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KINEMATICAL MODELLING FOR R2T SERIAL STRUCTURE 

USED IN TRANSFER PARTS BETWEEN TWO WORKSTATIONS  
  

Claudiu SCHONSTEIN, Nicolae PANC  
 

 
Abstract: Based on the idea of bringing more flexibility to a working process, the paper is dedicated to 

the presentation of geometry and kinematics equations for a R2T serial structure, which can be used for 

carrying out tasks related to handling of pieces between two workstations. Thus, will be established in 

analytical form, the direct equations for geometric and kinematic model using dedicated algorithms, as 

the Transfer Matrices Algorithm and Iterative Algorithm. The Iterative Algorithm uses the outputs of the 

geometric study for realize the kinematic control, namely the establishment of linear and angular 

speed/acceleration of every kinetic joint of R2T robot and hence the TCP of the end effector. 
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1. INTRODUCTION  
  

The industrial applications which are 

using robotic systems have developed 

continuously since the introduction of the first 

robotic device until today, because the use of 

industrial robots has beneficial effects in terms 

of increasing productivity and improving 

product quality.  

Nowadays, when the robots have a higher 

and larger field of application day by day, the 

necessity for more and more precise and 

versatile robots is at peak. For this, the study of 

the robot precision is a required and a 

compulsory operation before even the prototype 

production of the structure taken into study. 

The large scale robot manufacturers invest big 

amounts of money in the perfecting of this 

field, the desired output being more and more 

precise robots. 

Implementation of industrial robots in 

human areas activity has led to the development 

of robotics research, hence in the most 

industrialized countries, the research in the field 

of robotics and consequently the flexible 

manufacturing systems, have developed a 

degree of diversification extremely high.  

   

2. THE R2T TYPE SERIAL STRUCTURE 
   

Further, in the paper is presented a 

solution of serial robot, which is intended to be 

used in transferring of parts between two sites. 

The proposed robot, denoted R2T, is a 

cylindrical structure, is presented in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The R2T Serial Robot 

0O0x

0z

0y



410 
 

 

According to the Figure 1, the mechanical 

structure can perform a rotation around 0 0O z  

axis and two translations; one along 0 0O z axis, 

the other along 0 0O y axis. As general features, 

the robot proposed for implementation in 

handling operations, has a total mass of         

140 (kg) and overall dimensions 

× × = × ×0,5[ ] 0,3[ ] 1,15[ ]L l h m m m , with a payload 

capacity of approximately 20 [kg]. 

 

3. MATHEMATICAL MODELLING OF 
THE R2T SERIAL STRUCTURE 

 

Further, using consecrated algorithms 

there are determined the direct and inverse 

geometry and kinematics equations, for the 

R2T mechanical structure proposed for 

implementation in an industrial handling 

process. The specific transfer matrix equation 

for a mechanical structure having rotational 

( )R  or translational ( )T  motions, according to 

[1]-[2], can be expressed using algorithms. 

These algorithms allowing detailed analysis, 

under numerical and/or graphical form, on 

geometry, kinematics and dynamics analyzed 

structure of any type and complexity.  

The obtained results, are essential to optimal 

design, dimensional aspect and energy, but also 

to simulate kinematic and dynamic behavior of 

mechanical structures. 

 

3.1 Geometrical Modeling  
The Direct Geometry Equations (DGM 

equations) can be determined by applying the 

Matrix of Locating Algorithm, taking into 

account the minimum number of, geometric or 

mechanical restrictions. Compared to other 

algorithms for geometric modeling, the 

Algorithm of Locating Matrix has a great 

advantage, especially in terms of mathematical 

calculus (is simplified). [2] 

The situation matrix are defined as:  

( ) ( )1 0 0
1 1 0 0

1 0;
0 0 0 1 0 0 0 1

−
− −

−

   
   = =
      

i
i i i i i i

i i i

R p R p
T T .  (1) 

Similarly, for 1= +i n , the locating matrices 

between the frames { } { }1→ +n n  and { } { }0 1→ +n  

are defined according to the following: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 0
1

1

0 0 0 0

10 0 1

0 0 0 1

0 0 0 1

n
n n

n n

n n n n

n s a p
T

n s a p
T T T

+

+

+ +

 
 =
  

 
= ⋅ =  

  

     (2). 

