

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering Vol. 68, Issue Special I, May, 2025

DESIGN METHODOLOGY FOR A RADIUS IMPLANT USING CATIA V5 R19

Ştefan Adrian ŢÎMPEA, Adrian DUME, Vasile DZITAC, Cristian COSMA, Viorel-Aurel ŞERBAN

Abstract: This study explores the use of CATIA V5R19 in designing a customized wrist implant for orthopedic applications. By importing CT scan data, a patient-specific 3D model is created to ensure anatomical accuracy and biomechanical compatibility. Using CATIA's Part Design, Generative Shape Design, and Assembly modules, the implant is optimized for stability, mobility, material selection, and weight distribution. Results demonstrate the software's precision in facilitating implant design and mechanical evaluation. This research underscores the potential of CAD-driven implant development for personalized medical solutions. Future work will incorporate advanced biocompatible materials and additive manufacturing to enhance implant performance and clinical applicability.

Keywords: CATIA V5R19, wrist implant, CAD, orthopedic design, biomechanics.

1. INTRODUCTION

In recent years, the application of Computer-Aided Design (CAD) software in biomedical engineering has significantly enhanced the design and development of patient-specific medical implants [1]. Among the various CAD platforms available, CATIA V5R19 has emerged as a powerful tool for modeling complex anatomical structures and engineering precision implants [2]. This study focuses on using CATIA V5R19 for designing a wrist implant, highlighting its advantages in achieving accurate. efficient. and biomechanically optimized solutions.

Wrist implants play a crucial role in restoring function and alleviating pain in patients suffering from severe joint disorders, such as osteoarthritis, rheumatoid arthritis, or post-traumatic injuries [3]. Traditional implant design methods often rely on standardized models, which may not always conform to the unique anatomical variations of individual patients [4]. With the advent of advanced 3D CAD technologies, personalized implant designs can now be created, ensuring better fit, functionality, and long-term durability [5]. However, there remains a need for systematic approaches to

integrate CAD software with biomechanical analysis tools to enhance implant performance further.

This article explores the process of designing a wrist implant using CATIA V5R19, detailing the key steps involved in modeling, material selection. and biomechanical analysis. Additionally, the advantages of using CAD technology in medical implant design will be discussed, with a focus on improving patient outcomes through personalized engineering solutions [6]. By leveraging the capabilities of 3D CAD, particularly CATIA V5R19, this study aims to demonstrate the potential of advanced digital tools in revolutionizing orthopedic implant development and addressing the existing challenges in wrist implant design.

CATIA V5R19 stands out among CAD tools due to its robust capabilities in design, engineering, and manufacturing, particularly in high-end industries like aerospace, automotive, and industrial machinery.

Below is a breakdown of its broader significance compared to other CAD tools:

• Industry-Specific Strengths

Aerospace: CATIA is widely used by companies like Boeing and Airbus because of its

ability to handle large, complex assemblies and ensure high precision in aircraft design.

Automotive: Major car manufacturers like BMW and Tesla use CATIA for body design, crash simulation, and ergonomic analysis.

Example: Boeing used CATIA to design the 777 and 787 Dreamliner, making it the first commercial aircraft developed entirely through digital prototyping [7].

 Advanced Surface Modeling and Complex Geometry

CATIA's Generative Shape Design (GSD) module enables the creation of high-quality surfaces, making it ideal for designing complex products like luxury car exteriors and ergonomic consumer products.

This is a key advantage over SOLIDWORKS, which is more suited for parametric modeling of simpler mechanical parts.

Example: Ferrari uses CATIA for aerodynamically optimized car body designs, ensuring both performance and aesthetics [8].

• High Performance in Large Assemblies

CATIA can handle assemblies with thousands of parts more efficiently than competitors like SOLIDWORKS, making it essential for industries that require large-scale designs.

Example: The International Space Station's modular components were designed using CATIA, ensuring compatibility across international partners.

2. METHODS

2.1 Radius bone

The radius presented in Figure 1 is one of the two long bones in the forearm, located on the lateral (thumb) side. It runs parallel to the ulna and plays a crucial role in wrist and forearm movement. The radius is involved in rotation (pronation and supination), allowing the hand to turn palm up or down. It connects to the elbow at the radial head and to the wrist at the distal end, forming part of the wrist joint.

Fig. 1. Radius Bone

A wrist implant is needed to replace a damaged or diseased wrist joint, typically due to arthritis, severe fractures, or joint degeneration. It helps restore mobility, reduce pain, and improve function when the natural joint is no longer effective. Wrist implants are often considered when other treatments, like medication or physical therapy, no longer provide relief.

