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Abstract: On the basis of new formulations, in this paper, a few important dynamics notions, such as 
acceleration energy of first and second order, as well as differential principles from analytical mechanics 
will be analyzed. These have been applied for multibody mechanical systems, such as robots. Initially, in 
this paper the applications of the matrix exponentials in the forward kinematics have been shortly 
presented. Based on D’Alembert-Lagrange principle, written in the generalized form, a few formulations 
on the third order differential equations of motion are described. In the final part of this paper the 
formulations have been applied on a 2TR-type mechanical robot structure.  
Key words: matrix exponentials; dynamics; energies of higher order; multibody systems; robotics 

 
1. INTRODUCTION  
 

The main objective of the paper consists in a 
few formulations about differential principle 
used to determine the differential equations of 
motion for any multibody system (abbreviated 
MBS). From the beginning, it is important to 
determine the geometry and the kinematical 
equations as well as the mass distribution 
parameters. So, the following section is devoted 
to presenting a few considerations regarding the 
forward kinematics and mass properties. The 
kinematical analysis is performed based on 
matrix exponential functions. 

 
2. ADVANCED SYSTEMS KINEMATICS 
 
2.1 Forward in Advanced Kinematics 

Based on new formulations regarding matrix 
exponentials, according to [1] and [2], in the 
following, are defined the forward geometry 
and the kinematics equations, by considering 
aspects from variation principles, applied in 
advanced dynamics of the mechanical system. 

Therefore, the matrix exponentials and their 
associated transformations are included in the 
Algorithm of Matrix Exponential in Forward 
Kinematics (abbreviated MEK), whose main 
steps are described in the following section. 
 

2.2 The Algorithm of Matrix Exponentials 
The matrix of the nominal geometry, 

corresponding to the initial configuration of 
MBS with the screw parameters, also named 
homogeneous coordinates, is completed as: 

( )
( )

( ) ( ) ( ){ }0 0 0 0

1 9
1 1**

T
T T

vn i i in
M Matrix p k v i n

+ ×⎡ ⎤⎣ ⎦

⎡ ⎤= = → +⎢ ⎥⎣ ⎦
 (1) 

where ( ) [ ]{ }0 T T
i i iip x y z=  is the position 

vector of the origin of the system { }i  with 

respect to { }0  frame; ( )0
ik  represents the unit 

vector corresponding to each driving axis [1] 
and [2], 1= →i n , while: 

{ } ( )0 0 0 01( ) ( ) ( ) ( )
i ii i i iv p k k= × ⋅Δ + − Δ ⋅  (2) 

where ( ) ( ){ }1 0, ; ,i if i R if i TΔ = = =  is an operator 
which marks out the type of joint: (R-rotation; 
T-prismatic joint), according to Figure 1. 
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The matrix of the screw parameters iA  is 
unchangeable for any MBS configuration. This 
property is an important advantage in the 
kinematical study of a multibody structure (MBS). 
The expression for this matrix is: 

{ }0 0

0 0 0 0

( ) ( )
ii i

i
k v

A
⎡ ⎤× Δ
⎢ ⎥=
⎢ ⎥
⎣ ⎦

;                         (3) 

    Throughout the paper, the following notations 
are implemented: 

      , , , , , , , , ,i j k m i j k m i j k mq q∗⋅Δ = , 

( ) ( ) ( ) ( )cos ; sini i i ic q q s q q∗ ∗ ∗ ∗≡ ≡         (4) 

and ( )1, T
iq for i nθ = = → , which defines the 

column vector of the generalized coordinates, 
expressing the configuration space, according to 
analytical mechanics. 
 The exponential of the rotation matrix is 
defined, according to [3], by means of the 
following expression: 
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R k q k q I c q

k s q k k c q
(5) 

