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Abstract: In the case of the multibody systems (MBS), as example the mechanical robot structure, and in 

accordance with differential principles typical to analytical dynamics of systems, the study of dynamical behavior is 
based on the generalized forces. They are developed in the direct connection with the generalized variables, also named 
independent parameters corresponding to holonomic mechanical systems. But, mechanically, the generalized forces are 
due to: driving sources of the mechanical motion, gravitational forces, manipulating loads, as well as complex frictions 
from physical links between the kinetic ensembles belonging to MBS. The expressions of definition of the generalized 
forces contain on the one hand kinematical parameters corresponding to absolute motions, on the other hand the mass 
properties. The last are highlighted by mass and position of the mass center, inertial tensors and pseudoinertial tensors.  
By means of the especially researches of the author, in this paper new formulations concerning the kinematical 
parameters, generalized forces and dynamics equations of the current and sudden motions will be presented. The 
dynamics study will be also contain acceleration energy and its time derivatives according to differential equations of 
higher order, typically to analytical dynamics of systems. 

Key words: analytical dynamics, mechanics, generalized forces, dynamics equations, robotics. 

 

1. INTRODUCTION 
 

In the case of the multibody systems (MBS), 

as example the mechanical robot structure, see 

Fig.1, and according with differential principles 

answerable to analytical dynamics of systems, 

the study of dynamical behavior is based on, 

among others, the generalized forces [3] – [15]. 

They are mechanically developed in the direct 

connection with the generalized variables, also 

named independent parameters (d.o.f.) which 

they univocally characterize the absolute 

motion for holonomic mechanical systems. But, 

mechanically, the generalized forces are due to: 

driving sources of the mechanical motion, 

gravitational forces, manipulating loads, as well 

as complex frictions from physical links 

between the kinetic ensembles belonging to 

MBS (for example see Fig.1). In the same time, 

the expressions of definition for the generalized 

dynamics forces contain the both kinematical 

parameters corresponding to absolute motions, 

geometrical features, and the mass properties. 

The last are highlighted by mass and position of 

the mass center, as well as inertial tensors and 

pseudoinertial tensors [4], [5], [7], [8] and [14]. 

On the basis of the especially researches of 

the author, in the four sections of this paper new 

formulations will be presented. So, the first 

section is devoted to the kinematical parameters 

typical to MBS (mechanical robot structures) 

with current and sudden motions. Second and 

third sections of the paper highlight, by means of 

transfer matrices, the generalized gravitational, 

manipulating and inertia forces, as well as the 

generalized friction forces. In the fourth section 

dynamics equations with acceleration energies 

and their time derivatives according to [9] - [14] 

are developed. They are typical to the analytical 

dynamics of systems with sudden motions. 

 
 

Fig.1 Mechanical Robot Structure (MBS) 
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2. KINEMATICS PARAMETERS OF MBS 
 

The kinematical and dynamical study from 

this paper [4], [5], [7] is oriented on mechanical 

structure with opened kinematical chain, where 

the kinetic ensembles i 1 n= →  are physically 

linked by driving joints of fifth order. (Example 

mechanical robot structure sees Fig.1). 

Fig.2 Sequence of Kinetic Ensembles 

This is characterized by ( )n d.o.f . , according to: 

( ) ( ) ( )
T0

i; t q t ; i 1 nθ θ θ≠ =  = →   ,      (1) 

where ( )iq t  is the generalized coordinate from 

every driving axis. But, considering the current 

and sudden motions the generalized variables 

of higher order are developed as follows: 

( ) ( ) ( )
( )

( )

( ) ( ) ( )
( )

( )

m

m

i i i i

t ; t ; t ; ; t

q t ; q t ; q t ; ; q t

i 1 n, m 1

θ θ θ θ
   

=  
   
    

=   
= → ≥   

& &&
L

& && L

,        (2) 

and ( )m  represents the time deriving order. The 

main objective of this section consists in the 

establishment of the absolute angular and linear 

velocities and accelerations for every kinetic 

ensemble from MBS. Unlike the classical 

approaches [3] – [5], [7] in the following a few 

formulations based on the time derivatives of 

the locating matrices will be developed. 

So, in the Fig.2 a sequence of two kinetic 

ensembles belonging to MBS is subjected to 

kinematical study. According to [5] – [7], the 

locating matrices are the following: 

[ ]( ) [ ]( ) [ ]( )

[ ]( ) ( )

[ ]( ) [ ]

0 0 i 1

i i i

0

ii

0 i 1

i 1 ii 1i 1 i

T t T t T t

R t p t

0 0 0 1

R t R p p

0 0 0 1

−

−

− −−

 = ⋅ =
 
 
  
 =  

   
  ⋅ +
 =  
    

,      (3) 

They define the locating (position – orientation) of 

the moving frame { }i  versus{ }0 . The components 

with the same significance are written below thus: 

[ ]( )
[ ]( ) ( )









= −−

−
1000

tptR
tT 1i

0
1i0

1i
,             (4) 

[ ]( )
[ ]









= −

−−
−

1000

pR
tT 1ii

1i1i
i1i

i
,                (5) 

The matrix components from (3) – (5) are: 

[ ] ( )( )iii1ii
1i
i tq;kRRR ∆⋅⋅= −

− ,                 (6) 

( ) ( ) ( ) i
1i

ii
0

1ii
1i

1ii
1i ktq1pp −

−
−

−
− ⋅⋅−+= ∆ ,        (7) 

[ ]( ) [ ]( ) [ ]RtRtR
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i

0
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( ) ( ) ( ) ( ) [ ] 1ii
1i0
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−−−− ⋅+=+= ,   (9) 

[ ] [ ]{ }i 1, i R ; 0, i T∆ = = = ;                (10) 

The symbol (10) shows the driving joint type. 

