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Abstract: In the paper, on the basis of formulations based on matrix exponential will be established the 

direct and inverse geometry equations. The matrix exponentials functions in robotics will be applied for a 

serial robot structure. Unlike classical algorithms, the application of the exponential matrix functions 

presents some advantages in determining the direct geometry equations. The results obtained in 

geometrical modeling, are representing input data for kinematical modeling, all those being important 

data in the study of dynamic behavior of any mechanical robot system.  
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1. INTRODUCTION  

 

Nowadays, significant resources are 
being spent in the development of mechanical 
robotic systems. A part of this development is 
based on mathematical studies, having the role 
of using new approaches for establishing and 
studying the parameters which are defining the 
dynamic behavior of any mechanical system.  

Transfer matrix equations, specific to a 
serial kinematic chain, having rotation and 
translation kinematic joint, from the robot's 
mechanical structure, can be expressed by using 
Exponential Matrix Functions (ME), [1]-[4].    

 
2. THE GEOMETRY EQUATIONS 
 

In this section, will be presented the 
geometry equations for a serial structure, by 
using the matrix exponentials used for determine 
the locating matrices, according to [1]-[4]. 
 
2.1 Establishing of Locating Matrices by 

using of Matrix Exponentials 
 

The matrix exponentials and their 
associated transformations are included in the 
algorithm of matrix exponentials (MEG) devoted 
to direct geometry equations, according to [2] and 
[4]. The main steps of the algorithm are presented 
in the following. 

 The matrix of the nominal geometry ( )0
vnM , 

corresponding to configuration ( )0θ  is known: 
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 On the basis of this matrix is represented the 
kinematical structure of the robot, taken in study. 
 

 The matrix of the nominal geometry is 

completed with the screw parameters ( ) ( ){ }0
i

0
i

v;k  

also named the homogeneous coordinates. The 

new matrix is symbolized by ( ) **0
vnM , according to: 
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 In keeping with MEG Algorithm, an outward 
loop is opened ( )n1i →= . The matrix 
exponentials devoted to direct geometry 
equations (DGM equations) are bellow obtained. 
 

 The differential matrix iA  has the same 

expression for the both configurations ( )0θ and 
θ . Considering [2] and [4], this matrix shows as: 
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where { } ( ){ }; 1
i i i i i i i i

k z v p z z= = × ⋅ ∆ + − ∆ ⋅  

are the screw parameters or homogeneous 
coordinates of the driving axis (i), according to 
[5] and [6], which by generalization becomes 

  { } { } ( ){ }= = × ⋅ ∆ + − ∆ ⋅; ; ; 1i i i i i i i i i ik x y z v p k k     (4) 

 The exponential of rotation matrix is: 
( ){ }{ } ( )
( ) ( ){ } ( ){

( ) ( ) ( )[ ]} [ ] 























≡⋅−⋅+

+⋅×+⋅⋅≡

≡⋅≡⋅⋅×

−
Rqc1kk

qskqcI

q;kRqkexp

1i
iii

T0
i

0
i

ii
0

iii3

iiiii
0

i

∆

∆∆

∆∆

.  (5) 

 

 The inverse of the exponential of rotation 
matrix is also expressed, in keeping with the next: 
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 The defining expression for the column 
vector ib , is established with the following: 
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 Another matrix exponential, having a great 
significance for locating transformation, shows as: 
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 The inverse of the matrix exponential (8) is: 
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 The exponentials expressions for the locating 
matrices, which define the position and 
orientation of the { }n and { }1n + with respect to 
fixed frame { }0 , are obtained as follows: 
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 The inverse of the locating matrix (11) is: 
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and: 
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Remark: The MEG Algorithm, due to 
computational advantages and independent of the 
reference can be applied for any robot structure. 

 
3. APPLICANTION 

 
Further, in the paper, for the 

exemplification of the MEG algorithm, there is 
considered a serial structure, of 2TR type, 
presented in the Figure 1.  
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3.1 Direct Geometry Modeling of 2TR robot 

For the proposed structure, according to, 
[1]-[4], algorithms based on the matrix 
calculation with exponential functions will 
form the basis of the homogeneous 
transformations in the Direct Geometry 
Modeling (DGM), and the exponential of the 
location matrix between the systems { } { }0 4®  
is determined first. These are characterizing the 
position and orientation (or location) of the 
final effector relative to the system attached to 
the fixed base of the robot. Thus, according to 
the MEG algorithm, the following steps are 
performed to determine the position and 
orientation of the end-effector.  
• There is determined the nominal 

geometry matrix, ( )0

vnM , which is describing the 
( )0

q  configuration of the robot, which for the 

mechanical system taken into study is presented 
in Table 1. 