where ( ){ }0 ×ik  is the skew-symmetric matrix 

associated to the unit vector belonging to every 
kinematical axis.  In the position study based on 
matrix exponentials, a new column vector is 
established, according to [1] and [2]: 
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0
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where, 3I represents the unit matrix. 
 Among the expressions based on matrix 
exponentials for defining the locating 
transformation are mentioned the following: 
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 The exponentials for the locating matrices 
(homogeneous transformation matrix), which 
define the position and the orientation of the 
frames{ }n and { }1+n with respect to fixed 
frame{ }0 , are: 
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 The previous results are further used to 
determine the forward kinematic equations for 
any robot structure. In the following, a few 
expressions from the matrix exponentials 
algorithm in kinematics (MEK) are presented. 
 First, an external loop ( )1= →i n  is opened, 
this yielding to: 

( )
( ) ( ){ }1 0

1
3 3 0

exp
i

i jj
j

ME V k q
− ∗

× =

⎧ ⎫⎪ ⎪= × ⋅∑⎨ ⎬
⎪ ⎪⎩ ⎭

             (11) 
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 Inside expression (13), the terms have the 
following meaning: 
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 Applying a series of matrix transformations, in 
expressions (11) - (13), the following 
exponential expressions are obtained: 
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         (16) 

Equation (16) contains the column vector of 
screw parameters, as well as the position and 
orientation parameters of the robot’s end-
effector. They are included [2] in the Jacobian 
matrix, according to the following expressions: 
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( ) ( ){ }0 0

6
1,i i

n
J t J t i n
×
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where every column is defined as follows: 
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Remark: The Jacobian matrix defined with (17), 
is also known as the transfer velocity matrix. 
 The absolute values for angular and linear 
velocities and accelerations, corresponding to 
any kinetic link ( )1= →i n  from a MBS projected 
on { }0  frame, are determined with: 
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    (23) 

For the transfer of the above kinematical 
parameters from { }0  in { }i  moving frame, the 
next matrix exponential expression is applied: 

( ) { }0 ; ; ; ; ; ;i i
i iV ME R V where V v v vω ω ω= ⋅ = & &&& && (24) 

( ) ( ) ( )( )
110 0

0 expi
i j j j

j i
ME R R k q

−

=

⎡ ⎤⎡ ⎤= ⋅ − × ⋅ ⋅Δ⎣ ⎦ ⎣ ⎦∏ (25) 

 The significance of the symbols from these 
equations is shown by means of (11) – (16). 
 
2.3 The Rotation Motion 

The analysis performed in [2] reveals the 
fact that the absolute rotation of a mobile 
reference system { }n  attached to a rigid body 
( )nS , belonging to a MBS, is defined from 
kinematical point of view by means of the 
rotation matrix, the orientation vector, and by 
the angular velocity and angular acceleration, 
respectively. 
     According to [2] and [4], the orientation 
vector, denoted with ( )Ω t , is defined as follows: 

( )( )11 1 1, ,T
j i iii q j N N i n−− = + →θ = = → (26) 

1 1,
TT

i jj j i−⎡ ⎤θ = θ = →⎣ ⎦  

where, according to (4), jq  defines the 
generalized coordinates that can be either linear 
and/or angular and which are included in the 

1−θii  and θi  represents the column vector of the 
generalized coordinates which characterize the 
degrees of freedom of the rigid body ( )iS , with 
respect to a fixed reference system { }0 . As a 
result, the column vector ( )Ω t is written by 
means of the orientation angle set, thus: 
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( )( )

4

5

6

1
1
1

;
;
;

i iA
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⋅ Δ = →⎛ ⎞α⎛ ⎞
⎜ ⎟⎜ ⎟Ω = β = ⋅Δ = →⎜ ⎟⎜ ⎟ ⎜ ⎟γ ⋅Δ = →⎝ ⎠ ⎝ ⎠

.  (27) 