On matrix (3) is applied the first time derivative: 

( )
( ) ( )

( ) [ ]( ) [ ]( ) ( )

0

0
i

i
i

0 i 1i 1 0

i i 1i 1 i

R t p t
T t
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&
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The matrix components from right member are: 

( ) [ ]( )
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ii 1
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Considering (12) and (13), matrix (11) becomes: 
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(14) 

According to [7], matrix (14) is identical with: 

( ) ( )

( )
[ ]( )

0
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i
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i

T q t q t j 1 i

p p
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,       (15) 

and iψ  is orientation vector from { }i  versus{ }0 . 
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Considering the time derivative property (15), 

on the matrix (11) a few transformations are: 

( ) [ ] ( )

[ ] ( ) [ ] ( )

{ } ( ) { } ( )

0 0 1

ii

0 00 T 0 T

i ii ii i

0 0
i i i i

T t T t
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0 0 0 0

p t p t
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ω ω
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      ⋅ − ⋅ ⋅     =

    
  × − × ⋅
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&

&& &

&

, (16) 

{ } [ ]
0 0 T

0
i ii

R Rω  × = ⋅ 
& , { } [ ]

00 T
i

i i i
R Rω  × = ⋅  

& ;  (17) 

where properties (17) are according to [7] – [8]. 

Using (11), expression (16) is written again as: 

( ) [ ] ( )

( ) [ ]( ) [ ] ( )

[ ]( ) ( ) [ ] ( )

0 0 1

ii

0 i 1 0 1

i ii 1
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&

&

&

.        (18) 

The first matrix term from (18) becomes: 

( ) [ ]( ) [ ] ( )

( ) [ ]( ) [ ] ( ) [ ] ( )

( ) [ ] ( )

{ } ( ) { } ( )
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i ii 1

0 i 1 i 1 1 0 1
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ω ω
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−
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−−

−

−−
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&

&

&

&

, (19) 

where { } [ ]
0 0 T

0
i 1 i 1i 1

R Rω − −−
 × = ⋅ 
& ,  (see (17)). 

The second matrix term from (18) is shown as: 

[ ]( ) ( ) [ ] ( )

[ ]( ) ( ) [ ] ( ){ } [ ] ( )

( ) ( )

i 10 0 1

i 1 ii

i 10 i 1 1 0 1

i 1 i i 1i
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− −
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     ∆ ⋅ − ∆ ⋅     =
    

&

&

& &

(20) 

where ( ){ } [ ]
i 1 i 1 T

i 1
i i i i ii

q t k R R
− −

−  ∆ ⋅ ⋅ × = ∆ ⋅ ⋅ 
&& .  (21) 

The components from (20) are developed thus: 

( ) ( ){ }0
i i i i idR q q t k ∆ ⋅ = ∆ ⋅ ⋅ × 
& & ,         (22) 

( ) ( ) ( )

( ){ } [ ]{ }

0
i i i i i

0
0 i 1

i i i i 1 i i 1i 1

dp 1 q 1 q t k

q t k p R p−
− −−

  − ∆ ⋅ = − ∆ ⋅ ⋅ −  
 

− ∆ ⋅ ⋅ × ⋅ + ⋅ 
 

& &

&
.  (23) 

Taking into account on the one hand (16), and 

on the other hand (18) with the components 

(19), as well as (20) – (23) the following matrix 

and differential identity is obtained below: 

{ } ( ) { } ( )

{ } ( ) { } ( )

( ) ( )

0 0
i i i i

0 0
i 1 i 1 i 1 i 1

i i i i

p t p t

0 0 0 0

p t p t

0 0 0 0

dR q dp 1 q

0 0 0 0

ω ω

ω ω− − − −

  × − × ⋅ =    
  × − × ⋅ 

= +  
  

     ∆ ⋅ − ∆ ⋅     + 
    

&

&

& &

.  (24) 

Fig. 3 Kinematical Parameters for MBS 
 

Identifying the angular (rotation) components 

from the above matrix identity (24), it obtains: 

{ } { } ( ){ }0 0 0
i i 1 i i iq t kω ω −× = × + ∆ ⋅ ⋅ ×& .       (25) 

In above identity of skew-symmetric matrices, 

vector equation of angular velocity is selected: 

( ) ( ) ( ) ( )0 0 0
i i 1 i i it t q t k tω ω −= + ∆ ⋅ ⋅& .        (26) 

It represents the equation of definition of the 

angular rotation velocity vector, corresponding 

to absolute rotation of the kinetic ensemble from 

MBS with opened kinematical chain (see Fig.3). 

