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Abstract: In the case of the multibody systems (MBS), as example the mechanical robot structure, a few simplifying 

hypotheses, referring to mass properties, are implemented. According to these, the mass properties are continuously 
distributed between the fixed basis and the last kinetic ensemble from mechanical structure. As a result, in the 
dynamical study of MBS, the author of the paper has introduced the phrase “mass distribution” instead of mass 
geometry, typically too rigid solid. Mass distribution is based on the mass as fundamental notions in analytical 
dynamics of systems. At its turn, mass together with energy highlight the matter notion. But, mass is also highlighted by 
means of the two properties: gravitation and inertia. According to fundamental theorems from Newtonian dynamics, in 
the case of the translation motion the inertia property is highlighted by mass and position of the mass center. In the 
case of the resultant rotation motion the inertia property is characterized by mechanical moments of inertia and 
extension of these properties, known as inertial tensors and pseudoinertial tensors. Their matrix expressions are 
compulsory included in the dynamical notions like: kinetic energy, acceleration energy, angular momentum and their 
time derivatives according to differential equations of higher order, typically to analytical dynamics of systems. 

Key words: analytical dynamics, mechanics, mass distribution, dynamics equations. 

 

1. INTRODUCTION 
 

The multibody systems (MBS), and as 

result the mechanical robot structure, are 

characterized through the mass properties 

continuously distributed between the fixed basis 

and the last kinetic ensemble from mechanical 

structure [2] and [3]. Consequently, the author of 

the paper has introduced, in the dynamical study, 

the phrase “mass distribution” instead of mass 

geometry, typically too rigid body. Physically, 

mass distribution (MD) is based on the mass. At 

its turn, mass and energy highlight the matter 

notion. But, mass, as fundamental notion in 

analytical dynamics, is also highlighted by 

means of the two properties: gravitation and 

inertia. According to fundamental theorems 

from Newtonian dynamics, in the case of the 

translation motion the inertia is highlighted by 

mass and position of the mass center. In the case 

of the resultant rotation motion the inertia 

property is characterized by mechanical 

moments of inertia (Leonard Euler, 1758 year) 

and extension of these properties, known as 

inertial tensor and pseudoinertial tensor [2] and 

[8]. Their matrix expressions are compulsory 

included in the dynamical notions like: angular 

momentum, kinetic energy, acceleration energy 

of higher order, as well as their time derivatives, 

according to differential equations of higher 

order, typically to analytical dynamics [1] - [9]. 

In this paper, using the author researches, 

the properties of mass distribution (MD – type) 

will be developed [2] - [8]. In view of this, a 

few simplifying hypotheses are compulsory 

applied. So, every kinetic ensemble, belonging 

to MBS, is considered a rigid body, see Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 Kinetic Ensemble from MBS 
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In the same time, MD – type properties are 

based on mass and geometrical integrals. These 

can be applied, in exclusivity, in the case of the 

homogeneous bodies with a simple or regular 

geometrical shape. But, any homogeneous body 

is characterized by the constant density in the 

infinity of elementary mass ( )dm  continuous 

distributed inside of its geometrical shape: 

{ }V A Ldm dV ; dA ; dLρ ρ ρ= ⋅ ⋅ ⋅ .           (1) 

According to set (1), mass ( )dm  and density are 

functions of geometry of the homogeneous body. 

Usually, every kinetic ensemble is a compound 

body with non-regular geometrical shape, for 

which mass integrals cannot be applied. As 

example, the kinetic ensemble i 1 n= →  (Fig. 1) 

belonging to MBS is considered. Its 

geometrical shape shows as Fig. 2 and Fig.3. 

 
Fig.2 Kinetic Ensemble 
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Fig.3 Kinetic Ensemble discomposed 

 

As a result of the above aspects, every kinetic 

ensemble i 1 n= →  is discomposed in a finite 

number of homogeneous bodies with a simple 

or regular geometrical shape, symbolized: 

( ) ( )j i∈ , ij 1 p= → , and ip N (natural numbers )∈ . 

On the basis of the above considerations and the 

formulations of the author, in this paper the MD 

– type properties will be develop: mass and 

position of the mass center, mechanical 

moments of inertia (axial, planar, polar and 

centrifugal moments of inertia), inertial tensor 

and its generalized variation law, pseudo inertial 

tensor, as well as the algorithm of the mass 

properties corresponding to MBS. Among of 

these, inertial tensor is a squared matrix of the 

mechanical moments of inertia, while the 

pseudoinertial tensor is a squared matrix of mass 

moments of zero, first and second order [2]. 

2. MASS. POSITION of MASS CENTER 
 

Considering the geometrical and mass 

aspects from the first section, for define mass 

and position of the mass center corresponding 

to a kinetic ensemble i 1 n= → , in the first step 

this is divided in ij 1 p= →  homogeneous body 

( ) ( )j i∈  with a simple geometrical shape [2]. 

So, for beginning mass and position of the mass 

center is determined for every homogeneous 

body ( ) ( )j i∈ , represented as example in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Homogeneous Body ( ) ( )j i∈  
 

To this body is attached a Cartesian frame{ }j , 

and then is discomposed in infinity of 

elementary mass ( )dm  continuous distributed 

inside of its geometrical shape. One out of these 

is positioned through j
jr . The total mass is: 

jm dm= ∫ ;                            (2) 

where ( )dm  is substituted by (1) in function of 

geometry of the body. According to [2] and [4], 

the position of the mass center is defined with: 

j

j
jj

C

j

r dm
r

m

⋅
=
∫

.                         (3) 

But, the position of the mass center jC  must be 

determined to frames { }i  or { }0  corresponding 

to kinematical structure of MBS. As a result, 

the expressions are written below as follows: 
( ) ( ) ( ) [ ]

j j

0 i0 i 0 i j
C j Cj
r r R r= + ⋅ ;                 (4) 

( )
( ) [ ] jj

0 i j
0 i CC

j

rr
T

11

   
= ⋅   

    
;                 (5) 
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where sometimes { } { }
OR OR

j i≡  is recommended. 

According to [2], the symbol:
( ) [ ]
0 i

j
R and 

( ) [ ]
0 i

j
T  

expresses the rotation and respectively locating 

matrix between frames { }j and { }i  or{ }0 (Fig.4). 