In the expressions (2), 
( )0

p  is a vector which 

defines the position of the last joint with 

reference system attached to base of the robot, 

and 
( )0

1+
n

n np  characterizes the relative position of 

the system attached to end effector besides the 

geometrical center of the last joint. 

For →i = 1 n , the situating matrices 

between two close related system 

{ } { }1− →i i are defined as: 

( )
( ) ( ); 1

;
0 0 0 1

∆

 ⋅∆ −∆ ⋅ ⋅
 =
 
 

i
i i i i i i

i i

R k q q k
T k q ;     (3) 

[ ] ( )1

1 ;
−

− ∆= ⋅
i

i i i i iT T T k q .              (4) 

According to [1]-[4], the rotation matrix 

between two neighboring reference frames is: 

[ ] ( ) ( ) ( ){ }1
; ; ; ; ;

−
= ⋅∆ ⋅∆ ⋅∆

i

i i i i i i i i ii
R R x q R y q R z q  (5) 

 
( ) ( )01 1

1 1− −
−= + − ∆ ⋅ ⋅i i i

i i i i i ir p q k .       (6) 

For →i = 1 n , the position vector between 

{ }i and { }1−i with respect to { }0  fixed frame, 

respectively the position of joint { }i  related to 

the same fixed frame is determined as:  

 [ ]0 1
11 1

−
−− −= ⋅ i

ii i i ip R r ; 1
1

−
=

=∑
i

i j j
j

p p .(7) 

The situation matrix, between { } { }0 → i is: 

[ ] [ ]
[ ]0

0 1

1 0 0 0 1

−

=

 
= =  

  
∏

i
j i i

i j

j

R p
T T .    (8) 
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and for the end-effector: 

 [ ] [ ]0 0
1 1 0 0 0 1

+ +

 
= ⋅ =  

 
n n n n

n s a p
T T T .   (9) 

The orienting vector is defined [1]-[4] with the 

following identity: 

( ) [ ]{ } ( )
0

1
;α β γ ψ α β γ

+
− − = =

T

A B C A B Cn
R R (10) 

The DGM equations are included in the 

following generalized matrix: 

0

ψ α β γ

       = =
         

T

x y z

T

x y z

p p pp
X .      (11) 

The Direct Geometrical Modeling 

(DGM), regardless of the algorithm used, aims 

to establish the geometry equations that will 

serve in determining the Direct Kinematic 

Model (DKM). 

Geometrical Modeling of the robot had to 

be performed manually because of the multiple 

methods existent which allow the solving of 

this particular issue and also because of the 

inexistence of a generalized, computerized 

process able to perform it in the symbolical 

form [2]. The Geometrical Modeling for R2T 

mechanical structure is not a simple problem. 

This mathematical problem is solved in this 

work using the algebraic method. In the 

kinematic study of the work there can be used 

expressions obtained from the geometrical 

method due to their not so complicated 

expression and due to the simplicity of the 

algorithm that generated them. 

Further, will be established the DGM 

equations, for the R2T serial structure. 

According to the first step, related to any 

algorithm devoted MGD equations, it is 

represented in Figure 2, the kinematic scheme 

of the robot in the initial configuration, when 

all the generalized coordinates are initialized to 

zero: 
( ) [ ]0

0; 1θ = = = →
T

iq i n . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the input data 

corresponding to DGM, the matrix of nominal 

geometry ( )0

vn
M  for R2T robot type proposed is 

given in Table 1. 

 

Table 1. 