Identifying the position (linear) components (last 

column) from the matrix identity (24), it obtains: 

( ) { } ( ) ( )

{ } ( )

( ) ( )

( ){ } [ ]{ }

0
i i i i 1

0
i 1 i 1

0
i i i

0
0 i 1

i i i i 1 i i 1i 1

p t p t p t

p t

1 q t k

q t k p R p

ω

ω

−

− −

−
− −−

 − × ⋅ = −
 

− × ⋅ +  
 + − ∆ ⋅ ⋅ − 
 

− ∆ ⋅ ⋅ × ⋅ + ⋅  

& &

&

&

.  (27) 

After a few transformations (27) is changed as: 

( ) ( ) { } [ ]

( ) ( )

0
0 i 1

i i 1 i 1 i i 1i 1

0
i i i

p t p t R p

1 q t k

ω −
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+ − ∆ ⋅ ⋅  

& &

&

. (28) 

Using the definition of the linear velocity for the 

origin of frames: { }i and{ }i 1− , (see [5] and [7]), 

the equation (28) is written below as follows: 

{ } [ ]

( ) ( )

0
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0
i i i

v v R p
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&
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It represents the equation of definition of the 

linear velocity vector, corresponding to absolute 

motion of the origin { }iO i∈  belonging to kinetic 

ensemble from MBS with opened chain (Fig.3). 

Applying the absolute time derivatives of first 

order on (26) and (29), and performing a few 

differential transformations, the equations of 

definition for angular and linear accelerations 

vectors are obtained: 0
iω&  and respectively 0

iv& . 

But, especially in the dynamics equations the 

above kinematical parameters are required by 

the components with respect own frame{ }i . The 

angular and linear velocities and accelerations, 

corresponding to every kinetic ensemble (Fig.3) 

are below presented by means of the definition 

equations with respect own frame{ }i thus: 

[ ]
ii i 1 i

i i 1 i i ii 1
R q kω ω−

−−
= ⋅ + ∆ ⋅ ⋅& ;     (30) 

[ ] { }
( )

ii i 1 i 1 i 1
i i 1 i 1 ii 1i 1

i
i i i

v R v p

1 q k

ω

∆

− − −
− − −−

 = ⋅ + × + 
 

+ − ⋅ ⋅  
&

; (31) 

[ ]

[ ]{ }

ii i 1
i i 1i 1

i i 1 i i
i i 1 i i i ii 1

R

R q k q k

ω ω
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−
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−
−−

 = ⋅ + 
 

+ ⋅ ⋅ × ⋅ + ⋅  

& &

& &&
; (32) 

[ ]

( ) ( )
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i i i
i i i i i i
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p

1 2 q k q k

ω

ω ω

∆ ω

− − −
− − −−
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− − −

 = ⋅ + × +  + × × + 
 

+ − ⋅ ⋅ × ⋅ + ⋅  

& & &

& &&

. (33) 

They are function in exclusivity of parameters 

included in [ ]0 ; i  kinematical interval [7]. So, 

they are applied by outward iterations n1i →= . 

When ( )i 1= , within of the equations (30) – (33) 

the kinematical parameters of the fixe basis 

from MBS are substituted, according to next: 

{ }0 0 0 0
0 0 0 00 , 0 , v 0 , v 0ω ω= = = =&& .      (34) 

When ( )i n= , the kinematical parameters of the 

last kinetic ensemble from MBS are obtained. 

They are operational velocities and accelerations: 
( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }

n 0

6 1

T
n 0 n 0T T

n n

X t ; t

 v t ; t t ; t

θ θ

θ θ ω θ θ

×

   =   
 

    
     

& &

& &

; (35) 

( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n 0

6 1

n 0

n

n 0

n

X t ; t ; t

v t ; t ; t

t ; t ; t

θ θ θ

θ θ θ

ω θ θ θ

×

   =  
         =  
   

    

&& & &&

& &&&

& &&&

;        (36) 

( ) ( ) ( ) ( ) ( ) ( ) ( )n 0 n 0 0 n
X t ; t R X t ; tθ θ θ θ   = ⋅
   

& && & ; (37) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

n 0

n 0 0 n

X t ; t ; t

R X t ; t ; t

θ θ θ

θ θ θ

   =  
 

 = ⋅   

&& & &&

&& & &&
;  (38) 

( )

( )

[ ]( ) [ ]

[ ] [ ]( )

0 T

n 0 n

0 T6 6

n

R 0
R

0 R
×

 
 =
 
 

;    (39) 

The above expressions (35) and (37), as well 

(36) and (38) represent the linear and angular 

velocities as well accelerations, corresponding to 

motion of the last kinetic ensemble of MBS with 

respect to absolute Cartesian frame, [5] – [7]. To 

these is added the locating matrix (3) for ( )i n= . 

 The operational velocities and accelerations 

(35) and (36), according to [7] and [14], are also 

determined by means of the transfer matrices 

answerable to kinematical modeling of MBS. In 

the view of this, for beginning the orientation 

vector of the last kinetic ensemble of MBS is: 

( ) ( ) ( ) ( )
T

A B Ct t t tψ α β γ=    ;        (40) 

( ) ( ) ( )

( ) ( ) ( )

0
A B C

0
A A B

J t t t

A R A; B R A; R B; C

ψ α β γ

α α β

  − −  =  
  ⋅ ⋅ ⋅   

; (41) 

( ) ( ) ( ) ( ) ( )0
A B Ct J t t t tψψ α β γ ψ=  − −  ⋅  ;    (42) 

where (41) represents the angular transfer matrix 

defined as function of set of orientation angles. 