When the above expressions (2), (3), (4) or (5) 

are applied for all bodies ij 1 p= → , then mass 

and position of the mass center of the kinetic 

ensemble i 1 n= →  will be determined below as: 
ip

i j j

j 1

M mσ
=

= ⋅∑ ,                       (6) 

where             ( ) ( ){ }j 1, j i ; 0; j iσ = ∈ ∉ ;           (7) 

( )

( )
i

j

i

p
0 i

j C j

j 10 i

C

i

r m

r
M

σ
=

⋅ ⋅

=

∑
,                  (8) 

[ ]i i

0 i
0C C
i

r r
T

1 1

   
= ⋅   

   
.                    (9) 

Expression (6) is devoted to establishment the 

total mass of the kinetic ensemble, while (8) or 

(9) is corresponding to position of mass center. 

 

3. INERTIAL TENSOR for RIGID BODY 
 

When the kinetic ensemble i 1 n= → , from 

MBS, is characterized by the resultant rotation 

motion, then the inertia property is highlighted 

by mechanical moments of inertia and extension 

of these properties, known as inertial tensor and 

pseudoinertial tensor [2] - [4]. Similarly with the 

previous section, for beginning the above inertia 

properties will be determined in the case to 

every homogeneous body ( ) ( )j i∈ , example Fig.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Homogeneous Body ( ) ( )j i∈  

Every homogeneous body ( ) ( )j i∈  was analyzed 

from view point of the mass (2) and position of 

the mass center (3), (4) or (5). As a result, mass 

jm  and mass center jC  are well defined. In 

keeping with Fig.5, mass center jC  is the origin 

for three concurrent frames, below presented: 

{ } { } { } { } { }{ }j OR OROR OR
C j ; i i ; 0 0∗ ∗∈ ≡ ≡ .    (10) 

Considering the formulations of the author, a 

few symbols and notations are implemented: 

{ } { } { }j j j j j j j j j j j ju x ; y ; z ; v y ; z ; x ; w z ; x ; y= = = (11) 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

0 i 0 i 0 i 0 i

j j j j

j j j j

i 0 i 0 i 0 i 0

u x ; y ; z

u x ; y ; z

 = 
 

=  

,            (12) 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

0 i 0 i 0 i 0 i

j j j j

j j j j

i 0 i 0 i 0 i 0

v y ; z ; x

v y ; z ; x

 = 
 

=  

,             (13) 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

0 i 0 i 0 i 0 i

j j j j

j j j j

i 0 i 0 i 0 i 0

w z ; x ; y

w z ; x ; y

 = 
 

=  

;            (14) 

where (11) are Cartesian coordinates or axes, 

while (12), (13) and (14) are the unit vectors 

between frames { }j and { }i  or{ }0 , respectively 

between { }i  or{ }0  and { }j . On the basis of the 

above notations, the rotation matrix is written: 

( ) [ ] ( ) ( ) ( )
( )

( )

( )

j T

i 0

0 i 0 i 0 i 0 i j T
j j j i 0j

j T

i 0

x

R x y z y

z

 
 

 = =     
  

,     (15) 

( ) [ ]

( )

( )

( )
( ) ( ) ( )

0 i T
j

0 i T 0 i T j j j
j i 0 i 0 i 0j

0 i T
j

x

R y x y z

z

 
 

 = =    
  

.     (16) 

The body ( ) ( )j i∈  is discomposed in infinity of 

elementary mass ( )dm  continuous distributed 

inside of its geometrical shape. According to 

Fig. 5, one out of these is positioned through: 
T

j j j j
j j j jr x y z∗ ∗ ∗ ∗ =   ,              (17) 

and obviously there are ( )( )0 i j

jr dm 0∗ ⋅ =∫ ,     (18) 

as well as     ( )
( )

j

0 i

j0 i

C

j

r dm
r

m

⋅
=
∫

;                     (19) 

( ) ( ) [ ] ( ) [ ] ( )0 i 0 i T0 i 0 ij j
j j j jj j

r R r ; r R r∗ ∗ ∗ ∗= ⋅ = ⋅   (20) 

where (17) and (20) are the position to frames: 
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{ } { } { }{ } jj ; i ; 0 C∗ ∗ ∈ . 

Expression (20) is rewritten below as follows: 
( )

( )

( )

( )

( )

( )

0 i j T
j i 0

0 i j T j
j ji 0

0 i j T
j i 0

xx

y y r

z z

∗

∗ ∗

∗

  
  

= ⋅  
  
     

.              (21) 

Another notation, compulsory applied in this 

study, is the skew symmetric matrix associated 

to position vector (17), as well its transpose: 
j j

j j

j j j
j j j

j j
j j

0 z y

r z 0 x

y x 0

∗ ∗

∗ ∗ ∗

∗ ∗

 −
 

 × = −  
 
−  

,            (22) 

T
j j

j jr r∗ ∗   × = − ×    .                  (23) 

Whereas the inertia properties must defined to 

{ }i or{ }0 , elementary mass is also positioned as: 

( ) ( ) ( ) [ ]
j

0 i0 i 0 i j
j C jj

r r R r ∗= + ⋅ ;                (24) 

( ) [ ]
( ) [ ] ( )

[ ]( )

j

0 i 0 i

C0 i j

j

1 3

R r
T

0 1
×

 
 =
 
 

,                  (25) 

( ) [ ]

( ) [ ] [ ]( )

( )
j

0 i T

j 3 10 i T

j 0 i T
C

R 0
T

r 1

×
 
 =
 
  

,               (26) 

( )
( ) [ ]

0 i j
0 i jj

j

rr
T

11

∗   
= ⋅   

  
;                       (27) 

where (27) with (25) shows the position of 

elementary mass in homogeneous coordinates. 