So, in keeping with the same [2] and [4], it is 
obvious that the resultant rotation is defined 
(from kinematical point of view) by any of the 
twelve sets of orientation angles, this leading to 
the twelve sets of resultant matrices. Thus, the 
general form of the resultant orientation matrix 
for any multibody system can be expressed by: 
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.    (28) 
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 In expression (28), there are included the 
unit vectors of the axes around which simple 
rotations (27) are performed. The mathematical 
significance of the unit vectors is shown below: 
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  (31) 

Applying some properties, according to [2] 
and [4], the components of the simple rotation 
matrices, included in (29), are determined as: 
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 Similar to (32), there can be obtained the 
same expressions for ( ); BR B t⎡ ⎤β⎣ ⎦  and 

( ); CR C t⎡ ⎤γ⎣ ⎦  by substituting the versor A  with 
B  and C , respectively ( )A tα  with the 
corresponding rotation angles  ( )B tβ  and ( )C tγ . 
Substituting the obtained rotation matrices in 
(28) it results an exponential form of the 
expressions, which characterizes the resultant 
rotation matrix.  
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where ( )0
0nR  represents the resultant rotation 

matrix, for the initial configuration, which 
assumes that 0, 1= = →iq i n . 
 The expression for the absolute angular 
velocity, with projections on{ }0 fixed reference 
system, in a generalized form, which takes into 
account the notations from (27) and (31), is 
defined by means of the following matrix:   
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Expression (34) can also be written in the 
following form: 
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     The angular transfer matrix from (35) is 
defined as follows: 

( ) { }0 0 0 0J t A B CΩ = M M          (36) 
     The components of the transfer matrix 
(Jacobian Matrix), defined with (36), have the 
following significance: 
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Taking into account (36), the expression of the 
angular velocity, projected on { }0 fixed system, 
is defined by means of: 
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Applying the first time derivative on (35), it 
results the expression for the absolute angular 
acceleration: 
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 The time derivative of the angular transfer 
matrix is defined as: 

( ) { }0 0 0J t A B Cψ = && && M M ;           (41) 
 The components of angular transfer matrix 
are determined as: 

( )0 0 0=& TA ;                 (42) 

( ){ }

( ) ( ){ }{ }
( ) ( ) ( ) ( ){ }

⎧ ⎫⎡ ⎤= α ⋅ =⎣ ⎦⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬⎡ ⎤= × ⋅α ⋅ =⎣ ⎦⎪ ⎪
⎪ ⎪

⎡ ⎤ ⎡ ⎤⎪ ⎪= × ⋅α ⋅ × ⋅α ⋅⎣ ⎦ ⎣ ⎦⎩ ⎭

&

&

0 ;

exp

exp

A

A

A A

dB R A t B
d t

d A t B
d t

A t A t B

; (43) 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

⎡ ⎤ ⎡ ⎤⎡ ⎤α = × ⋅α ⋅ × ⋅α⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤β = × ⋅β ⋅ × ⋅β⎣ ⎦ ⎣ ⎦ ⎣ ⎦

& &

& &

; exp

; exp

A A A

B B B

R A t A t A t

R B t B t B t
(44) 
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( ) ( ){ }

( ) ( ) ( ) ( ){ }{ }
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎧ ⎫⎡ ⎤ ⎡ ⎤= α ⋅ β ⋅ =⎣ ⎦ ⎣ ⎦⎪ ⎪
⎪ ⎪
⎪ ⎪⎡ ⎤⎪ ⎪= × ⋅α + × ⋅β ⋅ =⎣ ⎦⎨ ⎬
⎪ ⎪

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= × ⋅α ⋅ α ⋅ β ⋅ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎪ ⎪

⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪+ α ⋅ × ⋅β ⋅ β ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

&

&

&

0 ; ;

exp

; ;

; ;

A B

A B

A A B

A B B

dC R A t R B t C
d t

d A t B t C
d t

A t R A t R B t C

R A t B t R B t C

(45) 

 The orientation angles and their derivatives, 
substituted into the generalized expressions 
conduct to (44) and (45), according to the 
meanings of symbols from [2] and [4]. The 
generalized transformations presented above, 
conduct to the set of twelve matrix expressions 
for the angular transfer matrix and the absolute 
rotational angular velocities. 
 