In the following, according to [7] – [14], column 

vectors corresponding to angular and linear 

transfer matrices for velocities and accelerations, 

as well as their time derivatives are presented for 

( )i 1 n= → . So, the equations of definition are: 

[ ]

[ ]{ } [ ]

( ) ( )

00 i
i i i i ii

0 0 T

in n
i

0
i

i

k R k

vect R R
q

J t t
q

ψ

Ω ∆ ∆

∆

ψ ∆

 
 = ⋅ = ⋅ ⋅ =
 

 ∂ 
= ⋅ ⋅ =   

∂  
 ∂

 = ⋅ ⋅  ∂ 

; (43) 

0
0 i 0 0

i i i i i i i i
i

k R k kΩ ∆ ∆ ω ∆ = ⋅ = ⋅ ⋅ = × ⋅ 
&& & ; (44) 

( ) ( )0 0n
i i n i i i i

i

p
V k p p 1 k

q
∆ ∆

∂
= = × − ⋅ + − ⋅

∂
; (45) 

( ) ( )

2n
n

i j

j 1 i j

0 0
i n i i i i

p
V q

q q

d
k p p 1 k

d t
∆ ∆

=

 ∂
= ⋅ = 

 ∂ ⋅∂
 
  = × − ⋅ + − ⋅   

∑& &

; (46) 

where (44) and (46) are based on property (17). 
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The components (43) and (44), respectively (45) 

and (46) are corresponding to transfer matrices 

for angular and respectively linear velocities and 

accelerations. Finally, the following are obtained: 

( )
( )

( )

( )
( )

( )

0

i
0

i

i

V t

J t ...............

t

V t

J t ........ ; i 1 n

t

θ

θ

Ω θ

Ω

      
  = =   

       
   
   = = = →         

;   (47) 

( )
( )

( )

( )
( )

( )

0

i
0

i

i

V t

J t ...............

t

V t

J t ........ ; i 1 n

t

θ

θ

Ω θ

Ω

      
  = =   

      
       = = = →         

&

&

&

&

&

&

;  (48) 

( ) ( ) ( ) ( ) ( )n 0 n 0 0 n
J t R J tθ θ   = ⋅    ;   (49) 

( ) ( ) ( ) ( ) ( )n 0 n 0 0 n
J t R J tθ θ   = ⋅   
& & .   (50) 

According to [5] and [7], the matrix expression 

(47) represents the Jacobian matrix, also named 

the velocity transfer matrix, sometimes matrix 

of partial derivatives of the locating equations. 

The expression (48) is the time derivative of the 

Jacobian matrix, while (49) and (50) are the 

transfer relationships from one to another frame. 

The inverse of Jacobian matrix is determined as: 

( ) ( ) ( ) ( )T0
1

0T010 JJJJ θθθθ ⋅



 ⋅=

−
−

;  (51) 

( ) ( ) ( ) ( )
1

T00T010 JJJJ
−

−





 ⋅⋅= θθθθ .  (52) 

When the mechanical robot structure (Fig. 1) is 

dominated by sudden motions, the generalized 

and operational accelerations of higher order 

are developed. Considering the researches from 

[7] – [14], in the paper the expressions become: 

( )
( )

( ) ( )
( )

( )
( )

( )
( )

( )
[ ]

( )
( ) ( )

( )
( )

( )
( )

m m
0 0

k m km 1
0

k 1

k 1 m k 1m
0

k 1

X t J t t

m 1 !
J t t

k ! m k 1 !

m 1 !
J t t

k 1 ! m k !

θ θ

θ θ

θ θ

−−

=

− − −  

=

 
  = ⋅ +  
 

− 
 + ⋅ ⋅ =  − − 

 
−  = ⋅ ⋅  − − 

∑

∑

;   (53) 

where ( )m  is the order of the time derivatives, 

the symbol ( )
( )m

0 X t  represents the column matrix 

of the operational accelerations of higher order, 

and ( )
( )m

tθ  is the column matrix of generalized 

accelerations of higher order, according with: 

( )
( )

( ) ( )
( )

( )
( )
( )

( )
( )

( )
( )

mm
10 0

k m km 1
10 0

k 1

t J t X t

m 1 !
J t J t t

k ! m k 1 !

θ θ

θ θ θ

−

−−
−

=

 
 = ⋅ −   

 
−    − ⋅ ⋅ ⋅    − − 

∑
(54) 

Considering the mathematical models from [7], 

the Jacobian matrix (47) can be also determined 

with matrix exponentials. But, the components 

of (53) and (54) are based on rotation matrices 

and position vectors, according (43) – (48). So, 

their time derivatives of higher order show as: 
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( )
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and        
{ }

( ) { }

k 1; k 1;2;3;4;5; .....

m k 1 ; m 2;3; 4;5; .....

 ≥ = 
 

≥ + =  
;      (58) 

where the symbols: ( )k  and ( )m are the orders 

of time derivatives concerning (55) – (58). 
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3. GENERALIZED ACTIVE FORCES 
 

In accordance with [3], [4] and [7], on every 

kinetic ensemble ( )i 1 n= → , belonging to the 

mechanical robot structure, as integrated part 

from MBS, are especially applied a system of 

external and active forces, manipulating loads, 

as well as complex friction forces, see Fig.4. 

