
331

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering
 Vol. 60, Issue III, September, 2017

A MULTITHREADED JAVA CLIENT-SERVER MODEL

FOR ROBOT INTERACTION

Tiberiu Alexandru ANTAL, Julieta Daniela CHELARU

Abstract: The paper describes a java multithreaded client-server application that can be used to transfer

a file from the client to the server, linked to a simulated robot, under the circumstances of holding the

connection until the end of the processing on the robot side.

Key words: client, java, multithreaded, robot, simulation, server.

1. INTRODUCTION

Often we are in the situation to interact with

a remote device via Internet. This paper

describes the special case of interaction between

clients who want to access a resource called

server. Specific to this connection is that when it

is made it must be maintained until all lines from

the client program are processed at the server.

Such a processing mode is specific to robots

which are running a remote program. If, for

some reason, the connection falls and the

transmission no longer works the client must

find out that the processing was interrupted and

the program execution was compromised at the

robot side. While one client connection is up

other clients must not gain access to the robot

and should be announced that the robot is busy

processing other client request.

2. JAVA AND THE CLIENT-SERVER
SIMULATION CONTEXT

The server side code is ran on a Raspberry Pi

3 (RPi3) microcontroller under Raspbian OS

that is able to interact with the user based on a

ELEGOO 3.5” touch screen device installed

only as an LCD screen (the soft keyboard is not

installed). Communication with the server from

the RP3 is made over the LAN (eth0). The server

is a Java application that has to be started in

order to communicate with the client.

If the VNC sever is enabled on the RPi3 then

VNC Viewer (using the RPi3 credentials, user:

pi, password: raspberry) from Windows can be

used to see the Terminal screen on the RPi3.

However, tightvncserver, at this moment, gives

a better view of the RPi3 screen on the Windows

desktop using the free TightVNC viewer

(http://www.tightvnc.com/) as described in [1].

This is important as the server must be started as

a Java application on the RPi3 from the

command line.

The simulation context is based on a RGB

Led from the KUMAN sensor kit for Arduino

that contains three independently programmable

LEDs connected to the RPi3 board as shown in

Fig. 1.

Java is a programming language that can be

used to solve may technical problems (building

GUIs, solving numerical problems, interacting

with relational databases, programming or

interacting with microcontrollers) as shown in

[1] – [6]. When programming microcontrollers

([5], [6]) JDeveloper is an IDE that can be used

to create jar files that will run on the RPi3. As

described in [5], due to the poor hardware

resources, the RPi3 will not run the JDeveloper

IDE. A desktop machine is used for this purpose

and the jar file is transferred to the RPi3 as given

332

in [5]. The Java RPi3 interaction is based on the

Pi4J project that must be downloaded and

installed to the desktop machine and included in

the jar file. Thus, the installation of the Pi4J on

the RPi3 can be avoided, as this would require

some knowledge of the Raspbian OS. However,

to create such a file JDeveloper must be

configured properly. The project directory

([AppRaspberryPi] is the application directory

and [Pi] is the project directory) will contain the

full Pi4J project downloaded as seen in Fig. 2 to

the [pi4j-1.1] directory. From Build>Deploy a

new deployment profile must be created. In the

JAR Deployment Profile Properties at JAR

Options the JAR File is set to

D:\JDeveloper\mywork\AppRaspberryPi\Pi\dep

loy\pi4j.jar also the Main Class set to

ServerMThread and at Library Dependencies

the Pi4j-core.jar must be checked.

Fig. 1. - The project wiring diagram.

At Project Properties the Pi4j-core.jar must

be added. When deploying the application the

pi4j.jar will be created in the [deploy] directory.

Then, the jar file has to be transferred from the

desktop over the network to the RPi3 using the

FTP protocol. To find out more about the

connection of the RPi3 to the network, under

Raspbian, the ifconfig must be used as shown in

Fig. 3.

Fig. 2. – JDeveloper files structure to create jar files for

RPi3 Network information on the RPi3 under Raspbian

OS using Pi4J.

Fig. 3. – Network information on the RPi3 under

Raspbian OS.

The prg1.rob file from Fig. 2 is a text file that

contains statements to program the robot on the

server.

3. THE JAVA SERVER

The code of the Java server runs on the RPi3

is organized in two classes ServerMThread and

ThreadedServer. The main() class is

ThreadedServer and is using socket

communication with the client. For each new

connection request from a client a new

ThreadedServer thread is started. The first

connected client holds the connection until the

program is finished by the robot. All other client

request, during this time, will be rejected with

333

the “Server is busy” message. Clients must make

new connection attempts to be the first at getting

the released connection. A static variable is used

in the ThreadedServer class to store the number

of started threads. If this variable is greater than

1, all other new client requests will be refused.

