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Abstract: The work presents a model with five degrees of freedom of the human body subjected to external
vibration. It analyzes the mobility of material system assimilated to the human body. It shows the
corresponding simulation of a model note 5-SPP, which is composed of two feet, which is on a vibrating
platform, which transmit the movement to the pelvis. In this paper is analyzing the stability of mechanical
system human body equated for each segment separately. Each foot has two segments, and the fifth is the
pelvis. From the study, shows that the movement of each segment is stable, so it does not cause malfunctions

of the body over which it has conducted this study.
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1. INTRODUCTION

Vibration exposure causes a general
complex distribution action of forces and
oscillatory movements in the human body.

The location and nature of the sensations can
widely vary depending on the vibration
frequency, the vibration direction and other
factors. Whole-body vibration results in the
workplace or experiments using a vibrating
platform.

This can causes unpleasant sensations giving
rise to discomfort, capacity reduction (eg.:
decreased visual acuity) or is even a health risk
(eg.: tissue destruction or physiological changes)

[2].

2. MECHANICAL MODEL WITH FIVE
DEGREES OF FREEDOM

Mechanical body model represents a
human body in standing position, sitting on a
rigid support from which the oscillation takes
movement. The body is divided in five masses,
respecting the anatomical position of the
elements. It takes into account only the
translational motion along the axis Oz; the
rotational motion does not occur. So the model
has five degrees of mobility. To simplify the
model we have renamed S5-EPP (bring five

equations corresponding to the two legs with to
segments each of them and pelvis).
Table 1.
Model characteristics coefficients [1]

Characteristics Measurement | Value
Name Symbol Unit

elasticity coefficient | ki=k4 N/m 25500
elasticity coefficient | ko=ks N/m 53640
elasticity coefficient | k3=ke N/m 8941
damping coefficient | ci=cs4 Ns/m 378
damping coefficient | ca=cs Ns/m 3651
damping coefficient | c3=ce Ns/m 298
tibia mass mi=m4 Kg 3,57
femur mass m2 =ms Kg 4,17
pelvis mass m3 Kg 16,17

Input signal is based on two harmonics and has
the form for one leg:
u(t)=cri+kju (1)
This is the same and for the second leg. In this
situation:
kiu and k4u - spring forces transmitted from
the tibia due to the excitation foot;
cu=c4u — forces of damping for the
excitation foot.
kju =kgu =kjug sinot = 310006107 sin ot = 1.86sin ot (2)
C4U =c,4U =cqupmcos ot = 3)
=3970 -6-107° - 147.18 cos wt = 35 cos ot

where:
o = 2xnf = 147.18 rad/s;
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f=123.437 Hz - frequency vibration;
uo = 6x107° m - excitation amplitude.

2.1 The system of differential equations

Mass balance equations system (4) for each
mechanical mass components (mi, mz, m3, m4,
ms) are write to obtain the mathematical model
for the mechanical model from figure 1. The
body is considered in standing position on a
vibrating platform.

tibia and
fihula

Tw:t)

Fig. 1 Simplified mechanical models of human pelvis and legs
with five degrees of mobility

The equations system is:

my 7 =—¢ (2 —0) —kq (2 —u)+c5 (2, =2 )+

k2(22 _Zl)

Moy =—o(29 —21) k(29 ~2y J+3(23—25 )+
+ks(23-2,)

my7, =—C4(74 —u)—ky(z4 —u)+cs(z5 —24 )+
+ks(z5—24) )
Ms7s =—Cs(zs —74) —Ks(25 ~24)+cg(23 —25)+
+k6(z3 —25)

My =—c3(73~25) ka2~ 25 )+c6(23—25) -
—kelz3-25)

¢ pass all member two unknown derivatives
in the left side:

m;z, +01(21 —1'1)+k1(z1 —u)—02(22 —21)—

‘kz(Zz _Z1)=0

My +Cy2y —2y) + Ky (20 —2;) — 523 — 7,) -
_k3(Z3 —22):0

myz, +C4(i4 —ﬁ)+k4(Z4 —u)—Cs(is _24)—
—ks(z5 —2,)=0 (5)
Ms7Zs +Cs(2s —2,) + ks (25 —2,) — g2 — 25) -
_ks(z3 _Z5)=0

My +¢3(25 = 2,) + k325 = 2y) — (25 — 25) 4
+kq(z3 —25)=0

e unknown system by adding the following
differential equation becomes:

myZ; +2,(cy +¢5)+2,(k; +ky) -2y —kyz, =

=c;u+ku

M7y +725(cy +03) = a2y +25 (ks +k3)—kyzy —

—C323—k323 =0

myZ, +i4(04 +05)+z4(k4 +k5)_0525 -

-kszs =c,u+k,u ©)

myis +zs(c5 +c6) 524 +25(ks +kg ) -

—ksz, —c4z27 —kgz5 =0

msZ; +i3(c3 +06)_C3iz +Z3(k3 +k6)_

_k322 _C6Z5 _k6Z5 = O

The (4) system can be written in matrix form.