Fig. 4 Distribution of the forces on MBS 

In function of (static or dynamic) behavior in 

every physical link (driving joint of fifth order) 

generalized static or driving force is developed. 

 For beginning, using the classical algorithm 

[4] and [7], generalized forces corresponding to 

static equilibrium are established. Considering 

theorems from statics of mechanical systems and 

a few transformations, the next expressions are 

obtained by inward iterations ( )i n 1= → , thus: 

[ ] [ ]
0 T ii i 1

i i i 1i i 1
f M R g R f+

++
= ⋅ ⋅ + ⋅ ;   (59) 

[ ]

[ ] [ ]
i

0 Ti i
i C ii

i ii i 1 i 1
i 1 i 1 i 1i 1 i 1

n r R g M

r R f R n+ +
+ + ++ +

 = × ⋅ ⋅ + 
 

+ × ⋅ + ⋅  

;  (60) 

{ } { }0 0 0 0 0g g k , and k x ; y ; z 0 frameτ= ⋅ ⋅ = ∈ ; (61) 

T
g 0T 0 0

g 0 gT
g 0

1; k k 1
k k , k g g

1; k k 1
τ

 − ⋅ = 
= − ⋅ = = 

⋅ = −  
; (62) 

( )i i T i T i
S i i i i iQ f 1 n k = ⋅ − ∆ + ⋅∆ ⋅  .   (63) 

The symbols from above expressions have the 

following significances: i
if and i

in  are the action 

(force and moment of force) from ( )i 1−  on ( )i  

ensemble of MBS (Fig.4); iM  and 
i

i
Cr  are mass 

and position of the mass center; g  module of 

gravitational acceleration (61); i
SQ  is generalized 

static force (63). It observes that all vectors are 

projected on driving axis whose unit vector is i
ik . 

To highlight the influence of gravitational and 

manipulating loads, (59) and (60) are written as: 
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(65) 

Fig. 5 Generalized Forces on MBS 

( ){ } { } { }{ }iim M;1;SU;0;M;SU;1−=∆ ;  (66) 

The operator (66) highlights: gravitational loads 

by ( )iM  and manipulating loads by symbol ( )SU . 

Unlike (59) and (60), the equations (64) and (65) 

are established by means of outward iterations 

( )i 1 n= → , in accordance with [5] and [7]. So, 

they are substituted in (63), and this is changed: 

( ){ }i i T i T i i i
S i i i i i g SUQ f 1 n k Q Q∆ ∆= ⋅ − + ⋅ ⋅ = + ; (67) 

where i
gQ  and i

SUQ are generalized gravitational 

and respectively manipulating forces, according 

to [7] and [14]. They are also named generalized 

active forces. Unlike the classical approach 

based on the virtual work principle, these are 

determined, in accordance with [5], [7] and [14], 

by means of transfer matrices (previous section). 

Considering (64), (65) and (67), the starting 

equation for generalized gravitational force is: 
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Taking into account linear and angular transfer 

matrices for velocities (45), (43) and (47), within 

of (69) a few transformations are performed as: 

( ) ( ) j

j

0
C0 0 0

i i i C i i

i

r
k 1 k r p

q
∆ ∆

∂
⋅ − + × − ⋅ =

∂
; (70) 

( ) ( )
j j

0 0
C i C n n ir p r p p p− = − + − ;   (71) 

( ) ( )

( )

0 0
i i i n i i

0 0n
i i
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k 1 k p p

p
V J J t
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∂ 
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;   (73) 

( )0 T 0 T 0 T
i i i ik J J t∆ Ω θ ⋅ ≡ ⊂ ⊂   .   (74) 

The transformations (70) – (74), in accordance 

with [5], [7] and [14], are substituted in (69). As 

a result, the expression of definition is obtained 

for generalized gravitational force, as follows: 
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0
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C n 0 n 0i T T
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( ) ( ) ( )
i

T
n 0 n 0i T

g g i XQ Q J ; i 1 nθ  = = ⋅ = →
 

ö . (77) 

The column vector (76), expressed with respect 

to Cartesian space, is mechanically equivalent 

with reduction torsor of the gravitational forces 

in [ ]i ; n  interval in relation with the { }n  moving 

frame, applied in the geometry center of the last 

driving joint from MBS (see Fig. 4 and Fig.5). 

Considering (64), (65) and (67), the starting 

equation for generalized manipulating force is: 
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Taking into account linear and angular transfer 

matrices for velocities (45), (43) and (47), within 

of (78) a few transformations are performed as: 
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[ ]{ } [ ]{ } [ ]
T T

i 0 0n 1 n 1
n 1 n 1n 1 n 1 i

R f R f R+ +
+ ++ +

⋅ = ⋅ ⋅ ; (80) 

[ ]{ } [ ]{ } [ ]
T T

i 0 0n 1 n 1
n 1 n 1n 1 n 1 i

R n R n R+ +
+ ++ +

⋅ = ⋅ ⋅ ;   (81) 

[ ] ( ) [ ]{ }
[ ]{ } ( ) [ ]

T0 T i n 1
i n 1i n 1

T T0 0n 1
n 1 in 1 i

R p p R f

R f p p R

+
++

+
++

 
⋅ − × ⋅ = 

 
 = ⋅ ⋅  − × ⋅  

; (82) 

