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DYNAMICS EQUATIONS FOR A CAR INSPECTION MOBILE STRUCTURE 
 

Iuliu NEGREAN, Claudiu SCHONSTEIN, Kalman KACSO 

 
Abstract: The paper is devoted to establishing the dynamics equations, by an analysis of kinematic and 

dynamic behavior, for a mobile robot, called RmITA. Based on geometric modeling of the structure, there 

will be determined the kinematic constraints that affect the structure. Also, the mathematical model used 

to determine the dynamics equations, will be based on new concepts in advanced mechanics, based on 

important scientific researches of the main author, concerning the acceleration energy. In keeping the 

fact that the mathematical models of the mobile platforms are different besides the other robots types, due 

to no holonomic constraints, the dynamic control functions, will be established according to restrictions 

for motion. 

 Key words: mobile robots, dynamics equations, control, acceleration energy, no holonomic constraints. 

 

1. INTRODUCTION  
 

The development of robotic systems and 

their implementation in the various processes of 

the manufacturing or inspection, have 

undeniable advantages, highlighted by carrying 

goods, inspections of quality in less time, 

increasing labor productivity, accident 

prevention, all these issues having an important 

contribution to enhancing the quality of life and 

economic development of the users of these 

systems. In the paper, is considered a mobile 

structure, presented in the Fig. 1, able to help 

the human operator in cars inspection, by 

collecting data and send information to a 

computer after which, will be reviewed by an 

inspector, who will conclude about the state of 

the car.  

 

 

 

 

 

 

 

 

 

 

 

The robot is characterized by a differential 

shift commonly used in moving mobile robots. 

The structure is equipped with pan-and-tilt 

camera, characterized by two degrees of 

freedom, consisting in two rotations as can be 

seen from Fig.1. 

The drive wheel is done in pairs, so that the 

two wheels on each side are driven by a motor. 

Thus, the proposed differential robotic system is 

characterized by four wheels, powered by two 

engines on each side of the structure. Based on 

these considerations, a straight line movement 

of the movable mechanical structure is 

obtained when the pair of wheels on one side 

rotates at the same speed and in the same 

direction, with the other pair of wheels on the 

opposite side (see Fig.2). 

 

 

 

 

 

 

 

 

 

 
Fig.2 – Straight line motion of the inspection robot 

Fig 1 The RmITA Robot Structure  
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The orientation of the robot is achieved by 

moving the robot wheels on one side in one 

direction, for example, the movement of the 

other two wheels in the opposite direction, as 

can be seen in Fig.3.  

 

 

 

 

 

 

 

 
a. Turning right 

 

 

 

 

 

 

 

 

 
b Turning left 

 

Fig.3 – The orientation of the inspection robot 

Thus the desired trajectories can be obtained 

by changing the angular speed and/or direction 

of the wheels on each side. 

According to it’s configuration the RmITA 

is considered a mobile robot that move over a 

plane, hence, it`s configuration space has two 

translational and one rotational degree of 

freedom; the rotation axis is perpendicular to the 

translations. The common characteristic of the 

robot is that cannot autonomously produce a 

velocity which is transversal to the axle of it’s 

wheels, this constraint being a nonholonomic 

constraint. In other words, the vehicle cannot 

move transversally instantaneously, but it can 

reach any position and orientation by moving 

backward and forward while turning.  

 

2. THE EXPRESSIONS FOR GEOMETRY 

AND KINEMATICS FOR RmITA ROBOT 
Mobile robots are performing a plane-

parallel motion, so that the law of motion, 

relative to the fixed reference system is: 
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The above relation contains three 

independent parameters, characterizing the 

position and orientation of the mobile robot, 

therefore the mobile robot in finite 

displacement has three degrees of freedom, as 

can be observed from Fig. 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The inverse matrix representing the orienting 

of fixed reference frame with respect to mobile 

frame, is presented according to [1], [2] as: 
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where c cosi iq q= , and sini isq q= . 

According to Fig. 4 the independent 

parameters which characterizing the geometry 

of the robot in finite displacements are: 

 ( ) ( ); 1 5 .
T

iX t q t i= = →       (3) 

The column vector of operational velocities, 

which expresses the absolute movement of the 

mobile robot is: 

 [ ]0
1 2 3 ;

T T
p pX x y q q qθ = = 

& & & & && &  (4) 

If the movement of mobile structure is 

achieved only after Rx  axis, resulting that the 

sliding on the Ry  axis is not possible in 

infinitesimal displacements, the velocity vector 

has the following form: 0
T

R R R
pX x ω =

 
&

& , and 

Fig.4 The independent parameters for      

RMITA robot 
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as a result, it appears the sliding constraint 

along Ry  axis. 

