TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

Vol. 57, Issue II, June, 2014

THE WORKSPACE AND THE SINGULARITIES OF THE 3KTK SPATIAL PARALLEL MANIPULATOR

Claudiu Mihai NEDEZKI, Adrian TRIF, Gheorghe KEREKES

Abstract

In this article is studied the graphical representation using the meshing method (based on inputoutput equations and on a program designed in AutoLISP - AutoCAD) for the workspace and for the singularities of the $3 K T K$ manipulator with 3 degrees of freedom in translation. Is calculated the areas of the different plane sections ($Z p=$ constant $)$, and the workspace volume. It shows the influence of the the constructive parameters on the workspace of the manipulator. Key words: parallel manipulator, the meshing method, the Jacobian matrix, the input - output equations, the singularities, degrees of freedom.

1. INTRODUCTION

The figure 1 shows the kinematic scheme of the 3 KTK spatial parallel manipulator having three degrees of freedom in translation and three identical kinematic chains (KTK subsequent joints type of kinematic chain from the base to the final element K - cardan, T translation).

Fig. 1 The kinematic scheme of the manipulator

Only an arrangement of the kinematic chains in the three joints according to fig. 1 leads to a spatial parallel mechanism with three degrees of freedom in translation [1], [2].

According to some Korean researchers [3], the clearances of the cardan joints must be less than $0,05^{\circ}$.

2. THE	GRAPHICAL	
REPRESENTATION	FOR	THE
WORKSPACE OF	THE	3KTK
MANIPULATOR USING THE MESHING		
METHOD		

For the 3KTK parallel manipulator the question arises it will determine the workspace in translation because the manipulator's platform executes only spatial translations. Obtaining workspace is achieved using the computer [4], [5], [6], [7].

It is starts from analytical solution of the inverse problem of the positions deduced in [1] and [2].

$$
q_{i}= \pm \sqrt{\left[\begin{array}{l}
{\left[X_{P}+(r-R) \cos \delta_{i}\right]^{2}+} \tag{1}\\
{\left[Y_{P}+(r-R) \sin \delta_{i}\right]^{2}+\left(Z_{P}-h\right)^{2}}
\end{array}\right.}
$$

By requiring Z_{P} coordinate of the characteristic point P , the parameters that specify the position of the manipulated object in the workspace are the coordinates X_{P} and Y_{P}. The position of point P in the plane $\mathrm{Z}_{\mathrm{P}}=$ constant may be given in cartesian coordinates:

$$
\left\{\begin{array}{l}
X_{P}=X_{P}^{\min }+h_{X}(i-1) \tag{2}\\
Y_{P}=Y_{P}^{\min }+h_{Y}(i-1)
\end{array}\right.
$$

where $\mathrm{i}=1,2, \ldots, \mathrm{~h}_{\mathrm{X}(\mathrm{Y})}$, and $\mathrm{h}_{\mathrm{X}(\mathrm{Y})}$ is the maximum number of steps.

For the given values of parameters $\mathrm{h}_{\mathrm{X}}, \mathrm{h}_{\mathrm{Y}}$, using the inverse geometric model, shall be checked if the point P belongs to the working section, according to restrictions imposed on driving devices.

$$
\begin{equation*}
q_{i \min } \leq q_{i} \leq q_{i \max } \quad i=1,2,3 \tag{3}
\end{equation*}
$$

The variation range of the h_{X} and h_{Y} parameters ensure scanning ensure scanning of the plan $\mathrm{Z}_{\mathrm{P}}=$ constant. The points that satisfy the conditions (3) determines a section of the workspace as discreet.

By changing the value of Z_{P} shall be determined a sequence of sections for which borders are the isohypses of the workspace, having a constant orientation.

To achieve the 3D workspace and its various sections, was developed a program written in AutoLISP under AutoCAD.

Can be accessed the following options:

- the 3D representation of the workspace with its rotation and the possibility of choosing a desired viewing angle.
- the graphical representation of the sectional planes: $\mathrm{X}=\mathrm{ct} ., \mathrm{Y}=\mathrm{ct} ., \mathrm{Z}=\mathrm{ct}$.
- the graphical representation of a plane containing the Z axis and which makes an angle α (between 0^{0} şi 180°) to the OX axis.