 Since every homogeneous body ( ) ( )j i∈  is 

considered with simple geometrical shape, the 

mass and geometrical integrals are applied as: 

( )j j 2 j 2
u j j

j j j j j 2
uv j j uu j

I v w dm

I u v dm; I u dm

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 = + ⋅ 
 

= ⋅ ⋅ = ⋅  

∫
∫ ∫

.    (29) 

So, axial, centrifugal and planar mechanical 

moments of inertia with respect to { } jj C∈  are 

known, and they are included in the next set: 

( ) ( ){ }j j j
u uv uu iI ; I ; I ; where j 1 p ; j i∗ ∗ ∗ = → ∈ .    (30) 

 

Considering the author formulations, in the next 

step must be determined axial, centrifugal and 

planar mechanical moments of inertia with 

respect to { } { }{ } ji ; 0 C∗ ∗ ∈ , according to set: 

( ) ( ) ( ) ( ) ( ){ }0 i 0 i 0 i

ju juv juu iI ; I ; I ; where j 1 p ; j i∗ ∗ ∗ = → ∈ (31) 
 

The moment of inertia is a mass integral, [2] - [9]. 

It is applied on the product between mass ( )dm  

and the squared distance to an axis or plane, thus: 
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

0 i 0 i 0 i2 2 2
ju ju j j

0 i 0 i 0 i 0 i 0 i 2
juv j j juu j

I dm v w dm

I u v dm; I u dm

δ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 = ⋅ = + ⋅ 
 

= ⋅ ⋅ = ⋅  

∫ ∫
∫ ∫

(32) 

The distance from mass ( )dm  to an axis having 

as unit vector ( )
j

i 0
u  (see Fig. 5) is determined as: 

( )
j j

ju ji 0
u rδ ∗ ∗= × ,                         (33) 

( )( ) ( )( )
( ) ( )

T
2 j j j j

ju j ji 0 i 0

T
j T j j j

j ji 0 i 0

u r u r

u r r u

δ ∗ ∗ ∗

∗ ∗

 
= × ⋅ × = 

 
    = ⋅ × ⋅ × ⋅    

.      (34) 

As a result, considering (32) and (34), axial 

mechanical moment of inertia is defined thus: 
( )

( ) { } ( )

0 i 2
ju ju

T
j T j j j

j ji 0 i 0

I dm

u r r dm u

δ∗ ∗

∗ ∗

 = ⋅ =
 
 

   = ⋅ × ⋅ × ⋅ ⋅     

∫

∫
.   (35) 

But, the mechanical moments of inertia, from 

(32), can be obtained on basis of coordinates 

included in the transfer matrix expression (21): 
( )

( )
( )

( )
( )

( )

0 i j T j
j ji 0

0 i j T j
j ji 0

0 i j T j
j ji 0

u u r

v v r

w w r

∗ ∗

∗ ∗

∗ ∗

 = ⋅
  

= ⋅ 
 

= ⋅  

;                (36) 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

0 i 2 j T j j T j
j j ji 0 i 0

0 i 2 j T j j T j
j j ji 0 i 0

0 i 2 j T j j T j
j j ji 0 i 0

u u r r u

v v r r v

w w r r w

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 = ⋅ ⋅ ⋅
  

= ⋅ ⋅ ⋅ 
 

= ⋅ ⋅ ⋅  

.       (37) 

The squared distance from mass ( )dm  to the 

mass center jC  is characterized by expression: 

( ) ( ) ( )

( ) ( )

0 i 0 i 0 i2 2 2
j j j

0 i 0 iT j T j
j j j j

u v w

r r r r

∗ ∗ ∗

∗ ∗ ∗ ∗

 + + = 
 

= ⋅ ≡ ⋅  
.           (38) 

The matrix ( )3 3× , from (37), is identical with: 

T
j j T j T j j j

j j j j 3 j jr r r r I r r∗ ∗ ∗ ∗ ∗ ∗   ⋅ = ⋅ ⋅ − × ⋅ ×    .  (39) 

Substituting (39) in (37), expressions become: 
( )

( ) ( )

0 i 2 j T j
j j j

T
j T j j j

j ji 0 i 0

u r r

u r r u

∗ ∗ ∗

∗ ∗

 = ⋅ − 
 

   − ⋅ × ⋅ × ⋅     

,       (40) 

( )

( ) ( )

0 i 2 j T j
j j j

T
j T j j j

j ji 0 i 0

v r r

v r r v

∗ ∗ ∗

∗ ∗

 = ⋅ − 
 

   − ⋅ × ⋅ × ⋅     

,       (41) 
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( )

( ) ( )

0 i 2 j T j
j j j

T
j T j j j

j ji 0 i 0

w r r

w r r w

∗ ∗ ∗

∗ ∗

 = ⋅ − 
 

   − ⋅ × ⋅ × ⋅     

;      (42) 

( ) ( ) ( ) ( ) ( )

( ) ( )

0 i 0 i 0 i 0 i 0 i2 2 T 2
j j j j j

T
j T j j j 2

j j jui 0 i 0

v w r r u

u r r u δ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

 + = ⋅ − = 
 

   = − ⋅ × ⋅ × ⋅ ≡     

. (43) 

Therefore, using either (34) or (43), the axial 

mechanical moment of inertia (35) is rewritten: 

( )
( ) { } ( )

T0 i j T j j j
ju j ji 0 i 0

I u r r dm u∗ ∗ ∗   = ⋅ × ⋅ × ⋅ ⋅   ∫ .  (44) 

Mass integral from (35) or (44) is symbolized: 
T

j j j
j j j

j j j
x xy xz

j j j
yx y yz

j j j
zx zy z

I r r dm

I I I

I I I

I I I

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

    = × ⋅ × ⋅ =    
  − − 
  

= − −  
  

− −    

∫

,         (45) 

( )
( )
( )

j j 2 j 2
x j j

j j 2 j 2
y j j

j j 2 j 2
z j j

I y z dm

I z x dm

I x y dm

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 = + ⋅
  

= + ⋅ 
 

= + ⋅  

∫
∫
∫

,           (46) 

j j j
xy j j

j j j
yz j j

j j j
zx j j

I x y dm

I y z dm

I z x dm

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 = ⋅ ⋅
  

= ⋅ ⋅ 
 

= ⋅ ⋅  

∫
∫
∫

.              (47) 

In the matrix (45), the main diagonal contains 

(46) named axial moments of inertia, while 

symmetrically and negative to main diagonal are 

(47) known as centrifugal moments of inertia. 

So, according to [2], [3] and [4], the matrix of 

inertia moments (45) is known as inertial tensor 

axial and centrifugal of the body ( ) ( )j i∈  with 

respect to { }j  applied in the mass center jC . 

