network to control a parallel robot, in 
comparison, our research focuses on a serial 
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robotic arm. In [7] Duka proposes a 3DoF planar 
manipulator, in comparison, we propose a 
manipulator capable of moving in 3D space. 
More recent work on the use of neural networks 
to control a robotic arm is presented in [8] and 
[9] papers published in 2024.  

This approach, neural networks for robotic 
arm control, is suited if the robotic arm operates 
in a highly dynamic, uncertain, or unstructured 
environment, when the task is too complex for 
traditional methods (e.g., learning from vision), 
if the system dynamics are difficult to model 
mathematically or when using human 
demonstrations or reinforcement learning to 
train the robot. 

During the next chapters we will present our 
study, starting with the kinematic model of the 
robot, training data generation, a presentation on 
proposed neural networks architectures and their 
benchmarks and finally a conclusion on our 
study. 

 
2. 3DOF KINEMATIC MODEL FOR THE 

ROBOTIC ARM AND DATA 

GENERATION 

 
In order to generate the training data and test 

the results, we created a kinematic model for a 
3DOF manipulator. The kinematic schema is 
presented in Figure 1. 

The equations used to determine the TCP 
position are shown in (1) 

 

 
 
Using the equations in (1) we developed a 

Direct Kinematics (DK) graphical user interface 
using the Python environment, shown in Figure. 
2 

For the data generation is considered the 
direct kinematic model, where joint angles are 
given and the position of the TCP can be 
calculated. 

The three joint angles were considered in all 
possible positions considering 1, 5 and 10 degree 
steps. Rotation angle Theta_1 is considered to be 
within a range from [0,2π] [radians], while 
Theta_2 rotation angle is in range [0, π]. This 
limit is considered to simulate a mechanism for 

collision avoidance with the surface on which 
the robot arm is installed. The angle between 
links L1=100 [mm] and L2=200 [mm] is 
Theta_3, is assuring the 3rd DOF, is limited to 
[0, π/2]. 

 

 
Fig. 1. Kinematic schema for the proposed 3DOF arm. 

 

 
Fig. 2. Graphical user interface for the robotic arm 
 
If all values of all three angles are put into 

equations, with a change step of 1, 5 and 10 
degrees, the total number of end-effector 
positions will result - see Table 1. 

The number of data points increases 
exponentially with the resolution of the 
movement. It can be observed that decreasing 
two times the step of robot movement, from 10 
to 5 deg., the number of points is 8 times bigger 
while decreasing the resolution 10 times, to 1 
deg., the number of data points is three orders of 
magnitude higher. 
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Table 1 

End-effector positions (Data points) and the split 

considered for the ML model training and test. 

Angles 
change step 

[deg] 

Number 
of data 
points 

Number of 
points of 
training 

Number 
of points 
for test 

10 5832 5000 832 

5 46656 40000 6656 

1 5832000 - - 

 

 
Fig. 3. Plot of all end effector positions. 

 
The study was made with changes of input 

angles of 10 deg. generating a dataset with 5832 
entries. Values were split 5000 for training 
(~86% of total) and 832 for test (~14% of total). 

Even though the machine learning (ML) 
model is trained with angle values that are 
divisible with 10 this does not necessarily mean 
that good predictions cannot be obtained for any 
angle in between. This implies that the model 
offers predictions of end-effector position in 3D 
space for any input angles values even if they are 
not divisible by 10. 

All 5832 data points corresponding to 10 deg. 
steps were rendered for a brief visual verification 
in Fig 3, with blue are the end-effector positions 
and with red the joint between L1 and L2 links 
of the arm. In other words, the blue points show 
all possible locations of the end-effector while 
the red ones represent the corresponding 
location of the joint of L1 and L2 links, given 
that all 3 angles swipe in their specific range 
with a resolution step of 10 deg. The origin of 
the robot arm, the bottom end of L1 link (the end 
that is not connected with L2) is in the origin of 
the coordinate system - point [0, 0, 0]. 

 
3. THE NETWORK EVALUATION 

 
For this problem, a fully connected network 

was considered, shown in Figure 4.  
 