3. ENERGIES OF HIGHER ORDER 
 

The kinetic energy is a fundamental notion 
in systems dynamics being included in the 
Lagrange – Euler equations, based on which the 
dynamic control functions are achieved. 
 
3.1 The Kinetic Energy in Explicit Form 

According to König’s theorem of the kinetic 
energy, this is a sum of two components: the 
first component characterizes the kinetic energy 
in translation motion and the second component 
defines the kinetic energy in the resultant 
rotation motion. The expression is: 

ω ω= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅*1 1
2 2i i

i i T i i T i i
K i C C i i i

E M v v I        (46) 

where, the velocity of the mass center is: 
ω= + ×

i i

i i i i
C i i C

v v r              (47) 

while i
iω  and i

iv  are substituted by (18) – (23). 
Considering Fig. 2, the symbol *i

iI  represents the 
axial and centrifugal inertial tensor of the 
kinetic ensemble relative to the frame applied  
in the mass center iC : 

{ } { }{ }∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

= × ⋅ × =

⎡ ⎤− −
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

∫* Ti i i
i i i

i i i
x xy xz

i i i
yx y yz

i i i
zx zy z

I r r dm

I   I I

 I  I  I   

I   I  I

         (48) 

i

i
C
r  is the position vector of the mass center. 

 
Fig. 2 A kinetic ensemble from MBS 

In the following section, there are presented 
the results of an advanced study performed in 
order to emphasize the higher order energies that 
manifest themselves in certain mechanical 
systems and which correspond to higher order 
accelerations. Therefore, the expressions that 
define the acceleration energy of first order, also 
known as Appell’s function, as well as the 
acceleration energy of second order are 
demonstrated under the explicit form. 
 
 3.2 The acceleration energy of first order 

In keeping with [4] and [7], the acceleration 
energy of first order is defined with: 

( ) ( )1 1 1
2 2

i T T
A i i i iE v v dm Trace r r dm= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅∫ ∫ && &&& & ;(49) 

where i iv r= &&&  represents the absolute 
acceleration of the elementary and infinitesimal 
mass dm , belonging to body, where 1i n= → , 
and the symbol Trace corresponds to a squared 
matrix. Performing a few differentials and 
matrix transformations, presented at large in 
[4], it is obtained the expression for the 
acceleration energy of first order, 
corresponding to a rigid body, which is in fact, 
a component of a MBS, that is: 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ){ }
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) }

1

2

2

2

1 11
1 3 2

1
2

1
2

1
2

m
i i

i i T im
i C CA

m

i T i i i i i
m i i i i i i

i T i i i
m i i i i

i T i T i i
m i i pi i

i T i i i
i pi i i

E M v v

I I

I

Trace I

I

ω ω ω ω

ω ω ω

ω ω ω

ω ω ω

Δ

∗ ∗

∗

∗

∗

− Δ
= − ⋅ ⋅ ⋅ ⋅ +

+ ⋅Δ

⎧ ⎤⎡+Δ ⋅ ⋅ ⋅ ⋅ + × ⋅ +⎨ ⎥⎣ ⎦⎩

+Δ ⋅ ⋅ ⋅ × ⋅ +

⎧ ⎡+Δ ⋅ ⋅ ⋅ ⋅ ⋅ −⎨ ⎣⎩

⎤− ⋅ ⋅ ⋅⎦

& &

& &

&
(50) 