( )0
2vnM TR

** Î              Table 1 

 
 
As it can be observed from the Table 1, the 

screw parameters ( ) ( ){ }0 0
;i ik v  are contained in 

the nominal geometry matrix . [7] 

• Is represented the kinematic schema of 
the 2TR type robot, in Figure 2, according to 
Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• According to the algorithm, is opened an 
external cycle for ( )1 3i = ® . Within the cycle 

is determined the matrices and exponential 
functions, specific to the direct geometry 
modeling, in accordance to (3)-(8). 

For the first element, representing a 
prismatic joint, there are determined the 
following expressions for exponential matrix 
functions: 
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Figure 2 Kinematic schema of the 2TR serial robot 

Figure 1  The serial robot structure 2TR  
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According to Figure 2, the second joint of the 

2TR structure, is also a prismatic joint, so for 

the kinetic element, the matrix exponentials are: 
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For the third kinetic element, consisting 

of a rotation joint, are determined the following 

expressions: 
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(29)

For the initial configuration (0)θ , the 

homogeneous transformation matrix between 

{ } { }→0 4 reference frames, is determined as: 
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In keeping with (9)-(10), the situation matrix 
between { } { }→0 4 reference frames, which 

expresses the position and orientation of the 
end effector, is expressed as follows: 
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Therefore, on the basis of (31)-(33) by 
performing matrix calculations, the following 
expressions are obtained for the 2TR structure: 
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which represents the resultant matrix and the 
position vector, these being included in the 
following expression of the column vector of 
the operational variables [4]: 
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known as direct geometry equations (DGM 
equations).  

According to [4], in order to establish the 
orientation angles, , ,α β γz y z  for exact 

determination of the values, there is used the 
trigonometric function tan 2A , defined by: 
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Hence, in keeping with (37), results: 

( ) ( )

( ) ( )3 3 3

tan2 ; tan2 1;0 2;

2;

tan2 ; tan2 ;

z z z

y

z z z

A s c A

A s c A sq cq q

α α α π

β π

γ γ γ π

= = =

=

= = − − = +

(38) 

The column vector of the operational 
coordinates, defined by (36), becomes [7]: 
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and characterizes the direct geometric modeling 
of the 2TR type robot taking into account.  
 
3.2 Inverse Geometry Equations of 2TR 

serial structure 

The inverse geometric modeling (MGI), 
or modeling of geometric control functions, 
consists of determining the column vector of 
generalized coordinates ( )1 2 3, ,q q q , which are 

characterizing the movement in each kinetic 
link, expressed as: 

[ ]{ }
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1 0 1

T
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x y z x y z

q q q

f X f p p p

θ

α β γ− −

≡ =

 = ≡
 

(40) 

In inverse geometric modeling, the 
position of the mobile system attached to the 
final effector in the characteristic point is 
known by numerical values. As an observation, 
the number of operational parameters varies, 
but cannot exceed the number of degrees of 
freedom. In keeping with (39), results: 

2 2 2

1 1

x

z

q p a d

q p l

= − − 
 = − 

                    (41) 

According to previous expression, the 
displacement on 0y  axis is absent, namely: 

 1 .yp a cst= − =                      (42) 

From the same relations belonging to the direct 
geometry, the third generalized coordinate is 
determined as being: 

3 zq γ π= −                        (43) 

The expressions (41) and (43) are the 
geometric control functions corresponding to 
the input data relating to the position of the 
characteristic point in the Cartesian space. 

 

4. CONCLUSION  
  

According to the paper, there can be 
established the Direct Geometry Equations on 
the basis of algorithms, which are using matrix 
exponential functions. As can be seen from the 
analysis, the use of the algorithms for 
determining the geometric control functions of 
a robot implies the application of some 
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mathematical methods that are helping to 
establish the connection between the elements 
that determine the location of the end effector 
in the Cartesian space. Thus, by applying 
matrix methods based on matrix exponentials, 
were presented the direct geometry equations, 
which express the position and orientation of 
the characteristic point of the end effector with 
respect to the fixed reference system attached to 
the robot base.  

As an important remark, is that the 
approach of geometry with exponential 
functions leads to essential advantages on the 
one hand, due to the writing in a compact form, 
easy to visualize in geometrical form, on the 
other hand it is noted as an essential advantage 
the lack of reference systems which introduces 
geometric restrictions, and in the precision 
study could lead to additional geometric errors. 
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Modelare geometrică cu funcţii exponenţiale de matrice pentru o structură serială de robot 
 

Rezumat: În lucrare, pe baza formulărilor bazate pe exponenţiale de matrice se vor stabili ecuaţiile 
geometriei directe şi inverse. Funcţiile exponenţiale de matrice în robotică vor fi aplicate în modelarea 

matematică a unei structuri de robot serial. Spre deosebire de algoritmii clasici, aplicarea funcţiilor 
exponenţiale de matrice prezintă câteva avantaje în determinarea ecuaţiilor geometriei directe. Rezultatele 

obţinute în modelarea geometrică, reprezintă date de intrare pentru modelarea cinematică, toate acestea fiind 
date importante în studiul comportării dinamice a oricărui sistem mecanic robotizat. 
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