 Considering the inertial tensor, symbolized 

by (45), the axial mechanical moment of inertia 

with respect to { } { }{ } ji ; 0 C∗ ∗ ∈  is determined as: 

( )
( ) ( )

0 i j T j j
ju ji 0 i 0

I u I u∗ ∗= ⋅ ⋅               (48) 
 

( )

( ) { }

( )

( )

( )

0 i

jx

0 i 0 i

ju jy
3 3

0 i

jz

I

Diag I , u x; y ; z I

I

∗

∗ ∗

×
∗

  
      = = =     

    

 

( )

( )

( )

( )

( ) ( ) ( )

j T

i 0

j T j j j j
ji 0 i 0 i 0 i 0

3 3
j T

i 0

x

Diag y I x y z

z

∗

×

   
   
     = ⋅ ⋅      

      

;(49) 

 

( )

( )

( )

( )

( ) ( ) ( )

( )

( ) [ ] ( ) [ ]{ }

j T

i 0

j T j j j j
ji 0 i 0 i 0 i 0

3 3
j T

i 0

0 i 0 i Tj
jj j

3 3

x

Diag y I x y z

z

Diag R I R

∗

×

∗

×

   
   

     ⋅ ⋅ =           
 

= ⋅ ⋅ 
 

.(50) 

Using (31) and (32), in the following the 

centrifugal moment of inertia is determined as: 
( ) ( ) ( )

( ) ( )

0 i 0 i 0 i

juv j j

j T j j T j
j ji 0 i 0

I u v dm

u r r dm v

∗ ∗ ∗

∗ ∗

 = ⋅ ⋅ = 
 

= ⋅ ⋅ ⋅ ⋅  

∫
∫

.         (51) 

The matrix ( )3 3× , defined by (39) is rewritten: 

T
j j T j T j j j

j j j j 3 j jr r r r I r r∗ ∗ ∗ ∗ ∗ ∗   ⋅ = ⋅ ⋅ − × ⋅ ×    .  (52) 

This is substituted in (51), and it changes thus: 
( )

( ) ( )

( ) ( )

0 i j T j j T j
juv j j i 0 i 0

T
j T j j j

j ji 0 i 0

I r r u v

u r r v dm

∗ ∗ ∗

∗ ∗

 = ⋅ ⋅ ⋅ − 
    − ⋅ × ⋅ × ⋅ ⋅      

∫
,    (53) 

 

( ) { } ( )

( ) ( )
( )

T
j T j j

j ji 0 i 0

0 ij T j j
j juvi 0 i 0

u r r dm v

u I v I

∗ ∗

∗ ∗

    − ⋅ × ⋅ × ⋅ ⋅ =    
 
 = − ⋅ ⋅ =
 

∫
; (54) 

where (45) was substituted. Considering (15) 

and (16), centrifugal moments of inertia become: 
( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

( ) ( ) ( )

( )

( ) { }

0 i 0 i

jxy jxz

0 i 0 i

jyx jyz

0 i 0 i

jzx jzy

j T

i 0

j T j j j j
ji 0 i 0 i 0 i 0

j T

i 0

0 i

ju
3 3

I I

I I

I I

x

y I x y z

z

Diag I , u x ; y ; z

∗ ∗

∗ ∗

∗ ∗

∗

∗

×

  − −
  
  − − =
  
 − −    
  

  
  
    = ⋅ ⋅ −

   
  
  

  − =
   

,  (55) 

( ) ( )

( ) ( )

( ) ( )

( ) [ ] ( ) [ ]

( )

( ) [ ] ( ) [ ]{ }

0 i 0 i

jxy jxz

0 i 0 i

jyx jyz

0 i 0 i

jzx jzy

0 i 0 i Tj
jj j

0 i 0 i Tj
jj j

3 3

I I

I I

I I

R I R

D iag R I R

∗ ∗

∗ ∗

∗ ∗

∗

∗

×

  − −
  
  − − =
  
 − −    
 
 
 = ⋅ ⋅ −
 
 − ⋅ ⋅
  

.       (56) 

So, (50) and (56) are included in the matrix of 

axial and centrifugal moments of inertia thus: 

( ) ( ) ( )

( ) [ ] ( ) [ ]

T
0 i 0 i 0 i

j j j

0 i 0 i Tj
jj j

I r r dm

R I R

∗ ∗ ∗

∗

    = × ⋅ × ⋅ =     
 = ⋅ ⋅ 
 

∫ ,     (57) 
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( ) ( ) [ ] ( ) [ ]
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 i 0 i T0 i j
j jj j

0 i 0 i 0 i

jx jxy jxz

0 i 0 i 0 i

jyx jy jyz

0 i 0 i 0 i

jzx jzy jz

I R I R

I I I

I I I

I I I

∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 = ⋅ ⋅ =
 
  − −   

 = − − 
  
− −    

.        (58) 

The matrix (57) and (58) as developed form is 

named inertial tensor axial and centrifugal of 

the body ( ) ( )j i∈  relative to { } { }{ } ji ; 0 C∗ ∗ ∈  

applied in the mass center jC . In the same time, 

the expressions (57) and (58) represent the 

variation law of the inertial tensor with respect 

to concurrent frames in the mass center jC . 

On the basis of (31) and (32), in the following 

the planar moment of inertia is studied with: 
( ) ( )

( ) ( )

0 i 0 i 2
juu j

j T j j T j
j ji 0 i 0

I u dm

u r r dm u

∗ ∗

∗ ∗

 = ⋅ = 
 

= ⋅ ⋅ ⋅ ⋅  

∫
∫

.           (59) 

Substituting (52) in (59) and performing the 

mass integrals, the following matrix is obtained: 
j j j T

pj j j

j j j
xx xy xz

j j j
yx yy yz

j j j
zx zy zz

I r r dm

I I I

I I I

I I I

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 = ⋅ ⋅ =
 

   
  

=   
  
    

∫

.            (60) 

The matrix of inertia moments (60) is known as 

inertial tensor planar and centrifugal of the 

body ( ) ( )j i∈  to { }j , applied in mass center jC . 