The server code that runs on the RPi3 machine

can be stopped only by interrupting the process

(this means that the “Server has been

stopped.” will never be reached). The while

loop is infinite and the blocking function call

serverSocket.accept() will wait until a

client connects to the port. The statements sent

over the network are compared to those from the

branching statements and if a match is found

actions are sent to the robot (in this case, as this

is a simulation, the colors of the LEDs will

change).

import java.net.*;

import java.io.*;

public class ServerMThread {

 public static void main(String[] args) throws

IOException {

 boolean isRobotProcessing = false;

 ServerSocket serverSocket = null;

 boolean listening = true;

 try {

 serverSocket = new

ServerSocket(5432);

 } catch (IOException e) {

 System.err.println("Server - port

5432 is taken.");

 System.exit(-1);

 }

 System.out.println("Server is up, ready

4 file processing.");

 while (listening) {

 Runnable r = new

ThreadedServer(serverSocket.accept());

 Thread t = new Thread(r);

 t.start();

 }

 System.out.println("Server has been

stopped.");

 serverSocket.close();

 }

}

import com.pi4j.io.gpio.GpioController;

import com.pi4j.io.gpio.GpioFactory;

import com.pi4j.io.gpio.GpioPinDigitalOutput;

import com.pi4j.io.gpio.PinState;

import com.pi4j.io.gpio.RaspiPin;

import

com.pi4j.io.gpio.exception.GpioPinExistsExceptio

n;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.net.Socket;

import java.net.SocketException;

import java.net.SocketTimeoutException;

public class ThreadedServer extends Thread {

 private String name; // The name of this

thread.

 static int i = 0;

 int line = 0;

 static GpioController gpio = null;

 static GpioPinDigitalOutput pin29b = null,

pin28g = null, pin27r = null;

 Socket s1 = null;

 OutputStream s1out = null;

 DataOutputStream dos = null;

 InputStream s1in = null;

 DataInputStream din = null;

 void InitSocketandStrems(int port) {

 try {

 // Get output/input streams

associated with the socket

 s1out = s1.getOutputStream();

 dos = new DataOutputStream(s1out);

 s1in = s1.getInputStream();

 din = new DataInputStream(s1in);

 //now close it as we don't want

orthers to mixt with the code

 } catch (IOException e) {

 } catch (NullPointerException e) {

 System.out.println("The sever is

already running !");

 }

 }

 public ThreadedServer(Socket socket) {

 super("ServerMThread");

 ++i;

 this.s1 = socket;

 }

 public void run() { // The run method prints

a message to standard output.

 InitSocketandStrems(5432);

 System.out.println("*** Server is UP! ***

> connection is locked > " + i);

 System.out.flush();

 try {

 gpio = GpioFactory.getInstance();

 pin29b =

gpio.provisionDigitalOutputPin(RaspiPin.GPIO_29,

"PinLED", PinState.LOW);

 pin28g =

gpio.provisionDigitalOutputPin(RaspiPin.GPIO_28,

"PinLED", PinState.LOW);

 pin27r =

gpio.provisionDigitalOutputPin(RaspiPin.GPIO_27,

"PinLED", PinState.LOW);

 } catch (GpioPinExistsException eg) {

 //it's ok don't stop just skip it

 }

 if (i > 1) {

 try {

 dos.writeUTF("Server is busy! >

Program execution count is: " + i);

 dos.flush();

 } catch (IOException e) {

 }

334

 --i;

 return;

 }

 while (true) {

 try {

 s1.setSoTimeout(500);/// 0.5s

time out to TimeOutException

 // Wait here and listen for a

connection

 String sin = din.readUTF();

 if (sin.equals("bye")) {

 //end of Thread

 System.out.println("*** The

last line was processed\n*** End of thread!\n");

 --i;

 dos.close();

 din.close();

 s1.close();

 return;

 }

 if (sin.equals("LEDR(UP)")) {

 pin27r.high();

 }

 if (sin.equals("LEDR(LO)")) {

 pin27r.low();

 }

 if (sin.equals("LEDG(UP)")) {

 pin28g.high();

 }

 if (sin.equals("LEDG(LO)")) {

 pin28g.low();

 }

 if (sin.equals("LEDB(UP)")) {

 pin29b.high();

 }

 if (sin.equals("LEDB(LO)")) {

 pin29b.low();

 }

 if (sin.equals("DELAY")) {

 Thread.sleep(1000);