Considering (79) – (82), the expression (78) is: 
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In (83) other transformations are performed as: 
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The transformations (79) – (85) are written in 

keeping with [5], [7] and [14]. So, substituting in 

(78), generalized manipulating force is obtained: 
( ) ( )

ö
n 0 n 0i T

SU i XQ J= ⋅ ;    (86) 

( )

[ ]

{ } [ ] [ ]
( ) [ ] [ ]

( ) [ ]{ } [ ] ( ) [ ]

T0 0 T 0 T
X X X

6 1

0 n 1
n 1n 1

0 0n 1 n 1
n 1n n 1 n 1n 1 n 1

n 0
n 1

n 1 n 1

0 n T n 0 n n 1
n 1n 1nn n 1 n 1

F N

R f

...............................................................

p R f R n

R 0 f

nR p R R

×

+
++

+ +
+ + ++ +

+
+ +

+
++ + +

 = = 

 ⋅
 

= = 
 

× ⋅ ⋅ + ⋅  
 
  ⋅
 

⋅ ×  

ö
 
 
 
 
 
 
 
 
 
 
 

  
      

(87) 
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T
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X

Q

Q J ; i 1 n

J

θ

θ
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  = = ⋅ = → =  
 

= ⋅  

. (88) 

Cartesian column vector (87) is mechanically 

equivalent [5] – [8] with the reduction torsor of 

the manipulating load with respect to { }n  frame. 
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4. GENERALIZED DYNAMICS FORCES 
 

Considering the aspects from [6] – [14], in 

the case of the dynamical behavior of MBS, in 

every driving joint, besides the active forces (see 

previous section), are developing the generalized 

inertia and driving forces. These constitute the 

main objective in this section. For beginning, the 

iterative algorithm of the dynamics equations, in 

classical form, is applied. By means of outward 

iterations ( )i 1 n= → , are established following: 

i i i

i i i i i i i
C i i C i i C v  v  r  r  ω ω ω= + × + × ×& & & ;  (89) 

i

i i
ii CF  =   vM

∗ ⋅ & ;      (90) 

0
0 0For i 1, v g g kτ= ≡ = ⋅ ⋅& ;   (91) 

i i i i i i
i i i i i iN   I     I  ω ω ω∗ ∗ ∗= ⋅ + × ⋅& ;    (92) 
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I I I

σ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

= ∗ ∗ ∗

 − −
 
 = ⋅ = − −
 
− −  

∑ (93) 

The above expressions are corresponding to 

every kinetic ensemble. So, the symbols have 

the significances: 
i

i
Cv&  is the acceleration of mass 

center; i
iF ∗  and i

iN ∗  represent the resultant force 

and moment of forces, and i
iI
∗  inertial tensor 

axial and centrifugal with respect to { }i∗  frame 

applied in mass center of the kinetic ensemble.  

 The equations (90) and (92) are fundamental 

theorems in dynamics of mechanical systems: 

theorem of the motion of the mass center (90) 

and theorem of the angular momentum (92). 

 Applying the inward iterations ( )i n 1= →  the 

following dynamics parameters are determined: 

[ ]
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( ){ }i i T i T i
m i i i i iQ f 1 n k∆ ∆= ⋅ − + ⋅ ⋅ ;    (96) 

The symbols from (94) – (96) have the next 

significances: i
if and i

in  are the dynamical action 

(force and moment of force) from ( )i 1−  on ( )i  

ensemble of MBS (Fig.4); and i
mQ  generalized 

driving force, identical with differential equation 

corresponding to kinetic ensemble from MBS. 

According to [5] and [7], (96) is written again: 

( ) i
fd

2
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i
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ffi
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31

1
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−
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The symbol i
fdQ  is generalized friction force. Its 

expression of definition is below presented as: 
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&
(98) 

where symbols: ib  and ( )i T Rµ  are coefficient of 

viscous friction and coefficient of dry friction 

as function of joint type. Within of the (97) and 

(98) are founded the following operators: 

( ) ( ) ( ){ }i
f m m fd1; 1 ; 0; 0;1 ; 1;Q∆ ∆ ∆ = − = − =  (99) 

{ } { }1; ; 0 ; 0 ; ; 0θ∆ θ θ θ θ
    = ≠ =        

& && & && ; (100) 

where f∆  highlights the loads by m∆  (see (66)) 

as well as the influence of the complex frictions; 

θ∆  shows behavior (0 – statics; 1 – dynamics). 

The classical approach (94) – (96) is based on 

the D’Alembert principle. It observes that i
mQ  is 

a function, in exclusivity, of gravitational and 

manipulating loads, as well as of inertia forces 

situated in the mechanical interval [ ]i ; n 1+ . So, 

according to [5] – [7], similarly with (64), (65), 

and considering the operators (66) and (100), 

dynamical actions (94) and (95) are rewritten as: 
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Substituting (101) and (102) in (96), it obtains: 
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1 3
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; (103) 

( )i
gQ t  and ( )i

SUQ t  are generalized active forces 

(previous section, expressions: (75) and (86)). 
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Considering (101), (102), as well (90) and (92), 

the generalized inertia force ( )i
iQ t
ö

, included in 

(103), has the starting equation the following: 
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Taking into account linear and angular transfer 

matrices for velocities (45), (43) and (47), in the 

(104) a few transformations are performed as: 
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Similarly with (82) – (85), finally the expression 

of the generalized inertia force becomes thus: 
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Column vector (110), expressed with respect to 

Cartesian space, is mechanically equivalent 

with reduction torsor of the inertia forces from 

[ ]i ; n  interval in relation with the { }n  moving 

frame, applied in the geometry center of the last 

driving joint from MBS (see Fig.4 and Fig.5). 