2.1 Catia V5R19 workbench

The Part Design workbench allows users to create solid models using parametric modeling techniques [9]. It provides a feature-based approach, enabling the construction of complex geometries through basic operations like extrusion, revolution, filleting, and patterning. The sketcher tool helps define 2D profiles, which can be transformed into 3D models. Constraints and dimensions ensure design accuracy, making it easy to modify components without starting from scratch [10].

The Generative Shape Design (GSD) workbench specializes in advanced surface modeling, allowing designers to create complex freeform shapes [11]. Using tools like sweeps, lofts, fillets, and multi-section surfaces, users can develop aerodynamic structures and ergonomic designs. Association with the Part Design workbench enables seamless transitions from surfaces to solid models [12]. GSD is essential for automotive, aerospace, and industrial design applications where aesthetics and aerodynamics play a crucial role.

The Assembly Design workbench enables users to bring multiple parts together to create functional assemblies [13]. Constraints such as coincidence, contact, offset, and angle help in positioning components precisely. Users can analyze assembly behavior, check for interferences. perform kinematic and simulations to ensure seamless integration of parts [10]. The ability to work with bottom-up or top-down assembly approaches enhances design flexibility [11].

2.2 Design the radius implant

Step 1. Create a Sketch on the YX Plane, draw the profile according to Figure 2 and apply the required dimensions as specified in the figure. Once the profile is complete and fully constrained, exit the sketching mode. Create the solid using Pad Definition. Set the thickness to 3mm, select Mirrored Extent as the extrusion option. Click OK to confirm and generate the solid.

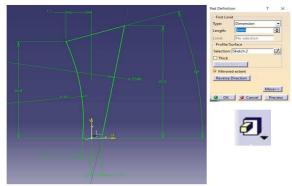


Fig. 2. Create Sketch profile and solid

Step 2. Apply Edge Fillet Definition on the edges according to Figure 3. Set the Radius at 2mm.

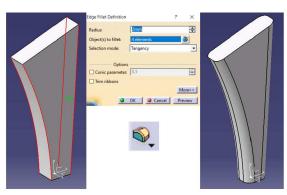


Fig. 3. Add radius

Step 3. Apply Shell Definition according to Figure 4. This is used to hollow out a solid body by removing one or more faces while maintaining a uniform wall thickness. Default inside thickness at 1mm and select upper and lower surface to remove.

Step 4. To construct the convex part at the top of the implant, a combination of Part Design and Generative Shape Design (GSD) is required. Inserting a Geometrical Set, navigate to Insert > Geometrical Set to create a new Geometrical Set. Add all necessary sketches and operations related to GSD within this set.

Creating the Reference Plane: Define a plane at 108° from the ZX plane and rotate it around the X-axis Fig 5 a). This plane is essential for

establishing the second offset. Set the second offset at 31.5mm from the previously defined reference plane Fig. 5 b). Create the required sketch on this newly established plane Fig. 5 c).

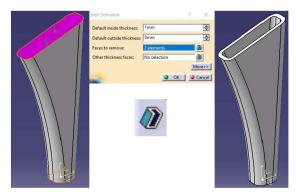


Fig. 4. Shell Definition

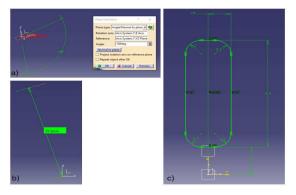


Fig. 5. a) Reference plane. b) Offset plane. c) Sketch

Step 5. Create a new sketch on XY plane Fig. 6. Use Swept Surface Definition from GSD Fig 6b), select Profile Sketch made at Step 4 and Guide curve Sketch presented in Fig 6 a).

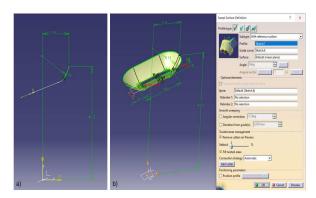


Fig. 6. a) Sketch. b) Swept Surface Definition

Step 6. Use Fill Surface Definition from GSD to close upper and lower side Figure 7.

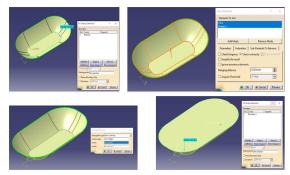


Fig. 7. Fill Surface Definition

Step 7. Apply Join Definition to create a close surface from upper, lower and swept surface made at step 6 presented in Fig 8. a). After this create a New Body from Insert-New Body and apply Close Surface Definition Fig. 8 b), this allows to create a solid from the closed surface made by Join Definition.