For the 3 KTK manipulator having the following constructive data: $\mathrm{b}=400 \mathrm{~mm}, \mathrm{a}=200$ $\mathrm{mm}, \mathrm{h}=50 \mathrm{~mm} \delta_{1}=\delta_{1}^{\prime}=0^{\circ}, \delta_{2}=\delta_{2}^{\prime}=120^{\circ}$, $\delta_{3}=\delta_{3}^{\prime}=240^{\circ}, \mathrm{q}_{\mathrm{i}, \min }=200 \mathrm{~mm}, \mathrm{q}_{\mathrm{i}, \text { max }}=400 \mathrm{~mm}$ and the input data: $\mathrm{h}_{\mathrm{x}}=2 \mathrm{~mm} ; \mathrm{h}_{\mathrm{y}}=2 \mathrm{~mm} ; \mathrm{Z}_{\mathrm{P}}=$ $100 \div 430 \mathrm{~mm}$, have been obtained in the figures $2,3,4,5$, the 3 D workspace which is comprised of plane sections $\mathrm{Zp}=\mathrm{ct}$. (the red ones) between the quotas $Z=100 \mathrm{~mm}, \mathrm{Z}=430$ mm viewed from points $(\mathrm{X}=4, \mathrm{Y}=-5, \mathrm{z}=$ $0.75),(x=2, y=0.5, z=0.5)$ respectively $(X=$ $4, Y=-3, Z=1$), the difference consisting as shown in the figure 2 ; there are a vertical
section (the black) that contains the Z axis and makes the angle $\alpha=0^{0}$ with OX axis. In the figures 3 and 4 the same vertical section that contains the Z axis make an angle $\alpha=60^{\circ}$ with OX axis. In the figure 5 is shown the projection of the image from figure 4, in the XOY plan. The four figures provide a complete description of the workspace. It is observed that for small values of the Z coordinate the sections are deformed rings that lower in size and are filled with increasing Z .

Fig. 2. 3D workspace $\left(Z_{p}=c t, \alpha=0^{0}\right)$

Fig. 4. 3D workspace
$\left(Z_{p}=c t, \alpha=60^{\circ}\right)$

Fig. 6. 2D workspace $(\mathrm{Zp}=100 \mathrm{~mm})$

Fig. 8. 2D workspace $\left(\mathrm{Z}_{\mathrm{p}}=300 \mathrm{~mm}\right)$

Fig. 3. 3D workspace $\left(\alpha=60^{0}, \alpha=0^{0}\right)$

Fig. 5. 2D workspace $\left(Z_{p}=c t, \alpha=60^{\circ}\right)$

Fig. 7. 2D workspace ($\mathrm{Zp}=200 \mathrm{~mm}$)

Fig. 9. 2D workspace $\left(\mathrm{Z}_{\mathrm{p}}=400 \mathrm{~mm}\right)$

The table 1 shows the values of the different planar sections $\mathrm{Zp}=\mathrm{ct}$. (between $\mathrm{Z}=100 \mathrm{~mm}$
and $Z=430 \mathrm{~mm}$), and in figure 10 are plotted these areas.

Also was conceived a program that calculates the volume of the 3 KTK manipulator's workspace. For the construction data shown above, the volume of the manipulator's workspace is: Vol. 3KTK = $13,106,750 \mathrm{~mm}^{3}$

Table 1.
The values of the different planar sections

$\mathbf{Z p}$	The surface area $(\mathbf{Z p}=\mathbf{c t})$ $\left.\mathbf{[m m}^{\mathbf{2}}\right]$	$\mathbf{Z p}$	The surface area $\mathbf{Z p}=\mathbf{c t}$ $\left.\mathbf{[m m}^{\mathbf{2}}\right]$
200	3400	320	89775
210	7000	330	87350
220	13625	340	83275
230	32325	350	77000
240	57600	360	68375
250	93025	370	56900
260	93025	380	45550
270	93025	390	34200
280	93025	400	23450
290	92825	410	13500
300	92350	420	5400

Fig. 10. The areas of the planar sections for different Z_{p} coordinates

In the same way, with slight modifications, can be determined the workspaces for the other constructive and for the input data.