The symbol mΔ from (50) has the meaning: 

elementul i

iC

{ }i

( )−1i

{ }0

dm

i
Cir

i
ir

0
Cir

ip

0
ir

{ }+1i
( )+1i
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{ } { } { }{ }MΔ = -1;Generalmotion ; 0;Translation ; 1;Rotation  
 In the equation above are marked out the mass 
distribution properties, where 

i
M  is the mass 

corresponding to each kinetic link of the robot, 
*i
i

I  is the axial and centrifugal inertial tensor 

(48) and ∗i
pi

I  represents the planar centrifugal 

inertial tensor corresponding to the entire 
kinetic assembly ( )i , relative to frame{ }i , 
applied in the mass center of each link

i
C : 

{ }*

i i i
xx xy xz

i i i T i i i
pi i i yx yy yz

i i i
zx zy zz

I   I I

I r r dm  I  I  I   

I  I  I

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

⎡ ⎤
⎢ ⎥

= ⋅ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ (51) 

[ ] 0
0 0i i i

ii i i i i i i
C i i C i i C

v R v v r rω ω ω∗= ⋅ + + × + × ×& & & &

 
In the same expression 

i

i
C

v& defines the 

acceleration of the mass center, while i
iω , 

i
iω& and i

iv&  are substituted by (18) – (23). 
 
3.3 The acceleration energy of second order 

Therefore, the dynamic analysis requires 
higher order differential, of at least third order. 
Corresponding to those equations, in the 
following the new formulation [4] for the 
acceleration energy of second order is presented: 

( ) ( )2 1 1
2 2

i T i T
A i iE v v dm Trace r r dm= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅∫ &&& &&&&& && ;(52) 

where i iv r= &&&&&  is the absolute acceleration of 
second order for the elementary mass dm , 
belonging to body ( )iS , and 1i n= → : 

( ) ( )
( )

( )
( )

( )

2

1

1

1
2

1 2
2

2

θ θ θ θ

ω ω ω ω ω

ω ω ω

ω ω ω ω

ω ω ω ω

ω ω ω

=

∗ ∗

∗

∗

∗

=
∗

⎡= ⋅ ⋅ ⋅ +⎢⎣

+ ⋅ ⋅ ⋅ + ⋅ ⋅ × ⋅ +

+ ⋅ × ⋅ −

⎤− ⋅ ⋅ ⋅ ⋅ +⎦
⎡+ ⋅ ⋅ ⋅ ⋅ ⋅ +⎣

+ ⋅ ⋅ × ⋅

∑

∑

& && &&& && &&

&& && && &

& &&

&&

& &

&

; ; ;
n

i T i
A i C Ci i

i

i T i i i T i i i
i i i i i pi i

i T i i i
i i pi i

i T i T i i i
i i i i i

n
i T i T i i i

i i i i i
i

i T i T i i
i i i pi

E M v v

I I

I

I

I

I( )
( )

1

1
2

ω ω

ω ω ω ω ω ω∗

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎤⎡ ⎤⎪ ⎪⋅ +⎣ ⎦ ⎦⎪ ⎪
⎡ ⎤⎪ ⎪⎡ ⎤+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑

i i
i i

n
i T i T i T i i i i

i i i i i i i
i

I

(53) 

In the defining equation of the acceleration 
energy of the second order, there are: 

2
i i i

i i

i i i i i i i
C i i C i i C

i i i i i i i
i i C i i i C

v v r r

r r

ω ω ω

ω ω ω ω ω

⎛ ⎞= + × + ⋅ × × +⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞+ × × + × × ×⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

&& && && &

&  

the acceleration of second order of the mass 
center for the kinetic ensemble ( )i , while i

iω , 
i

iω& , i
iv&&  and are substituted by (18) – (23). 