Considering the inertial tensor, symbolized by 

(60), the planar mechanical moments of inertia 

with respect to { } { }{ } ji ; 0 C∗ ∗ ∈  are determined as: 

( )
( ) ( )

0 i j T j j
juu pji 0 i 0

I u I u∗ ∗= ⋅ ⋅ ;            (61) 
 

( )

( ) { }

( )

( )

( )

0 i

juu
3 3

0 i

jxx

0 i

jyy

0 i

jzz

Diag I , u x ; y ; z

I

I

I

∗

×

∗

∗

∗

  = =
  

 
  

  
  =
  
    

,        (62) 

( )

( ) { }

( )

( )

( )

( )

( ) ( ) ( )

0 i

ju u
3 3

j T

i 0

j T j j j j
p ji 0 i 0 i 0 i 0

3 3
j T

i 0

D iag I , u x ; y ; z

x

D iag y I x y z

z

∗

×

∗

×

  = =
  

 
   
        = ⋅ ⋅     
      

(63) 

( )

( )

( )

( )

( ) ( ) ( )

( )

( ) [ ] ( ) [ ]{ }

j T

i 0

j T j j j j
p ji 0 i 0 i 0 i 0

3 3
j T

i 0

0 i 0 i Tj
p jj j

3 3

x

D iag y I x y z

z

D iag R I R

∗

×

∗

×

   
   

     ⋅ ⋅ =           
 

= ⋅ ⋅ 
 

(64) 

On the basis of (55) and (56), in which (60) is 

substituted, the centrifugal moments of inertia 

are determined below with the expressions: 
( ) ( )

( ) ( )

( ) ( )

( ) [ ] ( ) [ ]

( )

( ) [ ] ( ) [ ]{ }

0 i 0 i

jxy jxz

0 i 0 i

jyx jyz

0 i 0 i

jzx jzy

0 i 0 i Tj
pjj j

0 i 0 i Tj
pjj j

3 3

I I

I I

I I

R I R

Diag R I R

∗ ∗

∗ ∗

∗ ∗

∗

∗

×

  
  
   =
  
    
 
 
 = ⋅ ⋅ −
 
 − ⋅ ⋅
  

.            (65) 

Thus, (64) and (65) are included in a matrix of 

planar and centrifugal moments of inertia as: 
( ) ( ) ( )

( ) [ ] ( ) [ ]

0 i 0 i 0 i T
pj j j

0 i 0 i Tj
pjj j

I r r dm

R I R

∗ ∗ ∗

∗

 = ⋅ ⋅ = 
 

= ⋅ ⋅  

∫
,           (66) 

( ) ( ) [ ] ( ) [ ]
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 i 0 i T0 i j
pj pjj j

0 i 0 i 0 i

jxx jxy jxz

0 i 0 i 0 i

jyx jyy jyz

0 i 0 i 0 i

jzx jzy jzz

I R I R

I I I

I I I

I I I

∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 = ⋅ ⋅ =
 
     

 = 
  
    

.          (67) 

The matrix (66) and (67) as developed form is 

named inertial tensor planar and centrifugal of 

the body ( ) ( )j i∈  relative to { } { }{ } ji ; 0 C∗ ∗ ∈  

applied in the mass center jC . In the same time, 

the expressions (57) and (58) represent the 

variation law of the inertial tensor with respect 

to concurrent frames in the mass center jC . 

Often the fundamental notions and theorems, 

from analytical dynamics, are applied under the 

matrix form. So, the position vectors from (60) 

are written by means of the homogeneous 

coordinates. It obtains a new matrix as follows: 

( )

[ ]( )

[ ]( )

j
j j Tj

p s j j

j j T j
j j j

j T
j j

j
p j 3 1

j1 3

r
I r 1 d m

1

r r d m r d m

r d m m

I 0

0 m

∗
∗ ∗

∗ ∗ ∗

∗

∗

×

×

  
= ⋅ ⋅ =  

  
 
  ⋅ ⋅ ⋅  = = 

  ⋅
  

  
  =
  
  

∫

∫ ∫

∫

.    (68) 
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where (18) is substituted. It contains inertial 

tensor planar and centrifugal (60), as well mass 

of the body. This matrix is pseudoinertial tensor 

relative to { }j , applied in the mass center jC . 

Similarly with (58) and (67), for pseudoinertial 

tensor relative to { } { }{ } ji ; 0 C∗ ∗ ∈  it obtains next: 

( )
( )

( )( )

( ) ( ) ( )

( )

( ) [ ]( )

[ ]( )

0 i
0 i 0 i Tj

p s j j

0 i 0 i 0 iT
j j j

0 i T
j j

0 i

p j 3 1

j1 3

r
I r 1 d m

1

r r d m r d m

r d m m

I 0

0 m

∗
∗ ∗

∗ ∗ ∗

∗

∗

×

×

  
= ⋅ ⋅ =  

  
 
  ⋅ ⋅ ⋅  = = 

  ⋅
  

  
  =
  
  

∫

∫ ∫

∫

.  (69) 

where the conditions (18) are substituted again. 

But, (69) can be written in another matrix form: 

( ) [ ]
( ) [ ] [ ]( )

[ ]( )

0 i

0 i j 3 1

j

1 3

R 0
T

0 1

∗ ×

×

 
 =
 
 

,              (70) 

( ) ( ) [ ] ( ) [ ]
0 i 0 i T0 i j

psj pjj j
I T I T

∗ ∗∗ ∗= ⋅ ⋅ .          (71) 

So, the squared matrix ( )4 4×  symmetrical and 

positive defined (69) or (71) is considered the 

variation law of the pseudoinertial tensor with 

respect to concurrent frames in mass center jC . 

 

4. VARIATION of INERTIAL TENSOR 
 

In the previous section the inertial tensor 

axial and centrifugal as respectively planar and 

centrifugal together with its variation law 

relative to concurrent frames in mass center jC , 

as well as pseudoinertial tensor have been 

determined by means of definition expressions. 

Consequently, for every homogeneous body 

( ) ( )j i∈  with simple geometrical shape [2], the 

mass properties are known by the input data: 

( ) ( ){ }
j

j j j j j
j C j j pj psj im ; r I ; I ; I ; I ; j 1 p ; j i∗ ∗ ∗ ∗ = → ∈ . 