3. THE INFLUENCE OF THE CONSTRUCTIVE PARAMETERS ON THE 3KTK MANIPULATOR'S WORKSPACE

For the 3KTK manipulator is important how the variation of constructive parameters " b " and " a " contributes to changing the volume of the manipulator's workspace.

Based on the method presented in the previous paragraph were determined the volumes of the 3 KTK parallel manipulator's
workspace, having the following constructive data: $\mathrm{b}=400 \mathrm{~mm}, \mathrm{a}=100 ; 200 ; 300 ; 400 \mathrm{~mm}$.

For each of the four possible combinations (b, a), while retaining the same range of variation of $q_{i} \in(200,400) \mathrm{mm}, \mathrm{i}=1,2,3$, have been calculated the volumes of 4 manipulators and the values were listed in the Table 2.

It is found that the maximum volume of the workspace is achieved for $\mathrm{a} / \mathrm{b}=1$, that is when the dimensions of the mobile platform are equal to the dimensions of the fixed base the same as for other different structures studied in the literature.

Table 2
The volumes of the 4 manipulators

\mathbf{a} / \mathbf{b}	The workspace volume (mm ${ }^{\mathbf{3}}$)
$1 / 4$	10150125
$1 / 2$	13106750
$3 / 4$	16131500
1	19304625

4. THE SINGULARITIES STUDY FOR THE 3KTK MANIPULATOR

It starts from the input - output equations of the manipulator set forth in [2], equations wherein the variables X_{P}, Y_{P}, Z_{P} şi q_{i} are functions of time.

$$
\begin{align*}
& \left(X_{P}+r \cos \delta_{i}^{\prime}-R \cos \delta_{i}\right)^{2}+ \tag{4}\\
& \left(Y_{P}+r \sin \delta_{i}^{\prime}-R \sin \delta_{i}\right)^{2}+\left(Z_{P}-h\right)^{2}=q_{i}^{2}
\end{align*}
$$

Differentiating these equations relative to time, we get by grouping of terms:

$$
\begin{align*}
& {\left[X_{P}+(r-R) \cos \delta_{i}\right] \dot{X}_{P}+\left[Y_{P}+(r-R) \sin \delta_{i}\right] \dot{Y}_{P}} \tag{5}\\
& +\left(Z_{P}-h\right) \dot{Z}_{P}=q_{i} \dot{q}_{i}
\end{align*}
$$

The equations (5) can be put in matrix form:

$$
\begin{equation*}
[A] \cdot \dot{q}=[B] \cdot \dot{q}_{P} \tag{6}
\end{equation*}
$$

The matrix equation (6) can be detailed written in the form:
$\left[\begin{array}{ccc}q_{1} & 0 & 0 \\ 0 & q_{2} & 0 \\ 0 & 0 & q_{3}\end{array}\right] \cdot\left[\begin{array}{l}\dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{3}\end{array}\right]=$
$\left[\begin{array}{lll}X_{P}+(r-R) \cos \delta_{1} & Y_{P}+(r-R) \sin \delta_{1} & Z_{P}-h \\ X_{P}+(r-R) \cos \delta_{2} & Y_{P}+(r-R) \sin \delta_{1} & Z_{P}-h \\ X_{P}+(r-R) \cos \delta_{3} & Y_{P}+(r-R) \sin \delta_{1} & Z_{P}-h\end{array}\right] \cdot\left[\begin{array}{c}\dot{X}_{P} \\ \dot{Y}_{P} \\ \dot{Z}_{P}\end{array}\right]$

Based on equations (6) and (7) can be pointed three types of singularities. The first type of singularity occurs when the determinant of the matrix $A=0$, the second type of singularity occurs when the determinant of the matrix $\mathrm{B}=0$. and the third type of singularity occurs when the determinant of the matrix $\mathrm{A}=$ 0 and the determinant of the matrix $\mathrm{B}=0$, simultaneously. The general characteristics of each type of singularities ware presented in [1].

In the case of 3 KTK manipulator is interesting to study the singularity of type II.

The matrix [B] is a function of variables X_{P}, Y_{P}, Z_{P}. The values of variables X_{P}, Y_{P}, Z_{P}, in the workspace of the manipulator that make the determinant of the matrix [B] tend to 0 brings the manipulator in an undesirable situation.