The column matrix of the generalized inertia 

forces (111) can be written as matrix diagonal: 

( )
( ) ( )

( ) Xi

T0 0
i

6 nn n

Diag Q J Matrix ; i 1 nθ θ ∗

××

  = ⋅ = →   ö
ö , 

( )

( )

( )
( ) ( )

( )

( ) ( ){ }

ö

ö

ö

ö
i

1
i

i
i

n
i

Tn 0 n 0

X
6 n

Q t 0 0

....

0 Q t 0

....

0 0 Q t

J t Matrix t ; i 1 nθ ∗

×

  
  
  
   =
  
  
  
   
 

 = ⋅ = →   

L L

M M

L L

M M

L L

. (112) 

Substituting (75) and (86), as well as (109) in 

(103), the generalized driving force from every 

driving axis from MBS is finally obtained thus: 

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( )

i

m

i

n 0 n 0i T 2
m i m X

mn 0 n 0

X X

m

Q t J t t

1
t 1 t

1 3

θ

∆

∆ ∆

∆

∆

∗ = ⋅ ⋅ ⋅ +
  

 − + + − ⋅ ⋅  + ⋅  

ö

ö ö

;(113) 

m∆  and θ∆  have significances (66) and (100). 

Comparing (75), (86) and (109) it observes that 

they have unique character. So, the generalized 

active and inertia forces are mathematically 

identical as form of expression. This aspect has 

important advantage, in the establishment of the 

dynamics equations (113), corresponding to 

every kinetic ensemble from MBS (see Fig.5). 

In consonance with above mathematical aspects, 

the resultant force vector included in generalized 

friction forces (98) is determined as follows: 

[ ] { }i Xi

0 Ti 0 0 0 i
i X X fdi
f R F F F Q∗= ⋅ + + ⊂ .  (114) 

So, considering (97) and (98), (113) is changed: 

( ) ( ) ( ) ( )fi i 2 if
mf m f fd

f

1
Q t 1 Q t Q t

1 3

∆ ∆
∆

∆

−
= − ⋅ ⋅ + ⋅

+ ⋅
(115) 

As a result, (115) for ( )i 1 n= →  constitutes the 

system of ( )n  generalized driving forces. They 

are identical with dynamics equations of MBS, 

in which the both generalized active and inertia 

forces, and the complex frictions are founded. 

 

5. HIGHER ORDER DYNAMICS EQUATIONS 
 

     When the mechanical systems (MBS) are 

dominated by sudden motions, as well as by the 

transitory motions, on the basis of the author's 

researches [6] – [14] it demonstrates theoretical 

and experimental existing of the accelerations 

energy of higher order. They are included in the 

dynamics equations of higher order. As a result, 

time variations of generalized forces are obvious. 
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In the case of the mechanical robot structure 

(Fig.5) characterized by the sudden motions, 

generalized accelerations and forces of higher 

order in the dynamical behavior are developed. 

Considering the researches [6] – [14], they are: 
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( )

( )
( )
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; (116) 

( )
( )

( )
( )

( )
( )

( )
( ) [ ]

( )
( ) ( )

( )
( ) ( )

ö

ö

ö

i

i

i

k k

i 0 0
g i X

m k mk 1
0 0

i X

m 1

k m 1m 1k
0 0

i X

m 1

Q t J t

k 1 !
J t

m! k m 1 !

k 1 !
J t

m 1 ! k m !

θ

θ

θ

−−

=

− − −  

=

 
 

 = ⋅ +  
 

− 
 + ⋅ ⋅ =  − − 

 
−  = ⋅ ⋅  − − 

∑

∑

; (117) 
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The significance of the terms from (116) – (118) 

is well defined in the previous sections of this 

paper, and ( )k 1≥  is the time deriving order. But 

considering dynamical equations, instead of ( )k  

is written ( )k 1− . When ( )k 1= , then (116) – (118) 

are degenerated in: (109), (75), and last in (86). 

According to Lagrange’s equations of second 

kind, generalized inertia forces are identical as: 

( )jC C
i

j j

E Ed
Q t

dt q q

 ∂ ∂
− =  ∂ ∂ &

ö
;            (119) 

( )

( ) ( ) ( )

m

jC C
im

j
j

E E1
m 1 Q t

m q
q

 
∂ ∂ 

⋅ − + ⋅ = ∂
 ∂ 

ö
.     (120) 

The symbol CE  is kinetic energy, expression 

(120) is Tsenov – Mangeron formulation, and 

( )m  is time deriving order. But, considering the 

acceleration energy of first order [1] – [15], as 

well as its time derivative of higher order, the 

generalized inertia forces are also identical with: 

( )
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( ) ( ) ( )
( )

( )
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1 1

A Awhere E E j 1 n k 1

m k 1 2 and k are time deriving orders
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 ≥  + =   

,

,

; 

where according to [1] – [15], (121) is named 

generalization of Gibbs – Appell’s equations. 