 
4. DIFFERENTIAL PRINCIPLES  
 
    According to previously presented sections, 
the advanced study performed on multibody 
mechanical systems has proved the existence of 
some superior forms of motion energies, 
corresponding to higher order accelerations. 
Therefore, there were determined the 
expressions for the acceleration energy of first 

( )1
AE  and second order ( )2

AE , defined with  (50) 
and (53) in an explicit form that can be applied 
for multibody mechanical systems. Forward 
there are going to be presented new formulations 
regarding the generalized Gibbs - Appell’s 
equations and differential equations of third 
order. They are based on D’Alembert - 
Lagrange’s principle, corresponding to MBS. 
Considering the symbols from the Fig.2, this is 
written below as follows: 

( )
1

1

1 1

n CT i
i Cii j

n T i
i i i i i j

i j

n nCT Ti i
i i j

i ij j

r
M v

q

I I
q

r
F N

q q

ω ω ω

=

∗ ∗

=

∗ ∗

= =

⎧ ⎫∂
⋅ ⋅ +⎪ ⎪

∂⎪ ⎪
⎪ ⎪∂Ω⎪ ⎪+ ⋅ − × ⋅ ⋅ ⋅Δ =⎨ ⎬∂⎪ ⎪
⎪ ⎪∂ ∂Ω⎪ ⎪= ⋅ + ⋅ ⋅Δ

∂ ∂⎪ ⎪⎩ ⎭

∑

∑

∑ ∑

&

&
;  (54) 

According to (26) and (27), the position vectors 
of the mass center and the orientation column 
vector form (54) have the following 
significances: 

( ) ( ), 1 ;C C ji ir t r q t j k= ⎡ = → ⎤⎣ ⎦      (55) 
( ) ( ) , 1i i j jt q t j kΩ = Ω ⎡ ⋅Δ = → ⎤⎣ ⎦ . 

The right member from (54), symbolized as: 

1 1

n nCT Ti i
j i i j

i ij j

r
Q F N

q q
∗ ∗ ∗

= =

∂ ∂Ω
= ⋅ + ⋅ ⋅Δ

∂ ∂∑ ∑ ;      (56) 

is known as the generalized force, see [2] – [8]. 
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4.1 The Generalized Appell’s Equations 
    According to references [5] and [6], the Gibbs 
― Appell’s equations of motion have been 
established by taking into study a discrete 
system of material points, subjected to 
holonomous and nonholonomous linkages. In 
this section, there are presented a few 
formulations regarding the generalized Appell’s 
equations, by extending the study in the area of 
holonomous multibody mechanical systems. 

The expression for the acceleration energy 
of first order (50) is also obtained by applying 
D’Alembert – Lagrange’s principle, in the case 
of the multibody systems [4]. So, after a few 
differential transformations in the left member 
from (54), the acceleration energy of first order 
is a function of the generalized accelerations: 

( )

( )
( )

1 1

1 1
1

1

1 1
2 2

i
Ci

C ii

n n TCT i
i i i i i i j

i ij j
n n

T T
i C i i i

i ij
n

T A
i i i i

i j

r
M v I I

q q

M v v I
q

E
I

q

ω ω ω

ω ω

ω ω ω

∗ ∗

= =

∗

= =

∗

=

∂⎧ ⎫∂Ω
⋅ ⋅ + ⋅ + × ⋅ ⋅ ⋅Δ⎪ ⎪∂ ∂⎪ ⎪

⎪ ⎪⎡∂⎪ ⎪= ⋅ ⋅ + ⋅ ⋅ +⎢⎨ ⎬∂ ⎣⎪ ⎪
⎪ ⎪∂⎤
⎪ ⎪+ ⋅ × ⋅ =⎥ ∂⎪ ⎪⎦⎩ ⎭

∑ ∑

∑ ∑

∑

& &

& & & &
&&

&
&&

(57) 

Therefore, the differential equations of 
mechanical motion for the multibody system are 
in fact a generalization of the Gibbs –Appell 
equations: 

( )1
1,C CA

j
j j j

E d E E Q where j k
q dt q q

∗∂ ∂ ∂
= − = = →

∂ ∂ ∂&& & (58) 

In keeping with [7], the differential equations 
(58) can be obtained, using the development: 