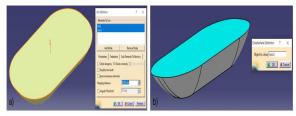


Fig. 8. a) Jion Definition. b) Close Surface Definition

Step 8. Use Boolean operation Add to combine both bodies. First, click on initial body and define in work object activate the body. Right click on second body (Body with close surface in) and chouse the Boolean operation Add shown in Figure 9.

Fig 9. Boolean operation Add.

Step 9. To create the convex geometry, it is necessary to make an offset of surface build by Swept Surface Definition and Fill Surface Definition (lower side) and apply Join Definition on both Fig. 10 a). Apply Split Definition from Part Design workbench and cut the body with the surface presented in Fig. 10 b).

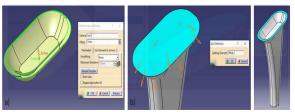


Fig. 10. a) Offset surface. b) Split Definition

Step 10. Use Edge Fillet and create the radius all around conform Figure 11.

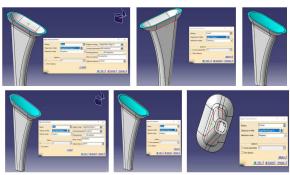


Fig. 11. Add Radius

2.3 Design of the Body-Centered Cubic (BCC) lattice structure

Body-Centered Cubic (BCC) lattice structures are widely studied for their unique mechanical properties, which are significantly influenced by design parameters such as strut diameter. The strut diameter plays a crucial role in determining the stiffness, strength, and overall performance of these lattice structures.

In recent research involving the structural characterization of BCC lattice cells with 1mm diameter struts provides valuable insights. The study observed that the cell density tends to the bulk material's density as the strut diameter increases, affecting the Young's modulus of the lattice. This finding highlights the impact of strut diameter on the stiffness and mechanical behavior of the lattice structure [14].

Implementing lattice structure inside the implant to reduce weight while maintaining strength, improved material efficiency, and enhanced mechanical performance. The structure allows better stress distribution and increases flexibility in design. These structures

are widely used in aerospace, medical implants, and lightweight engineering applications.

In this paper Body-Centered Cubic (BCC) structure is designed and implemented in the hallow implant.

The steps of designing the BCC structure are presented:

Step 1. Create two sketches. One on ZY plane the second on ZY plane, apply dimensions presented in Figure 12 a) and b).

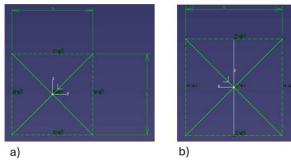


Fig. 12. Base sketches of BCC structure

Step 2. From GSD workbench use Extract definition to extract all four lines conform Figure 13.

Fig. 13. Extract Definition.

Step 3. Create four Normal planes to each line extracted conform Figure 14.

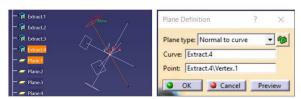


Fig 14. Plane Definition

Step 4. Create a circle with 0.5mm diameter on all four planes Figure 15.

Fig. 15. Circle Definition

Step 5. Apply Rib Definition from Part Design workbench using the circles and extracted lines, Figure 16.

Fig. 16. Rib Definition

Step 6. Cut the BCC cell on two direction using Pocket Definition from Part Design workbench, Figure 17.

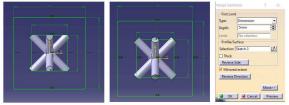


Fig. 17. Pocket Definition

Step 7. Apply 0.5mm radius on the intersection of bins using Edge Fillet Definition, Figure 18.

Fig. 18. Edge Fillet Definition.

Step 8. Apply Rectangular Pattern Definition to multiply the BCC cell on each direction using 5mm spacing, Figure 19.

Fig. 19. Rectangular Pattern Definition

2.4 Implementing BCC lattice structure

To combine the BCC lattice structure with the hallow implant it is necessary to activate the Body of the hallow implant and with right click on BCC structure Body we can choose Boolean Operation called Trim Definition, this allows to combine both bodies and remove the BCC from the exterior as can be seen in Figure 20.

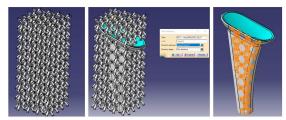


Fig 20. Trim Definition

In Figure 21 the radius implant is presented together with a section through radius bone.

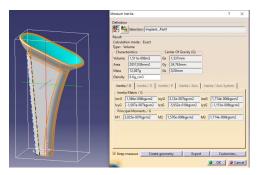
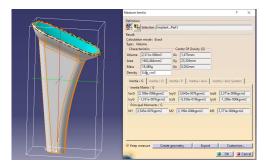


Fig. 21. Radius implant

2.5 Weight comparison of radius implant


To compare the mass and volume of the implant a density of 8.6gcm³ of Cobalt Chromium alloy called Mediloy® S-Co was considered. This biocompatible material is used in 3D printing process through Selective Laser Melting.