Following the application of time derivatives of 

higher order ( )m  and ( )k , the equations (120) 

and (121), become new differential expressions: 

( )

( )
( )

( )

( )

( ) ( ) ( )
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m k 1 k 1

C C
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k 1 m
j
i

E E1
m 1

m q
q

Q t ; t ; ; tθ θ θ

+ − −

−

  
∂ ∂  ⋅ − + ⋅ =   ∂

∂   
 
   

=   
&

L
ö

;      (122) 
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k 11 m
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According to [9] – [14], sudden and transitory 

motions of MBS are represented by dynamics 

equations, and the central function is highlighted 

through acceleration energies of higher order. As 

result, considering acceleration energies of first, 

second and third order, and applying the time 

derivatives of higher order ( )m  and ( )k , see [12] 

and [14], the differential dynamics equations are: 
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k 3 m k 1 4 m 4 5 6
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 = ≥  + =  =  K

,

, , , , ,

. 

The acceleration energy of first, second and third 

order is defined in papers of author [10] – [14]. 
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Author has proposed [13] – [14], the generalized 

differential equations of higher order in the case 

of the mechanical systems (MBS), dynamically 

characterized by sudden and transitory motions: 

( )
( ) ( )

( )
( ) ( )
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The necessary conditions in (126) are following: 

{ } { }{ }
{ }

( ) { }
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and k 1; k 1;2;3; 4;5; .....

m k 1 ; m 2;3; 4;5; .....

δ = → = = >
  

≥ = 
 

≥ + =  

. (128) 

Generalized differential equations (126) contain 

acceleration energies of order ( )p 1 k= → . Using 

the aspects from Fig.4, the starting equation is: 
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(130) is inertia tensor planar and centrifugal of 

the kinetic ensemble ( )i  with respect to frames 

{ } { }{ }i ; 0∗ ∗ , having the origin in mass center
iC . 

The author has demonstrated in various papers, 

as example [10]-[14], expressions of definition 

in the explicit and matrix form, for acceleration 

energies of first, second, third and fourth order. 

6. CONCLUSIONS 
 

The currently paper was devoted, especially, 

to presentation a few essential new formulations 

about kinematical transformations concerning 

the locating matrices, the generalized active and 

dynamics forces, as well dynamics equations of 

higher order compulsory included in analytical 

dynamics of the multibody systems (MBS). So, 

in the case of (MBS), for example, mechanical 

robot structure, unlike the classical models the 

author describes in the first section of this paper 

new formulations on the locating matrices and 

their time derivatives. As result, the kinematical 

parameters of the absolute motions for every 

kinetic ensemble have been implemented. In the 

same section the author presents the expressions 

of the operational and generalized accelerations 

of higher order, answerable to sudden motions. 

Unlike the classical approaches, in the second 

and third sections of this paper, the author 

presents formulations concerning generalized 

active and inertia forces based in exclusivity on 

linear and angular transfer matrices, also 

described in the first section of this paper. It 

observed that they have unique character. So, 

the generalized active and inertia forces are 

mathematically identical as form of expression. 

In these formulations are also included complex 

frictions and generalized driving forces, identical 

with dynamics equations of MBS. The above 

aspects have an important advantage, in the 

establishment of the dynamics equations, 

corresponding to every kinetic ensemble MBS. 

When the mechanical systems (MBS) are 

dominated by sudden motions, as well as by the 

transitory motions, on the basis of the author's 

researches was demonstrated theoretical and 

experimental existing of the accelerations 

energy of higher order. They are included in the 

dynamics equations of higher order. As a result, 

time variations of generalized forces are obvious. 

So, in the fourth section of the paper, the author 

presented the expressions of definition for the 

generalized forces of higher order. They are 

included in the dynamics equations, where the 

central functions are acceleration energies of 

higher order. In the last part of the fourth section 

author has proposed the generalized differential 
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equations of higher order mechanical systems 

characterized by sudden and transitory motions. 
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Forțele Generalizate în Dinamica Analitică a Sistemelor 
 

În cazul sistemelor mecanice multicorp (MBS), spre exemplu structura mecanică a robotului și în conformitate cu 
principiile diferențiale specific dinamicii analitice a sistemelor, studiul comportamentului dinamic se bazează pe forțele 
generalizate. Ele se dezvoltă în conexiune directă cu variabilele generalizate, cunoscute de asemenea ca parametrii 
independenți ai sistemelor olonome și neolonome. Dar, sub aspect mecanic, forțele generalizate se datorează: surselor de 
acționare, forțelor gravitaționale, sarcinilor de manipulare, precum și frecărilor complexe din legăturile fizice dintre 
elementele cinetice, aparținând MBS. Expresiile de definiție ale forțelor generalizate conțin pe de o parte parametrii 
cinematici corespunzători mișcării absolute, iar pe de altă parte proprietățile maselor. Acestea din urmă se evidențiază 
prin masa și poziția centrului maselor, tensorii inerțiali și pseudoinerțiali. În special pe baza cercetărilor autorului, în 
această lucrare se vor prezenta formulări noi cu privire la parametrii cinematici, forțele generalizate și ecuațiile dinamice 
ale mișcărilor curente și rapide. Studiul dinamic va conține, de asemenea, energia accelerațiilor și derivatele ei în raport 
cu timpul, conform cu ecuațiile diferențiale de ordin superior specifice dinamicii analitice a sistemelor. 
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