( )

( ) ( )1
1 1

1 2, , ,

m

C C
m

j

C C
j

j j

j

E Em
m q

d E E Q where m
dt q q

q
+

∗

⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥⋅ − + ⋅ =

∂⎢ ⎥
∂⎢ ⎥⎣ ⎦

∂ ∂
= − = =

∂ ∂
K

&

(59) 

In this paper, a new formulation is proposed: 

( )
( )

( )

( ) ( ) ( ) ( )
( )

( )

1
1

1

0
1 1 12; ; ; ; , ,

m

j jC CA
g g jm

j j

j
m A A

j

E d E EQ Q Q
dt q q

Q t t t E E m

q

−

∗
+

∂ ∂ ∂
+ = − + = =

∂ ∂
∂

⎡ ⎤= = =⎣ ⎦

&

& && Kθ θ θ

(60) 

In the above equations, the symbol ( )m  
represents the order of the time derivative. But, 
unlike (59), the development (60) is based on 
the acceleration energy of first order. In these 
equations, the symbols j

gQ  and j
mQ are the 

generalized gravitational and driving forces, 
according to [2] and [4]. 
 
4.2 The differential equations of third order 
   In order to determine the differential 
equations of third order, a few considerations 
must be done. The starting equation is (54). 
Applying a few differential transformations, the 
D’Alembert – Lagrange’s principle is changed: 

( ) ( )

( )
1 1

1

1
0

ω ω ω

ω ω ω

∗ ∗

= =

∗ ∗ ∗

=

∗ ∗ ∗

=

∂ ∂⎛ ⎞
− ⋅ ⋅ + − ⋅ ⋅ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∂Ω⎡ ⎤+ − ⋅ + × ⋅ ⋅ ⋅Δ +⎢ ⎥ ∂⎣ ⎦
⎛ ⎞∂Ω⎡ ⎤+ − ⋅ − × ⋅ ⋅ ⋅Δ =⎜ ⎟⎣ ⎦ ⎜ ⎟∂⎝ ⎠

∑ ∑

∑

∑

& && &

& &

&

i i
i i

n nC C
i i C i i C

i ij j
n

i
i i i i i i j

i j
n

i
i i i i i i j

i j

r rdF M v F M v
q dt q

dN I I
dt q

dN I I
dt q

(61) 

where, iF ∗&  and iN ∗&  represent the first time 
derivative of the components of the torsor of 
active forces. Applying some differential and 
matrix transformations, as in [4] in (61), it 
results the following expression: 
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(62) 

According to [4], it can be remarked that the right 
member from (62) contains the acceleration 
energy of second order (53), but in this case, it is 
defined as a function of the generalized 
accelerations of second order as follows: 
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 (63) 

   The differential equations of motion, based 
on acceleration energy of second order, can be 
defined in the following form: 

( ) ( ) ( )

( )

2 1 1

12
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1
2

1
2

⎧ ⎫∂ ∂ ∂
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∂ ∂ ∂⎪ ⎪
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               (65) 

Considering the mathematical connection 
between the kinetic energy and acceleration 
energy [4], finally, the differential equations of 
third order are defined under the form: 
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(66) 

where j
gQ&  and j

mQ& are the first time derivative of 
the generalized gravitational force and the first 
time derivative of the generalized driving force. 
 Considering the expressions (60), for the 
differential equations of third order, the next 
development is also proposed: 
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where the symbol ( )m  represents the order of 
the time derivative, applied on the acceleration 
energy of first and second order. 
 
5. APPLICATIONS OF FORMULATIONS 
ON THE DIFFERENTIAL PRINCIPLES 
 

It is considered the mechanical structure of 
a 2TR serial robot, whose kinematical 

structure is represented within of the Fig. 3. 
The robot performs two translations: along 0x  
and 0z  axes and a rotation around 0z . It is 
required to determine the moving differential 
equations based on differential principles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The kinematical results are included into [3]. 