On the basis of the expressions, included in the 

third section of the paper, the mass properties 

are calculated relative to { } { }{ } ji ; 0 C∗ ∗ ∈ , that is: 

( ) ( ) ( ) ( ) ( ){ }
j

0 i 0 i 0 i 0 i 0 i

j C j j pj psj im ; r I ; I ; I ; I ; j 1 p∗ ∗ ∗ ∗ ∗ = → . 

In the following steps, the axial, centrifugal and 

planar mechanical moments of inertia for every 

homogeneous body ( ) ( )j i∈  must be calculated 

with respect to { }i  and { }0  corresponding to 

kinematical structure of MBS (see Fig.1): 
( ) ( ) ( ) ( ) ( ){ }0 i 0 i 0 i

u uv uu iI ; I ; I ; where j 1 p ; j i= → ∈ (72) 

They are included in the generalized variation 

law of the inertial and pseudoinertial tensors: 
( ) ( ) ( ) ( ) ( ){ }0 i 0 i 0 i

j pj psj iI ; I ; I ; where j 1 p ; j i= → ∈ (73) 

For beginning, the generalized variation law of 

inertial tensor axial and centrifugal of the body 

( ) ( )j i∈  relative to { } { }{ }i ; 0 is determined thus: 

( ) ( ) ( )
T

0 i 0 i 0 i

j j jI r r dm   = × ⋅ × ⋅
   ∫ ,             (74) 

( ) ( ) ( ) [ ]
( ) ( ) ( ) [ ]

j

j

0 i0 i 0 i j
j C jj

T T T 0 i T0 i 0 i j
j C j j

r r R r

r r r R

∗

∗

      × = × + ⋅ ×     
 
     × = × + × ⋅      

. (75) 

Substituting (75) in (74), this is changed below: 

( ) ( ) ( )

( ) [ ] { } ( ) [ ]

j j

T
0 i 0 i 0 i

j C C

T0 i 0 i Tj j
j jj j

I r r dm

R r r dm R∗ ∗

    = × ⋅ × ⋅ +    
 

   + ⋅ × ⋅ × ⋅ ⋅     

∫

∫
. (76) 

First matrix from the right member shows as: 

( ) ( ) ( )

( ) ( )

j j j

j j

T
0 i 0 i 0 i

C C C

T
0 i 0 i

j C C

I r r dm

m r r

    = × ⋅ × ⋅ =    
 

    = ⋅ × ⋅ ×
    

∫
,     (77) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j j j

j j j

j j j

j j j

T
0 i 0 i 0 i

C j C C

0 i 0 i 0 i

C x C xy C xz

0 i 0 i 0 i

C yx C y C yz

0 i 0 i 0 i

C zx C zy C z

I m r r

I I I

I I I

I I I

    = ⋅ × ⋅ × =    
  − −   

 = − − 
  
  − −   

.      (78) 

The components from (78) are determined with: 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j j j

j j j

j j j

0 i 0 i 0 i2 2
C x C C

0 i 0 i 0 i2 2
C y C C

0 i 0 i 0 i2 2
C z C C

I y z

I z x

I x y

 = +
  

= + 
 

= +  

,            (79) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j j j

j j j

j j j

0 i 0 i 0 i

C xy C C

0 i 0 i 0 i

C yz C C

0 i 0 i 0 i

C zx C C

I x y

I y z

I z x

 = ⋅
  

= ⋅ 
 

= ⋅  

.            (80) 

Considering (80), the expression (78) is named 

the inertia matrix axial and centrifugal of the 

mass center jC  relative to frames { } { }{ }i ; 0 . 

Therefore, the starting expression (74) takes the 

final form, written below as follows: 
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( ) ( ) ( )

( ) ( ) [ ] ( ) [ ] ( ) ( )
j j

T
0 i 0 i 0 i

j j j

0 i 0 i T0 i 0 i 0 ij
C j C jj j

I r r dm

I R I R I I∗ ∗

    = × ⋅ × ⋅ =     
= + ⋅ ⋅ = + 
 

∫ . (81) 

This is named the generalized variation law of 

the inertial tensor axial and centrifugal of the 

body ( ) ( )j i∈ , with respect to frames { } { }{ }i ; 0 . 

According to (73), the generalized variation law 

of inertial tensor planar and centrifugal of the 

body ( ) ( )j i∈  relative to { } { }{ }i ; 0 is established 

in the following. The starting expression is: 
( ) ( ) ( )0 i 0 i 0 i T

pj j jI r r dm= ⋅ ⋅∫ .                  (82) 

Substituting (24) in (82), this is changed thus: 
( ) ( ) ( )

( ) [ ] { } ( ) [ ]
j j

0 i 0 i 0 i T
pj C C

0 i 0 i Tj j T
j jj j

I r r dm

R r r dm R∗ ∗

 = ⋅ ⋅ + 
 

+ ⋅ ⋅ ⋅ ⋅  

∫
∫

.      (83) 

First matrix from the right member shows as: 
( ) ( ) ( ) ( ) ( )

j j j j j

0 i 0 i 0 i 0 i 0 iT T
pC C C j C CI r r dm m r r= ⋅ ⋅ = ⋅ ⋅∫ , 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j j j

j j j

j j j

j j j

0 i 0 i 0 i T
pC j C C

0 i 0 i 0 i

C xx C xy C xz

0 i 0 i 0 i

C yx C yy C yz

0 i 0 i 0 i

C zx C zy C zz

I m r r

I I I

I I I

I I I

 = ⋅ ⋅ =
 

  
  
  =  
  
    

.       (84) 

The components from (85) are determined with: 
( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j j j j j

j j j j j

j j j j j

0 i 0 i 0 i 0 i 0 i2
C xx C C xy C C

0 i 0 i 0 i 0 i 0 i2
C y C C yz C C

0 i 0 i 0 i 0 i 0 i2
C z C C zx C C

I x I x y

I y ; I y z

I z I z x

 = = ⋅
  

= = ⋅ 
 

= = ⋅  

   (85) 

Considering (85), the expression (84) is named 

the inertia matrix planar and centrifugal of the 

mass center jC  with respect to frames { } { }{ }i ; 0 . 