It is through the entire workspace smallest step possible, observing that in each point of the workspace, the value of the determinant of the matrix [B] take the very high values. The lowest value of the determinant B is $\operatorname{det} \mathrm{B}=$ 5196152, for the point defined by: $X=-156$ mm point, $\mathrm{Y}=-135 \mathrm{~mm}, \mathrm{Z}=200 \mathrm{~mm}$.

Therefore there is no question to cancel the determinant B in the manipulator workspace.

5. CONCLUSIONS

The conclusions stemming from this study on are:

- The horizontal sections form $\mathrm{Zp}=$ constant is sufficiently convenient from the point of view of size and shape (Fig. 6-9).
- The values of planar sectional areas are large ($\sim 90.00 \mathrm{~mm}^{2}$) and can be kept relatively constant over a wide range of variation of the Z coordinate (Fig. 10).
- The 3D representation of the workspace of suggests a large volume of it (~ 13. Mln mm^{3}) and a convenient layout (Figure 2-4).
- The maximum volume of the workspace is achieved when the base and the mobile platform has the same shape and the same size (Table 2).
- The Jacobian matrices $[\mathrm{A}]$ and $[\mathrm{B}]$ are obtained relatively easy and have simple expressions.

6. REFERENCES

[1] Nedezki, C., Contributions to the analysis of singularities and workspace of parallel manipu.lators - Ph.D. Thesis, Technical University of Cluj-Napoca, Cluj-Napoca, Romania, 2003.
[2] Nedezki, C., Trif, A., Kerekes, Gh., The inverse problem of the $3 K T K$ spatial parallel manipulator's positions, Acta Technica Napocensis, series: Applied Matematics and Mechanics, no. 57, Issue V, pag. 2014.
[3] Park F, C, ş.a., Kinematic sensitivity analysis of the 3UPU parallel mechanism, Mechanism and Machine Theory 37 pag.787-798, 2002.
[4] Merlet, J.P. Les Robots Paralleles, Edit. Hermes, Paris, ISBN 2-86601-599-1, 1997.
[5] Itul,T., Pisla,D., Dynamic Model of A 3-TTRS Parallel Manipulator with Newton-Euler Formulation, Proceedings of the 4-th International Conference, Aims for Future of Engineering Science, Igalo, Muntenegru, 2003.
[6] Merlet, J.P. Les Robots Paralleles, Edit. Hermes, Paris, ISBN 2-86601-599-1, 1997.
[7] Handra - Luca, V., Mătieş, V., Brişan, C., Tiuca, T, Roboți: Structură, cinematică şi caracteristici, Ed. Dacia, Cluj-Napoca, 1996.

Analiza spațiului de lucru şi a singularităților manipulatorului paralel spațial 3KTK

Rezumat: În acest articol se studiază reprezentarea grafică prin metoda discretizării (pe baza ecuațiilor de intrareieşire si a unui program conceput în AutoLISP - AutoCAD) spațiul de lucru şi singularităṭile manipulatorului 3KTK care are 3 grade de libertate în translație. Se calculează ariile diferitelor secțiuni plane $Z p=c s t$. şi volumul spațiului de lucru. Se prezintă influența parametrilor constructivi asupra spațiului de lucru a manipulatorului. Key words: manipulator paralel, metoda discretizării, matrice Jacobiană, singularități, grade de libertateive.
Claudiu Mihai NEDEZKI, Senior Lecturer, Tehnical University of Cluj Napoca, Department of Engineering and Robotics, claudiu_nedezki@yahoo.com, Office Phone 0264401639, Home Address: Calea Turzii street, no. 67, Home Phone 0264-440639.
Adrian TRIF, Senior Lecturer, Technical University of Cluj-Napoca, Department of Manufacturing Engineering, adrian.trif@tcm.utcluj.ro, 0264-401614; Home Adress Răsăritului Street, no 102/11, 400587, Cluj-Napoca, 0264-419601.
Gheorghe KEREKES, Senior Lecturer, Technical University of Cluj-Napoca, Department of Mechanical Systems Engineering, gyorgy.kerekes@yahoo.com, 0264-401618