As a result in this paper, the kinetic energy under 
the explicit form is shown: 
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The acceleration energy of first order in the 
same explicit form shows as: 
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In the above expressions there are included the 
mass properties, where: 1M , 2M and 3M  
represent the masses of the kinetic ensembles, 

zI is the mechanical axial moment  of inertia on 
z axis and 3

xxI , 3
yyI  are the mechanical planar 

moments of inertia of the third kinetic ensemble 
of the 2TR serial robot. Considering the 
variational principles from analytical 
mechanics, the dynamics equations can be also 
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Fig. 3 The Kinematical Structure for 2TR Robot 
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obtained by means of the differential 
expression for the kinetic energy. This is 
shown, for 2TR serial robot, as follows: 
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Taking into account the above considerations, 
the differential expression for the acceleration 
energy of first order for the 2TR serial robot is: 
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The symbol δ  from (70) and (71) has the 
significance of virtual differentiation operator. 
Considering (58) and (60), and then performing 
the calculus, the differential motion equations 
of the second order for the 2TR serial robot are: 
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Expressions (72)-(74) highlight the generalized 
driving forces, characterizing the dynamic 
behavior of the 2TR serial robot structure. 
 The acceleration energy of second order for 
the same 2TR serial robot structure is: 
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This expression is obtained by applying (53). In 
the following, using (63), (65) and (67) the 
equations for the first time derivatives of the 

generalized driving forces are determined. They 
are written in the next mathematical form: 
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The equations (76)-(78) are also differential 
equations of third order that define the 
mechanical motion of the analyzed serial robot. 
 
6. CONCLUSIONS 
 
  Within this paper, a few new formulations 
regarding advanced dynamics of multibody 
systems have been presented. In order to 
achieve this goal, in the first part of the paper, 
the forward kinematics equations of multibody 
systems have been presented as an algorithm. 
These equations have been developed using 
matrix exponentials that have undeniable 
advantages in the matrix study of any complex 
mechanical system. The study continued in this 
paper with the use of exponentials to find the 
resultant rotation matrix in a generalized form. 
The kinematic parameters expressions from the 
first part of the paper were used to express the 
energies of higher order. Therefore, new 
formulations for acceleration energy of first and 
second order were presented in this paper in an 
explicit form. The same expressions of energies 
of higher order mentioned above were then 
established using the D’Alembert-Lagrange’s 
principle for multibody systems. Therefore, the 
paper presented a generalization of Gibbs-
Appell’s equations identical as expression with 
Lagrange’s equations of second kind. Using the 
differential principle of D’Alembert-Lagrange, 
the third order differential equations of motion 
were established. In order to illustrate the 
essentials of higher order energies expressions, 
in the third part of the paper, an application 
regarding dynamics equations in the case of a 
serial structure for a robot of 2TR-type was 
presented. As a result of this application, the 
expressions of generalized driving forces of 
second order that have the generalized 
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accelerations of second order as components, 
have been established in the symbolical form. 
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Formulări în dinamica avansată a sistemelor 

 
 
Rezumat: În cadrul acestei lucrări sunt analizate, pe baza unor noi formulări, niște noțiuni importante de dinamică, 
cum ar fi energia accelerațiilor de ordinul întâi și de ordinul al doilea, precum și principii diferențiale din mecanica 
analitică. Acestea au fost aplicate pentru sisteme mecanice multicorp, cum ar fi roboții. La începutul lucrării, a fost 
prezentată pe scurt aplicarea funcțiilor exponențiale de matrice. Având la bază principiul lui D’Alembert-Lagrange în 
formă generalizată, au fost descrise câteva formulari ale ecuațiilor diferențiale de mișcare de ordinul al treilea. În partea 
finală a acestei lucrări, formulările au fost aplicate asupra structurii robotice de tipul 2TR. 
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