Radius implant with BCC structure 12.087g Figure 22.

Fig. 22. Mass and volume of Radius implant with BCC structure

Radius implant full without hallow shape and BCC structure 18.489g, Figure 23.

Fig. 23. Mass and volume of Radius implant without BCC structure and hallow shape.

As can be seen by adding BCC structure the implant weight decreased by 6.402g.

3. COMPARISON AND LIMITATION OF WRIST IMPLANTS

Wrist implants are typically used to restore mobility, stability, and function in patients with wrist arthritis, trauma, or degenerative conditions. The design of these implants varies based on factors such as weight, bio-mechanical performance, and complexity. These elements are essential for optimizing patient outcomes, but they also present challenges that need to be addressed in future advancements.

3.1 Comparison of wrist implants in terms of weight

Weight of wrist implants depends on material selection, most wrist implants are made from titanium alloys, cobalt-chromium, or stainless steel due to their strength, biocompatibility, and resistance to corrosion. These materials tend to be relatively lightweight while still being durable [15].

In comparison, Titanium-based implants are among the lightest options available, with high strength-to-weight ratios that offer durability while reducing stress on the surrounding bones and tissues [16].

Cobalt-chromium Implants are heavier than titanium, but these alloys are known for their high wear resistance and strength, often used in situations where durability is prioritized over weight [15].

3.2 Limitations of wrist implants and potential solutions

Limited Durability and Wear:

Problem: Over time, the friction between moving parts or wear on bearing surfaces can lead to implant loosening or pain [17].

Solution: The use of more advanced bearing materials such as ceramic composites and 3D-printed custom surfaces could significantly reduce wear and improve the lifespan of the implants [18].

Complicated Surgical Procedure:

Problem: The complexity of some designs means that the surgery to implant them requires high skill, and misalignment can cause failure or poor performance (Weiss & Zuckerman, 2016).

Solution: The integration of robotic-assisted surgery could reduce human error and increase the precision of implant placement [19].

Biomechanical Mismatch:

Problem: Current implants often do not replicate the natural motion of the wrist completely, leading to suboptimal functionality [15].

Solution: Ongoing research into more accurate biomechanical models, including those that account for the interaction of tendons, ligaments, and bones, may allow for more natural wrist function [20].

4. CONCLUSION

This study demonstrated the effectiveness of using CATIA V5R19 in designing a customized wrist implant tailored to patient-specific anatomical structures. By leveraging advanced CAD modeling techniques, the implant design was optimized for biomechanical compatibility, weight distribution, and material selection. The integration of a Body-Centered Cubic (BCC) lattice structure further contributed to reducing implant weight while maintaining mechanical strength.

Despite these advancements, additional validation through biomechanical testing is necessary. Future work will focus incorporating Finite Element Analysis (FEA) to evaluate stress distribution, fatigue resistance, structural integrity under and overall physiological loading conditions. This computational approach will enhance the reliability of the implant and contribute to its

clinical viability. Moreover, the integration of additive manufacturing and biocompatible materials will further improve the implant's functionality and long-term performance.

5. REFERENCES

- [1] Smith, J.R., Wang, L., Personalized Medical Implants Using 3D CAD and Additive Manufacturing Technologies, Medical Device Innovations, 15(1), pp. 47-61, 2020.
- [2] Jones, M.E., Patel, R. Advancements in CAD Software for Biomedical Applications: A Review of CATIA and Other Platforms. International Journal of Biomedical Sciences, 12(2), 88-102, 2019.
- [3] Berg, B.A., Zdeblick, T.A. Computer-Aided Design in Orthopedic Implant Development. Journal of Biomedical Engineering, 45(3), pp.-245, 2017.
- [6] Gonzalez, P.R., Li, C. The Impact of CAD/CAM Technologies on the Development of Medical. 2018.
- [4] Gonzalez, P.R., Li, C. The Impact of CAD/CAM Technologies on the Development of Medical Devices. Engineering in Medicine, 10(5), pp. 112-129, 2018.
- [5] Zhang, T., Lin, H. Biomechanical Analysis of Custom Orthopedic Implants: The Role of CAD and Finite Element Modeling. Computational Medicine, 29(4), pp. 201-219, 2021.
- [6] CATIA Dassault Systèmes. *CATIA V5R19* for Biomedical Engineering: Applications and Case Studies. Retrieved from www.3ds.com, 2022.
- [7] Choi, H. Boeing 787: The First Fully Digital Airplane. Aviation Week & Space Technology. 2006.
- [8] Vergne, P. Automotive Aerodynamics and CATIA: Case Studies from Ferrari and McLaren. SAE International, 2012.
- [9] Dassault Systèmes. (n.d.). *CATIA User Guide Part Design Workbench*. Retrieved from https://www.3ds.com
- [10] Sinha, R. *CATIA V5 Design Fundamentals*. McGraw-Hill Education, 2018.
- [11] Dassault Systèmes. (n.d.). Generative Shape Design (GSD) Workbench Overview. Retrieved from https://www.3ds.com