After a few transformations, there are 

resulting the velocities of characteristic point P 

projected onto the fixed reference system as: 
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In keeping with the constraints, according to 

Fig. 1 there can be written the kinematical 

constrains that are applied in the system, which 

can be expressed in the next differential relations: 

Table 1 

Nr. The kinematical restrictions for RmITA 
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In the above expressions, the first equation is 

provided to prevent the translation along the 

axis Ry  of the platform, the equations two and 

three require a pure rolling without slipping of 

the driving wheels, four and five restrict the 

sliding along the 3 4,y y , axes respectively of the 

front wheels, and the last two imposing a roll 

without slipping of the driven wheel. 

It results from the previous table that there are 

five link relations between the seven elementary 

displacements, so there are two independent 

parameters in elementary displacements, hence it 

results that the robot is subjected to no holonomic 

constraints. 

3. ACCELERATION ENERGY FOR 

RmITA  MOBILE ROBOT  
 

In order to establish the dynamics equations 

there is used as starting point the Lagrange-

Euler equations for nonholonomic links [2], [3]: 
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where tot

A
E  represents the total acceleration 

energy of the mobile robot, while j
f

Q , i
gQ and 

i
mQ are the generalized friction,  gravitational 

and driving forces. In the same equations iλ  

represent undetermined Lagrange parameters, 

while ija are considered the coefficients of the 

elementary displacements jdq . 

According to [2]-[4], the acceleration energy 

from (6), is expressed as: 
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 In the previous expression, M  is the mass 

corresponding to mechanical system, *i
iI  which 

is the axial centrifugal inertia tensor and i
piI  the 

inertia tensor planar centrifugal that 

characterizes the entire kinetic assembly ( )i , 

relative to the frame{ }i , applied in the mass 

center of each link iC . In the same expression, 
i

Ci
v and i

Ci
v& are the velocity and the acceleration 

of mass center, i
iω and i

iω&  are the angular 

velocity and acceleration of the kinetic link ( )i  

relative to the moving frame { }i . 

For the considered mobile robot, the 

acceleration energy is rewritten as: 
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where pl
A

E  represents the acceleration energy of 

the robot without wheels, and i
AE  is the 
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acceleration energy of the robot]s wheels. In 

keeping with (7) and(8), the acceleration energy 

for RmITA, is: 
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where, rfM and rsM are the mass of the back 

respectively of the front wheels, plM  the 

mass of the mobile platform, plI∆  is the 

inertia moment of the robot, rsI∆  and rfI∆  the 

inertia moment of the back and front wheels 

with respect to zO  axis. 
 

4. THE STUDY OF GENERALIZED 

FORCES ACTING ON RmITA ROBOT  
 

To determine generalized frictional forces, 

RmITA mobile system is considered as one 

body, as presented in Fig.5. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.5 – The generalized forces 
 

So, based on fundamental theorems of 

Newtonian dynamics (or the principle 

D`Alembert), according to the theorem of 

solidification, is written the fictional dynamic 

equilibrium equations in relation to the 

reference system located at the point P, 

expressed as follows: 
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In (10), according to Fig.5, 4,5
mQ  are the 

driving moments of the; rfN  normal reaction of 

the front wheels; rsN normal reaction on the rear 

wheels; rf
f rf rfQ r Nµ= ⋅ ⋅  moments of friction on 

the front wheels; rs
f rs rsQ r Nµ= ⋅ ⋅  moments of 

friction on the rear wheels; ( )7
7 72f fQ d Nµ= ⋅ ⋅  

moment of friction of the driven wheel, and fd  

is the diameter of the shaft where is fixed the 

driven wheel, and: 
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According to [4], the gravitational driving 

forces are determined with: 
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The system of differential equations of motion 

characterizing the movement of RmITA is 

presented in tabular form, according to Table 2. 