 }

 //send the string back to the

client

 dos.writeUTF(++line + " > Hello

from Server over the Net! > " + sin + " from " +

s1.getInetAddress());

 //make sure that the data is sent

 dos.flush();

 Thread.sleep(500);

 //write on the serve screen now

 System.out.println(i + " > Hello

from Server over the Net! > " + sin);

 } catch (SocketTimeoutException e) {

 System.out.println("3 >>>>

Socket timed out! " + e);

 gpio.shutdown();

 i = 0;

 return;

 } catch (IOException e) {

 gpio.shutdown();

 System.out.println("1 >>>> " +

e);

 i = 0;

 return;

 } catch (InterruptedException e) {

 gpio.shutdown();

 System.out.println("2 >>>>> " +

e);

 i = 0;

 return;

 }

 }

 }

}

The jar file is executed on the RPi3 using the text

line from Fig. 3. If a file is processed at the

server side, every successfully processed line in

the sequence will be printed to the LXTerminal

and returned in echo to the client.

Fig. 3. – The server jar executed on the RPi3 under

Raspbian OS.

4. THE JAVA CLIENT

The Java client is implemented in the

ClientFileV1 class and is reading the prg1.rob

text file that contains robot statements. For this

simulation the file contains statements like

LEDR(UP), LEDG(UP), LEDB(UP) to light up

and LEDR(LO), LEDG(LO), LEDB(LO) to turn

off the RGB led components and DELAY to

make a 1s delay. Each statement is sent to the

server, processed at the server side and sent back

to the client with the execution confirmation.

import java.net.*;

import java.io.*;

public class ClientFileV1 {

 public static void main(String args[]) {

 String infilename = "prg1.rob";

 String[] infiledata = new String[100];

 String linie;

//The BufferedInputStream class provides

buffering to your input streams.

//Buffering can speed up IO quite a bit.

 BufferedReader difile;

 try { // Create the input stream.

//The Java FileReader class (java.io.FileReader)

makes it

//possible to read the contents of a file as a

stream of characters of texts.

 difile = new BufferedReader(new

FileReader(infilename));

 } catch (FileNotFoundException e) {

 System.out.println("Can't find file

" + infilename + "!");

335

 return; // End the program by

returning from main().

 }

 int l = 0;

 try {

 while ((linie = difile.readLine()) != null)

{

 infiledata[l] = linie;

 ++l;

 }

 difile.close();

 } catch (IOException e) {

 }

 Socket s1 = null;

 InputStream is = null;

 DataInputStream dis = null;

 OutputStream os = null;

 DataOutputStream dos = null;

 try {

// Open your connection to a server, at port 5432

 s1 = new Socket("192.168.1.105", 5432);

// Get an input stream from the socket

 is = s1.getInputStream();

 os = s1.getOutputStream();

// Decorate it with a "data" input stream

 dis = new DataInputStream(is);

 dos = new DataOutputStream(os);

 for (String it : infiledata) {

 if (it == null)

 break;

 dos.writeUTF(it);

 System.out.println("The server said <" +

dis.readUTF());

 }

 dos.writeUTF("bye");

 dis.close();

 dos.close();

 s1.close();

 } catch (ConnectException connExc) {

 System.err.println("Could not connect to the

server. Server is DOWN! > " + connExc);

 } catch (SocketException e) {

 System.out.println("The server was shut down!

> " + e);

 } catch (IOException e) {

 // ignore

 }

 }

}

If processing interruption occurs, the following

cases are monitored and caught by the server:

• 1 >>>> java.net.SocketException:

Connection reset if the client, for some

reason, closes the connection before

program termination;

• 3 >>>> Socket timed out!

java.net.SocketTimeoutException: Read

timed out if the blocking read at

din.readUTF() is delayed or the

communication is dropped due to

network problems before program

processing termination;

In both cases, the current connection is closed

and a new client will be able to connect to the

server to process a new file. If the sever has

problems the client will issue the following

errors:

• Could not connect to the server. Server

is DOWN! > java.net.ConnectException:

Connection timed out: connect if the

server is down;

• The number of the processed lines is less

than those from the original file if the

server was stopped, for some reason, on

the RPi3.

Socket communication in Java needs an IP

address and a TCP port. The TCP port used in

this application is 5432 and the IP address of the

server machine is 192.168.1.105. If the IP

address is routable then proper port forwarding

must be done in the router to access the server

over the Internet.