- [12] Tickoo, S. *CATIA V5-6R2021 for Designers*. CADCIM Technologies, 2021.
- [13] Dassault Systèmes. (n.d.). *Assembly Design Workbench in CATIA V5*. Retrieved from https://www.3ds.com
- [14] Andrea Alaimo, Federico Marino, Stefano Valvano. *BCC lattice cell structural characterization*. Reports in Mechanical Engineering 2(1), pp. 77-85. DOI:10.31181/rme200102077v, April 2021
- [15] Buchholz, B., Ueda, Y. *Biomechanics of Wrist Prosthetics: Design and Material Challenges*. Journal of Orthopaedic Research, 33(6), pp. 867-873, 2015.
- [16] Wright, P.S., O'Rourke, T. *Titanium and Cobalt-Chromium Alloys in Orthopedic Implants: A Comparative Analysis of Their Biomechanical Properties and Performance*. Materials Science and Engineering: C, 78, pp. 1033-1042, 2017.

- [17] Jones, L.M., Tan, M. *Implant Wear and Longevity in Total Wrist Replacement: A Review of Current Materials and Designs*. Journal of Hand Surgery (European Volume), 42(6), pp. 675-681, 2017.
- [18] Perry, H.B., Phillips, L.C. 3D Printing in Orthopedic Surgery: A Revolution in Implant Design and Customization. Journal of Orthopaedic Research and Technology, 12(3), pp. 32-39, 2018.
- [19] Roth, C.L., Wada, T. Advancements in Robotic-Assisted Surgery for Wrist Implant Placement. Journal of Robotics and Orthopedic Surgery, 15(4), pp. 250-259, 2019.
- [20] Yao, J.S., Patel, R. Future Trends in Wrist Implant Design: Smart Implants and Adaptive Bio-Mechanics. Journal of Biomedical Materials Research, 108(3), pp. 509-518, 2020.

Metodologie de proiectare pentru un implant radial utilizând Catia V5R19

Acest studiu explorează utilizarea CATIA V5R19 în proiectarea unui implant personalizat pentru încheietura mâinii, destinat aplicațiilor ortopedice. Prin importarea datelor CT, se creează un model 3D specific pacientului pentru a asigura acuratețea anatomică și compatibilitatea biomecanică. Folosind modulele Part Design, Generative Shape Design și Assembly din CATIA, implantul este optimizat pentru stabilitate, mobilitate, selecția materialului și distribuția greutății. Rezultatele demonstrează precizia software-ului în facilitarea proiectării implantului și evaluării mecanice. Această cercetare subliniază potențialul dezvoltării implanturilor asistate de CAD pentru soluții medicale personalizate. Lucrările viitoare vor include materiale biocompatibile avansate și fabricație aditivă pentru a îmbunătăți performanța implantului și aplicabilitatea clinică.

Cuvinte cheie: CATIA V5R19, implant la încheietura mâinii, CAD, design ortopedic, biomecanică.

- **Ștefan Adrian ȚÎMPEA,** PhD student, Assistant Professor, Politehnica University Timisoara, Department of Materials and Manufacturing Engineering, stefan.timpea@upt.ro, +40 748 323 936.
- **Adrian DUME,** PhD, Lecturer, Politehnica University Timisoara, Department of Materials and Manufacturing Engineering, adrian.dume@upt.ro, +40 742 205 712, Correspondent Author
- **Vasile DZITAC,** PhD student, Politehnica University Timisoara, Department of Materials and Manufacturing Engineering, vasile.dzitac@student.upt.ro
- **Cristian COSMA,** PhD, Associate Professor, Politehnica University Timisoara, Department of Materials and Manufacturing Engineering, cristian.cosma@upt.ro
- **Viorel-Aurel ŞERBAN,** PhD, Professor, Politehnica University Timisoara, Department of Materials and Manufacturing Engineering, viorel.serban@upt.ro