 
Fig. 4. Neural Network architecture with best 

performance. 
 
Beforehand, several configurations we tested 

and results are compared in Table 2, winner 
being configuration 6. All variants share the 
same input and output layer configuration.  

Table 2 

Experiments with different configurations of the 

network. With bold the best configuration according 

to RMSE applied on the test set. 

No
. 
 

No. of 
hidde

n 
layers Nodes 

 

Test set  

RMSE 

[mm] 

1 8 
64,128,512,1024,1024,512, 

128,64 9,56 

2 7 64,128,512,1024,512,128,64 4,81 

3 7 64,128,256,512,256,128,64 5,10 

4 7 64,128,128,256,256,128,64 5,72 

5 6 64,128,128,256,128,64 6,73 

6 6 64,256,1024,1024,256,64 4,48 

7 5 64,512,1024,512,64 6,80 

8 5 64,128,256,128,64 9,88 

9 5 64,256,2048,256,64 5,11 

10 4 256,128,64,32 12,52 

 
The input layer has three neurons 

corresponding to the three variable angles of the 
arm. Output layer also has three neurons, each 
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representing a coordinate of the end-effector in 
3D space. In order to find a model that best fits 
the training data, the network architecture was 
modified in the sense of number or hidden 
layers, number of parameters, or both. In all 
cases after each hidden layer activation function 
Rectified Linear Unit (ReLU) is used.  
Implementation was done using the PyTorch 
library. 
 

3.1 Network Training and evaluation 

For training the 10 deg. change in angle was 
considered resulting in 5832 data points. At 
training time, 5000 entries are used and 832 are 
kept for testing. Even though the dataset is 
generated with angles having ordered values, 
with increment of 10, during training, the angles 
- positions pairs are fed to the network in a 
randomized order, and this order changes at each 
training epoch. This is normal for the machine 
learning training process and contributes to a 
better training performance thus better 
generalization over new data during inference 
time.  

However, in the robot arm case, each end-
effector position is related to the previous one 
and influences the following since the values of 
the input angles are consecutive. Unfortunately, 
this information is lost by randomization thus, 
the network has no chance to learn the 
correlation. A more complex architecture could 
benefit from the relation of consecutive points 
and expectation is that prediction performance 
would improve. 

At every training step a batch of 32 data 
entries are used (batch size = 32). Training loss 
function used is Mean Squared Error (MSE) and 
the optimizer is Adaptive Moment Estimation 
(ADAM) configured with a learning rate of 
0.001. Each configuration of the network is 
trained for 100 epochs.  

For all models the inference performance is 
measured using 832 inputs and predictions are 
checked against the analytic generated values 
using Root Mean Squared Error (RMSE) 
method. RMSE was chosen since it  has the same 
unit as the predicted variable making the result 
more intuitive for understanding model 
performance. 

The results of the experiment are presented in 
Table 2 and the architecture of the configuration 
with best RMSE is shown in detail in Figure 3. 
3.2 Analysis of the results 

Table 3 contains five examples of predictions 
using the model from Figure 1. Best and worst 
predictions and their errors are highlighted with 
bold.  

Table 3 

Examples of predictions for five different angle 

configurations.  
Point 1 2 3 4 5 

Theta 1 150 190 40 280 290 

Theta 2 70 60 90 170 90 

Theta 3 70 0 30 30 70 

x pred. 104,72 -149,21 -74,39 -51,86 -72,5 

y pred. -56,57 -25,72 -60,14 274,64 171,84 

z pred. 213,99 261,58 270,82 -53,59 161,22 

x GT 103,06 -147,72 -76,60 -49,74 -64,28 

y GT -59,50 -26,05 -64,28 282,07 176,60 

z GT 222,53 259,81 273,21 -51,04 168,40 

error x 
[%] 

1,61 1,01 2,89 4,26 12,79 

error y 
[%] 

4,92 1,27 6,44 2,63 2,70 

error z 
[%] 

3,84 0,68 0,87 5,00 4,26 

 
Figure 5 is the graphical representation of the 

five input angle configurations from Table 3.  
Corresponding end-effector position given by 

analytical method is represented with blue 
circles while the network predicted end-effector 
position is represented with green squares. 