Therefore, the starting expression (82) takes the 

final form, written below as follows: 
( ) ( ) ( )

( ) ( ) [ ] ( ) [ ] ( ) ( )
j j

0 i 0 i 0 i T
pj j j

0 i 0 i T0 i 0 i 0 ij
pC pj pC pjj j

I r r dm

I R I R I I∗ ∗

 = ⋅ ⋅ = 
 

= + ⋅ ⋅ = +  

∫
(86) 

This is named the generalized variation law of 

the inertial tensor planar and centrifugal of the 

body ( ) ( )j i∈ , with respect to frames { } { }{ }i ; 0 . 

On the basis of (68) – (71), in the following 

the variation law of the pseudoinertial tensor of 

the body ( ) ( )j i∈  with respect to { } { }{ }i ; 0 is 

established. The starting expression is (82) 

where the position vectors are substituted by 

their homogeneous coordinates [2], that is: 

( )
( )

( )

( ) ( ) ( )

( )

0 i
0 i 0 i Tj

psj j

0 i 0 i 0 iT
j j j

0 i T
j

r
I r 1 dm

1

r r dm r dm

r dm dm

  
 = ⋅ ⋅ =    

   
  ⋅ ⋅ ⋅
  =
  ⋅   

∫

∫ ∫

∫ ∫

.     (87) 

 

Substituting (2), (19), as well as (82) in (87), 

this is changed in the following expression: 

( )

( ) ( )

( )

j

j

0 i 0 i

pj C j0 i

psj 0 i T
C j j

I r m
I

r m m

 ⋅
 =
 ⋅
 

.             (88) 

Substituting (27) and (82) in (87), it obtains: 

( ) [ ] ( ) [ ]

( ) [ ] ( ) [ ] ( )

j
0 i 0 i Tj Tj

jj j

0 i 0 i T 0 ij
psj psjj j

r
T r 1 dm T

1

T I T I

∗
∗

∗

  
 ⋅ ⋅ ⋅ ⋅ =    

  
 = ⋅ ⋅ =
 

∫
.  (89) 

Either (88) or (89) characterize the variation 

law of the pseudoinertial tensor of the body 

( ) ( )j i∈ relative to { } { }{ }i ; 0 . In the last (89), the 

expression (71) and locating matrices below 

presented are substituted. As a result, it obtains: 

( )
( ) [ ]

( )

[ ]( )

j

0 i

3 3 C0 i

0 i

1 3

I r
T

0 1
∗ ∗

×

×

 
 =
 
 

,              (90) 

( )
( ) [ ]

[ ]( )

( )
j

3 3 3 10 i T

0 i 0 i T
C

I 0
T

r 1
∗ ∗

× ×
 
 =
 
 

;             (91) 

( )
( )

( ) [ ] ( )
( )

( ) [ ]
( ) ( )

( )

j

j

0 i 0 i T0 i 0 i

psj psj0 i 0 i

0 i 0 i

pj C j

0 i T
C j j

I T I T

I r m

r m m

∗ ∗ ∗ ∗

∗ = ⋅ ⋅ =
 
  ⋅ 

 = 
  ⋅  

.     (92) 

The expression (92) shows the variation law of 

the pseudoinertial tensor of the body ( ) ( )j i∈  

between { } { }{ } ji ; 0 C∗ ∗ ∈  parallel with { } { }{ }i ; 0 . 

Any expression (88), (89) or (92) characterizes 

the variation law of the pseudoinertial tensor of 

the body ( ) ( )j i∈ relative to { } { }{ }i ; 0 . 

 

5. INERTIAL TENSOR for MBS 
 

In the third and fourth section of this paper, 

the generalized variation laws of the inertial and 

pseudoinertial tensors (73) have been defined for 

every homogeneous body ( ) ( )j i∈  with respect 

to { } { }{ }i ; 0 . In this section, as function of above 
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expressions, inertia properties for every kinetic 

ensemble ( )i 1 n= → , that is: axial, centrifugal 

and planar mechanical moments of inertia will 

be determined, in accordance with [2] and [3]: 
( ) ( ) ( ){ }0 i 0 i 0 i

u uv uuI ; I ; I ; where i 1 n= → .      (93) 

Considering the previous sections, these are 

included in inertial and pseudoinertial tensors: 
( ) ( ) ( ){ }0 i 0 i 0 i

i pi psiI ; I ; I ; where i 1 n= → .     (94) 

For beginning, considering expression (81), the 

generalized variation law of the inertial tensor 

axial and centrifugal of the kinetic ensemble 

( )i  relative to { } { }{ }i ; 0 is below determined: 

( ) ( )

( ) ( ) ( ) ( )

i

i i

j i

p
0 i 0 i

i j j

j 1

p p
0 i 0 i 0 i 0 i

j C j j C i

j 1 j 1

I I

I I I I

σ

σ σ

=

∗ ∗

= =

 
= ⋅ = 

 
 
 = ⋅ + ⋅ = +
 
 

∑

∑ ∑

, (95) 

( ) ( ) ( ) ( )
i

i j i i

p T
0 i 0 i 0 i 0 i

C j C i C C

j 1

I I M r rσ
=

   = ⋅ = ⋅ × ⋅ ×
   ∑ (96) 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

0 i 0 i 0 i

x xy xz
p

0 i 0 i 0 i 0 i 0 i

i j j yx y yz

j 1 0 i 0 i 0 i

zx zy z

I I I

I I I I I

I I I

σ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

= ∗ ∗ ∗

 − −
 
 = ⋅ = − −
 
− −  

∑ (97) 

where (96) is the inertia matrix axial and 

centrifugal of mass center iC , and (97) is the 

inertial tensor axial and centrifugal of the 

kinetic ensemble ( )i  relative to { } { }{ } ii ; 0 C∗ ∗ ∈ . 

The inertial tensor (97) is included, see [2] – [8], 

in the explicit expressions for: kinetic energy, 

the time derivatives of the angular momentum, 

acceleration energies of higher order and so on. 