M-+l {3 +{K] {2 ={u) (7)
where:
[M] — matrix of inertia coefficients;
[C] — damping coefficients matrix;
[K] - stiffness matrix coefficients;
{Z} — displacements vector;

{z}- velocities vector;
{Z} — accelerations vector;

{u} — forced excitation vector (external)
Those expressions are:

'm;, 0 0 0 0]
0 my 0 0 O
M]=fo 0 my, 0 O (8)
0 0 0 mg O
0 0 0 0 my]




z)
zy
ta}=1z, ©9)
Zs
Zy
[c,+c, —c, 0 0 0
—C, Cp+C3 —Cj 0 0
cl=] o 0 0 Cy+tCs  —Cj
0 0 —Cq —Cs C5+Cgq
0 —-c3 C3+cg 0 —C¢ |
(10)
z)
zy
{t}=12, (11)
Zs
z3
[k, +k, -k, 0 0 0 |
-k, k,+k; -—kj 0 0
K]=| o 0 0  k,+ks —kjg
0 0 -k¢ -k  ks+kg
0 -k;  ky+kg 0 -k¢ |
(12)
7
Z2
{e}=12 (13)
Zs
23
ug(t)
0
tf=1u, () (14)
0
0
us(t =cu+kju
but u(t

=cyi+ku (15)

e is given as (isolated), higher order derivatives
with respect to each unknown quantity, and
results the system of scalar differential
equations;
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ml +k2Z2 _k2Z1
. 1 _CZZ2 +C2Z1 _k2Z2 +k2Z1 +C3Z3‘
Z, =— .
I‘Il2 _C3Z2 +k3Z3 _k3Z2
Zy=—
4 .
i 1 _05Z5 +CsZ4 _k5Z5 +k5Z4 +C6Z3‘
55— .
ms | —CeZs +kez3 —Kgzs
3= .
m3 _+06Z5 _k6Z3 +k6Z5

(16)
e state two are grouped as unknown second
derivatives to achieve the same connections
1 —21(01 +cz)-|-cll'1—zl(kl +k2)+k1u+}

Z,= )
m, |+c¢,2, +kyz,
g m, | +c¢32; +k3z;
. 1 _—24(04 +05)+c41'1—z4(k4 +k5)+k4u+
Z4 = .
my [ +¢s525 +Ksz5
5. = 1 _—25(05+06)+CSZ4—ZS(k5+k6)+k524+
5= .
ms | +cez; +Kkgz;5
5 1 [—2;5(c5 +cg)¥cyzy —z5(ky +kg)+kyz, +
3= .
mj | +CgZs +Kkezs

(17)
e the introduction of excitation (requesting)
system of differential equations:

1 {—il(cl+cz)+clu0(x)coscot— }

7, =—
"om, |z, (ky 4Ky )+ 4k ug sinot+c,7, +k,yzy
1 —7,(cy+c3)Hcyz2 —2,(ky +k3)+
? m, | K,z ++c32;5 + k52,
5 1 _—24(04+05)+c4u00)cosu)t—z4
Y my | (ky +ks)+kgugsinot+cszs +kszs
5 -1 —75(cs +cg)Heszy —z5(ks +kg )+
: ms | kKszy ++C6Z5 +kezs
;1 —75(cy +cg)tcszy —25(ksy +kg)+
3= .
m; | k3z, ++cgz5 +kezs

(18)

3. THE 5-EPP CORRESPONDING
PROGRAMME MECHANICAL
MODEL OF THE HUMAN
OPERATOR
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Fig. 2 Subsystem z; 5-EPP program properly
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Program calculates velocity and movement
system elements shown in the figures below.
Integration time of 10 seconds was considered.
Integration was performed with Runge-Kutta
method of fourth order using Simulink software
package. Each equation is modelled separately.
Thus each subsystem corresponds to an entire
model. For displacement equation z;, was
obtained from the modelling system diagram
shown in Figure 2, and follows as in Figure 3 for
72, in Figure 4 for z3, in Figure 5 for z4, and in
Figure 6 for zs.
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Fig 5 Subsystem z4 5-EPP program properly
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Fig. 6. Subsystem zs 5-SPP program property
3.1 Graphical representations

Figure 7 and 8 corresponds to the variation of
travel time for z; and z4 generalized coordinate,
Figure 9 and 10 correspond to the z; and zs
generalized coordinate, and Figure 11 is for the
z3 generalized coordinate.
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3.2. The stability of the mechanical system
assimilated to the human body

Knowing the time variation law for each
generalized coordinate and its velocity, as
integration results of the differential equations
system (18), the combination between them
(coordinate and velocity) shows us the motion
stability for the given part of the human body
under the action of the external vibration.
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Fig.12 System stability for z; coordinate
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Fig.16 System stability for zs coordinate
4. CONCLUSION

1. The human body is a natural system, can
be considered as a material system having three
mechanical characteristics: mass, elasticity and
dumping.

2. The human body can be approximate all
or divided in different parts, function of the
direction of study, or function of the necessary
results.

3. In this paper the idea was to consider the
human body formed with five different parts:
two legs (with two segments each of them) and
pelvis. The name was established as 5-SPP. This
study was necessary for the comparison with the
experiment that follows.

In terms of approximating the human system
with five degrees of mobility, as expected is seen

in table element corresponding mj3 pelvis area,
the elements still receives signals from both legs
of the human operator. The result obtained by
integrating the system of differential equations
is 3x107m if the pelvis (m3), 1,2 x10* (m)) and
2x10”m (m4) for tibia, 2,1 x10”m (m2) and
2,1x10”m (ms) to femur. Symmetrical system
should equal out, which turned out.
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Studiul mobilititii corpului uman prin modelare mecanica

Rezumat: Lucrarea prezinta un model mecanic cu cinci grade de libertate al corpului
uman supus la vibratii exterioare. Se analizeazd mobilitatea sistemului material asimilat
corpului uman. Se prezintda simularea corespunzdtoare unui model notat 5-SPP, care este
compus din cele doua picioare, care se spijind pe o platformd vibratoare, care transmit
miscarea la pelvis. In lucrare se analizeaza stabilitatea sistemului mecanic asimilat
corpului uman, pentu fiecare segment in parte, fiecare picior are doud segmente, iar cel
de al cincilea segment este pelvisul. Din studiul efectuat, rezultd cd miscarea fiecdarui
segment este stabild, deci nu produce disfunctionalitdati corpului asupra cdruia s-a

efectuat acest studiu.
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