5. CONCLUSION

Models are used to solve problems in which

the system under study is replaced by a more

simple representation that describes the real

system and/or its behavior. Simulations are used

when conducting experiments on the real system

would be impossible due to technical or

financial reasons, some of these examples are

given in [7]-[10]. The paper gives a

multithreaded client-server simulated approach

to robot programming over the internet written

in Java. Some of the open source robotics

projects [11] have implemented the Robot

Operating System (ROS) in Java (rosjava),

while others give users a server that can

communicate over TCP / IP with applications

running under the native OS (the OS running

under the ROS) to allow access to the robot

resources over the Internet. This object oriented

multithreaded client-server model can be used to

run a remote robot program if java is supported

at both server and client ends. The model could

be improved by implementing a robust protocol

for testing the client-server connection, a queue

336

for the client access and a multithreaded

approach the LED control.

6. REFERENCES

[1] ANTAL, T. A., GUI's in JDeveloper, Acta

Technica Napocensis, Series: Applied

Mathemathics and Mechanics, Nr. 52, Vol.

IV, 2009, p.27-32, ISSN 1221-5872.

[2] ANTAL, T .A., Programming AutoCAD

using JAWIN from Java in JDeveloper, Acta

Technica Napocensis, Series: Applied

Mathemathics and Mechanics, Nr. 53, Vol.

III, 2010, p.481-486, ISSN 1221-5872.

[3] ANTAL, T. A., Elemente de Java cu

JDeveloper - îndrumător de laborator,

Editura UTPRES, 2013, p.150, ISBN: 978-

973-662-827-6.

[4] ANTAL, T. A., Java - Iniţiere - îndrumător

de laborator, Editura UTPRES, 2013, p. 246,

ISBN: 978-973-662-832-0.

[5] ANTAL, Tiberiu Alexandru. Raspebrry Pi 3

programming, in java, using Blue J and

JDeveloper based on Pi4J. Acta Technica

Napocensis - Series: Applied Mathematics,

Mechanics and Engineering, [S.l.], v. 60, n. 1,

p.13-18. 2017. ISSN 1221-5872.

[6] ANTAL, Tiberiu Alexandru. Arduino

Leonardo programming under Windows, in

Java, from JDeveloper using Ardulink. Acta

Technica Napocensis - Series: Applied

Mathematics, Mechanics and Engineering,

[S.l.], v. 60, n. 1, p.7-12. 2017. ISSN 1221-

5872.

[7] Aurora Felicia Pop (Cristea),, Mariana

Arghir. Hand ArmSimulation, under the

Vibration Action with Vibration Flow

Divider. 2010 IEEEInternational Conference

on Automation, Quality and Testing,

RoboticsAQTR 2010 - THETA 17th edition -

May 28-30 2010, Cluj-Napoca, Romania,

ISBN: 978-1-4244-6724-2, pag. 348-351.

[8] Pop (Cristea) Aurora Felicia. Analysis of

methods of hand-arm system subjectedto

vibrations by mechanical modelling and

simulation. ESCTAIC 2011- The 22 Annual

Meeting Conference Erlangen, Germania,12-

15 oct. 2011, pag. 65-66.

[9] Pisla, D., Cocorean, D., Vaida, C., Gherman,

B., Pisla, A., Plitea, N. Application oriented

design and simulation of an innovative

parallel robot for brachytherapy. (2014)

Proceedings of the ASME Design

Engineering Technical Conference, Volume

5B, 2014.

[10] Plitea, N., Szilaghyi, A., Cocorean, D.,

Vaida, C., Pisla, D. Inverse dynamics and

simulation of A 5-DOF modular parallel

robot used in brachytherapy. 2016.

Proceedings of the Romanian Academy

Series A - Mathematics Physics Technical

Sciences Information Science, 17 (1), pp. 67-

75.

[11] http://learnrobotix.com/open-source-

robotics-software.html. Date accessed: May

1, 2017.

UN MODEL JAVA, DE INTERACŢIUNE CLIENT-SERVER CU UN ROBOT, UTILIZÂND FIRE

MULTIPLE DE EXECUŢIE

Lucrarea prezintă un model de aplicaţie java, client-server, cu fire multiple de execuţie, care poate transfera un fişier cu

instrucţiuni robot de la un client, la un server, robot simulat hard şi soft, în condiţiile păstrării conexiunii până la terminarea

execuţiei programului pe robot.

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca,

Department of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul

Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

CHELARU Julieta Daniela, Assistant professor dr.eng., Babeș-Bolyai University, Faculty of

Chemistry and Chemical Engineering, Department of Chemical Engineering,

jdchelaru@chem.ubbcluj.ro, 0264-591998, str. Arany Janos 1, Cluj-Napoca, ROMANIA.