 

4. DYNAMICS EXPRESSIONS FOR THE 

MOBILE ROBOT 
 

Based on the expressions of Table 2, 

representing the dynamic equations of the robot 

RMIT is noted that in the direct dynamic 

analysis, the unknowns are the generalized 

coordinates{ }; 1 7jq j = →  and Lagrange 

multipliers ; 1 5i iλ = → , and for the and inverse 

dynamic analysis (dynamic control), the 

unknowns are the generalized driving 

moments{ }; 4 5j
mQ j = → . 
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As follows from the above considerations, 

the dynamic model of a mechanical structure is 

represented analytically by a system of 

differential equations that define the linkages 

between the generalized coordinates 

{ }; 1 7jq j = → , or their derivatives and 

generalized forces acting on each element of 

the mechanical structure. 
Table 2 

 

In the study of dynamic control functions of 

a structure, based on structure movement on a 

determined trajectory, to achieve some points, 

velocities and accelerations imposed by 

working task, the driving system must 

overcome the generalized external 

technological and gravitational forces, which 

are usually specific to mechanical transmissions 

or structure of the mechanical system. The 

dynamics equations of the robot RmITA 

presented in Table 2, are highlighting the 

complexity of dynamic control problem. The 

motion of the mobile structure has to be studied 

considering the fact that the structure, to 

achieve the target point, cannot simultaneously 

realize the positioning (translation) and 

orientation, so the two movements will be 

analyzed independently. 

To perform a rectilinear translational 

motion, in accordance with its constructive 

structure, an essential condition derives from 

the fact that moments motors driving the 

wheels must be equal, { }4 5
m mQ Q=  deducted from 

the following equivalences: 
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Table 2 with ( )3cq , and the second with ( )3sq  
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contained in the expression (12), follows: 

( ) ( )1 3 2 3 2 5c s 22pl rf rsM M M q q q q λ λ+ + ⋅ ⋅ + ⋅ =⋅ ⋅ +&& && (13) 

There is introduced the notation: 

1 3 2 3
4,5

1 3 2 3
6

c s
;

c s

rf
rf

rs
rs

q q q q
q

r

q q q q
q

r

ε

ε

⋅ + ⋅
= =

⋅ + ⋅
= =

&& &&
&&

&& &&
&&

          (14) 

with the observation that { }ε  takes the first 

expression in the case of translation along 1q or 

the value of the second term of (14) when the 

RmITA robot moves along 2q . 

Substituting ( ) ( ){ }4 , 5 , the driving moment’s 

expressions for translation are: 
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In order to realize a translation, it must 

( ){ }1 2, .q q cst= , resulting that: 

( ) ( ){ }1 2 1 2, 0, , 0q q q q= =& & && &&              (16) 

Due to mechanical constitution as illustrated in 

Fig. 4, another condition for achieving 

orientation structure is { }4 5
m mQ Q= −  that in 

keeping with Table 2, leads to the following: 
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This, involving the following equalities: 
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According to restriction ( ){ }4  from Table 1, and 
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deduced: 
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resulting that: 
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Substituting the expressions (16)-(20) in Table 

1, after dividing with ( )7cq  results: 

No The differential motion equations for RmITA 
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From ( ){ }5  belonging to Table1 and taking into 

account (16)results: 
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The expressions for the driving moments in 

the case of orientation for the RmITA mobile 

robot are: 
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Also, in the two aforementioned expressions, 

it is observed that total driving moment, has a 

static component i
msQ , which is due to weight of 

the mechanical system, the resistance forces 

and a dynamic component i
mdQ . Thus, the total 

driving moment is expressed as: 

( ){ }, 4,5i i i
m ms mdQ Q Q i= + =            (24) 

The generalized variables found in the moving 

equations that express motion of the mobile 

system, will be replaced by polynomial function 

of time according to the working process, where 

is implemented RmITA structure. 

 

6. CONCLUSIONS 
 

In the paper there were determined the 

dynamic control functions for a mobile 

platform RmITA. For this, in achieving the 

differential equations of motion that 

characterizes the mobile structure, first there 

were used the geometry equations, leading to 

direct kinematic model. Based on this, by 

calling the specific dynamic equations of 

mechanical systems with holonomic links, are 

resulting the expressions which are governing 

the differential motion in configuration space 

for  RmITA mobile platform. 
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Ecuatiile dinamicii pentru un robot mobil utilizat in inspectii auto 
 

Lucrarea este dedicată stabilirii ecuatiilor dinamicii, printr-o analiză a comportamentului cinematic si dinamic, pentru 

un robot mobil, numit RmITA. Pe baza modelării geometrice a structurii, exista constrângeri cinematice care afectează 

structura, care o integrează în clasa sistemelor mecanice neolonome. De asemenea, modelul matematic utilizat pentru a 

determina ecuatiile dinamicii, se bazează pe noi concepte in mecanica avansat, pe baza unor cercetări stiintifice 

importante ale autorului principal, în ceea ce priveste energia acceleratiilor. In conformitate cu faptul că modelele 

matematice ale platformelor mobile sunt diferite fata de celelalte tipuri de roboti, datorită constrângerilor cinematice, 

funcțiile de control dinamic, vor fi calculate în funcție de restricțiile de mișcare. 
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