Considering (86), the generalized variation law 

of the inertial tensor planar and centrifugal of 

the kinetic ensemble ( )i , relative to { } { }{ }i ; 0 , is 

established the following with expressions: 

( ) ( ) ( ) ( )

( ) ( )

i

i

i i

j

p
0 i 0 i 0 i 0 i

pi j pj pC pi

j 1

p p
0 i 0 i

j pC j pj

j 1 j 1

I I I I

I I

σ

σ σ

∗

=

∗

= =

 
= ⋅ = + = 

 
 
 = ⋅ + ⋅
 
 

∑

∑ ∑
,   (98) 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

0 i 0 i 0 i

xx xy xz
p

0 i 0 i 0 i 0 i 0 i

pi j pj yx yy yz

j 1 0 i 0 i 0 i

zx zy zz

I I I

I I I I I

I I I

σ
=

 
 
 = ⋅ =
 
  

∑ , (99) 

( ) ( ) ( ) ( )
i

i j i i

p
0 i 0 i 0 i 0 i T

pC j pC i C C

j 1

I I M r rσ
=

= ⋅ = ⋅ ⋅∑ , (100) 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

0 i 0 i 0 i

xx xy xz
p

0 i 0 i 0 i 0 i 0 i

pi j pj yx yy yz

j 1 0 i 0 i 0 i

zx zy zz

I I I

I I I I I

I I I

σ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

= ∗ ∗ ∗

 
 
 = ⋅ =
 
  

∑ , (101) 

where (100) is the inertia matrix planar and 

centrifugal of mass center iC , and (101) is the 

inertial tensor planar and centrifugal of the 

kinetic ensemble. ( )i relative to { } { }{ } ii ; 0 C∗ ∗ ∈ . 

In accordance with (94), the pseudoinertial 

tensor of the kinetic ensemble ( )i  relative to 

{ } { }{ }i ; 0 is determined, using (87) – (92), thus: 

( ) ( )

( ) ( )

( )

i

i i

j

i i

j

p
0 i 0 i

p si j ps j

j 1

p p
0 i 0 i

j p j j C j

j 1 j 1

p p
0 i T

j C j j j

j 1 j 1

I I

I r m

r m m

σ

σ σ

σ σ

=

= =

= =

 
= ⋅ = 

 
   ⋅ ⋅ ⋅  

  =   
  ⋅ ⋅ ⋅
    

∑

∑ ∑

∑ ∑

, (102) 

 

( )
( ) ( )

( )

i

i

0 i 0 i

pi i C0 i

psi 0 i T
i C i

I M r
I

M r M

 ⋅
 ==
 ⋅ 

.         (103) 

From expression (103), it is again noticed that 

pseudoinertial tensor is a squared matrix ( )4 4×  

symmetrical and positive defined. It contains 

inertial tensor planar and centrifugal (99), as 

well as statics moments (8) and total mass (6) 

of the kinetic ensemble ( )i . The pseudoinertial 

tensor, see [5] – [8], is also included in the 

matrix expressions of the fundamental notions 

and theorems, belonging to analytical dynamics. 

 

6. CONCLUSIONS 
 

The currently paper was devoted, especially, 

to presentation a few essential new formulations 

about the mass properties, compulsory included 

in analytical dynamics of the multibody systems 

(MBS). So, in the case of (MBS), for example, 

mechanical robot structure, a few simplifying 

hypotheses, on the mass properties, have been 

implemented. Consequently, the mass properties 

are continuously distributed between the fixed 

basis and the last kinetic ensemble from 

mechanical structure. That is why, in the 

dynamical study of MBS, the author of this 
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paper has introduced the phrase “mass 

distribution” instead of mass geometry. But, 

mass distribution (MD) is based on the mass a 

fundamental notion in analytical dynamics of 

systems. At its turn, mass together with energy 

highlight the matter notion. In the same time, 

mass notion is also highlighted by means of the 

two properties: gravitation and inertia. Taking 

into account the fundamental notions and 

theorems of mechanics, within of fifth sections 

of this paper, the author has specified that in the 

case of the translation motion the inertia 

property is highlighted by mass and position of 

the mass center. In the case of the resultant 

rotation motion the inertia property is 

characterized by mechanical moments of inertia 

and extension of these properties, known as 

inertial tensor and pseudoinertial tensor. 

Applying new formulations, in the first four 

sections of the paper was determined the 

definition expressions for mass properties: mass, 

position of the mass center, inertial tensor and its 

generalized variation law, as well pseudoinertial 

tensor. They are corresponding for every 

homogeneous body having simple geometrical 

shape. These mass properties are necessary in 

the fifth section of the paper, whose objective 

consists in the establishment the definition 

expressions for inertial and pseudoinertial tensor 

corresponding for every compound ensemble 

physically integrated in the multibody system. 

All above mass properties are compulsory 

found in the dynamical notions like: angular 

momentum, kinetic energy, acceleration energies 

of higher order, and their time derivatives 

according to differential equations of higher 

order, from analytical dynamics of systems. 
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Distribuția Maselor în Dinamica Analitică a Sistemelor 
În cazul sistemelor mecanice multicorp (MBS), spre exemplu structura mecanică a robotului, sunt implementate 

câteva ipoteze simplificatoare cu privire la proprietățile maselor. Conform acestora, proprietățile maselor sunt 
continuu distribuite între baza fixă și ultimul ansamblu cinetic al structurii mecanice. Prin urmare, în studiul dinamic 
al MBS autorul lucrării a introdus sintagma “distribuția maselor” în loc de geometria maselor, specifică corpului 
rigid. Distribuția maselor este bazată pe noțiunea fundamentală de masă în dinamica analitică a sistemelor. La rândul 
ei, masa împreună cu energia evidențiază noțiunea de materie. Dar, masa este, de asemenea, evidențiată prin două 
proprietăți: gravitația și inerția. În conformitate cu teoremele fundamentale din dinamica newtoniană, în cazul mișcării 
de translație proprietatea de inerție este evidențiată prin masă și poziția centrului maselor. În cazul mișcării de rotație 
rezultantă proprietatea de inerție este caracterizată prin momentele de inerție mecanice și extensia acestor proprietăți, 
cunoscute ca tensori inerțiali și tensori pseudoinerțiali. Expresiile matriceale ale acestora sunt incluse, obligatoriu, în 
noțiunile dinamice cum sunt: energia cinetică, energia de accelerații, momentul cinetic și derivatele acestora în raport 
cu timpul, conform cu ecuațiile diferențiale de ordin superior, specifice dinamicii analitice a sistemelor. 
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