 

 
Fig. 5. Positions of end-effector (blue circle) and model 
prediction (green square) corresponding to values from 

Table 3. 
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However, this is just for the five values 
randomly extracted from the total of 832 test 
values. From the experiments, we can conclude 
that the mean error for all 3 predicted values (x, 
y, z) for all 832 cases is 4.48mm, in the context 
of an arm with a maximum extension of 300mm 
(L1 link configured to 100 mm and L2 link to 
200 mm). 
 
3.3 Inverse kinematics (IK) 

Another experiment is to use the same 
network architecture and number of hyper 
parameters for inverse kinematics. It is to note 
that the network is retrained with input-output 
pairs on TCP [x, y, z] position and joint angles 
���, ��, ��� values. The results show that over 
832 positions the mean error of all three angles 
is 57.29 [deg]. This is a very high value, which 
demonstrates that the simple approach for IK has 
significant less accuracy making is not usable.  

Since we use the neural network as a function 
approximator, the mapping between joint and 
TCP position is a non-injective surjective 
function which causes problems in the situation 
of inverse kinematics. To be more explicit, for 
the direct kinematics, one set of joint angles 
produces one TCP position, while for the inverse 
kinematics, one position can be reproduced by 
multiple sets of joint angles, this situation is 
shown in Figure 6. 

 

 
Fig. 6. TCP Positions reached in two configurations  
 
 

4. CONCLUSION  
 
The analytic and Machine Learning approach 

for direct kinematic method show rather similar 
results thus proving that the correlation between 
input angles and end-effector position can be 
learned effectively even by a relatively simple 
deep learning model with fully connected layers. 

As per the results shown in paragraph 3.2 and 
3.3 the predictions for direct kinematics are far 
more accurate than inverse kinematics thus a 
more adequate approach for inverse kinematics 
is needed rather than just a fully connected deep 
learning model.  

Future research could address this problem by 
taking into consideration motion, not just points. 
When in motion, the robotic arm follows a 
sequence of arm configurations that change 
minimally when moving from one point to the 
next in order to reproduce the whole trajectory. 
Considering this, a restricted model could be 
developed. 

The neural network control for robotic arm 
methods could have potential impact in 
situations where visual feedback is used to allow 
automatic handling of objects and the 
environment is highly unstructured. Potential 
industries that could benefit from this 
technology are smart manufacturing and 
assembly, for example in the automotive 
industry, the production of wiring harness 
systems; warehouse automation and logistics, 
pick, sort and pack operations; agriculture and 
smart farming; food processing and packaging; 
construction, such as brick or tiles laying; 
recycling and waste management. 

This method extends the state of the art and 
provides an additional option to solve tasks that 
can be automatized using robotics 
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Studiu cu privire la precizia de poziționare a unui braț robotic controlat cu rețele neuronale 
 

În această lucrare de cercetare se explorează posibilitatea utilizării unei rețele neuronale artificiale pentru a poziționa 
efectorul final al unui braț robotic. Metoda clasică utilizează modelul cinematic direct și invers pentru a realiza această 
sarcină, dar inspirația pentru acest studiu provine din analiza modului în care omul rezolvă această problemă, anume 
coordonarea ochi-mână. Situația echivalentă în robotică ar fi utilizarea unei camere video pentru detectarea și apucarea 
obiectelor. Abordarea bazată pe rețele neuronale artificiale ar permite învățarea funcției de corespondență între valorile 
unghiurilor articulațiilor robotului și poziția efectorului final în imagine, permițând realizarea de aplicații de manipulare. 
Experimentele cu rețele neuronale artificiale din această lucrare au fost realizate pe un model matematic al unui braț 
robotic cu trei grade de libertate. Acesta a fost folosit pentru generarea setului de date de antrenament, după care s-au 
evaluat 10 arhitecturi de rețele neuronale din punct de vedere al performanței.  

 Cuvinte cheie: robotică, rețele neuronale, poziție, cinematică, industrie 4.0. 
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