The matrix of nominal geometry 

 

 

 

 

 

 

 

 

 

In keeping with Table 1, and Figure 2, the 

are highlighted the geometrical particularities 

for the R2T serial robot, as following: 
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Figure 2 The kinematic scheme of  R2T Robot 

proposed for handling parts  
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( )
( )
( )

1 1 1

2 2 2

3 3 3

1; ; 1 ;

2; ; 0 ;

3; ; 0

 = ≡ ∆ =
  

= ≡ ∆ = 
 

= ≡ ∆ =  

i k z

i k z

i k y

            (12) 

According to (1) there is established: 

[ ]
10

1
1

1 1

1

c s 0 0

s c 0 0

0 0 1

0 0 0 1

q q

q q

l
T

 


−


 
=  
 
 
  

               (13) 

For the second joint, on the basis of (3), (4) and  

(1), there is obtained: 

 [ ]
2

1

2
2

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

q
T

l

 
 
 

= 
+


 
 
  

      (14) 

To establish the homogenous 

transformation matrix, there is used expression 

(8), which leads to: 

[ ]

1 1

1 1

1

0

2
2

2

c s 0 0

s c 0 0

0 0 1

0 0 0 1

− 
 
 

+ + 
 
 

=

q q

q q

l l q
T          (15) 

According to (4) there is obtained: 

[ ]

3

2

3

3

0

1 0 0

0 1 0

0 0 1

0 0 0 1

T

l

q

 
 
 =
 
 
 

;            (16) 

On the basis of the same expression (8) in 

keeping with (15) and (16), there is obtained: 

[ ]

1 1 3 1 3 1

1 1 3 1 3 1

2

0

2
3

1

c s 0 c s

s c 0 c s

0 0 1

0 0 0 1

q q l q q q

q q q q l
T

q

l l q

− −

+

+

⋅ ⋅ 
 

⋅ ⋅ 
= 

 

+ 



  (17) 

For 4=i , the situation matrices { } { }4 3→  are: 

[ ]
3 4

434
5

0 1 0 0

1 0 0

0 0 1

0 0 0 1

l
T T

l

 
 
 ≡ =

− − 
 
 

;           (18) 

which, in keeping with (17), according to (9), 

are leading to: 

[ ] [ ] [ ]

1 1 1 3 1 3 1 4 1

1 1 1 3 1 4 1 3 1

1 2 5 2

40 0 3

4 3 4

s c 0 c s c s

c s 0 s c

0

c s

0 0 1

0 0 0

0 1

1

0

q q q q q l q l q

q q q q q l q l q

l l l

n s a p
T T

q

T

− − + −

+ + +

−

 
 = ⋅ = =
  

⋅ ⋅ ⋅ 
 

⋅ ⋅ ⋅

+ − +


=  
 
 
  

 (19) 

In the expression, which characterize the 

location matrix (19), are included the rotation 

matrix [ ]
0

4
R  and the vector position 4p . The 

components of the two matrices are: 

[ ]
1

0

14

1

1

s c 0

c s 0

0 0 1

−

−

 
 =
 
 

R

q q

q q               (20) 

1 3 1 3 1 4 1

1 3 1 4 1 3 1

1

4

2 5 2

c s c s

s c c s

q q q l q l q

q q q l q l q

l l l q

p

− + −

+ + +

+ −

⋅ ⋅ ⋅ 
 

= ⋅ ⋅ ⋅ 
 
 +

        (21) 

representing the resulting orientation matrix 

(20) and the position vector (21), between 

{ } { }4 0→  frames, both being included in the 

expression of the column vector of operational 

variables (11). 

According to [1], in order to establish the 

orientation angles, , ,x y zα β γ  for exact 

determination of the values, there is used the 

trigonometric function tan 2A , defined by: 

( )

[ ]{ }
[ ]{ }

[ ]{ }
[ ]{ }

; 0; 0 ;

/ 2 ; 0; 0
tan2 ;

; 0; 0 ;

/ 2 ; 0; 0

s c

s c
x A s c

s c

s c

α α α

π α α α
α α

π α α α

π α α α

 ≥ >
 

+ > <  
= = 

+ < < 
 

− + < ≥  

(22) 

Hence, in keeping with (22), results: 

( ) ( )tan 2 ; tan 2 0; 1α α α π= = − =x x xA s c A  

12
πγ = +

z
q ,     0β =y  

The column vector of operational coordinates, 

defined by (11), becomes: 
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( )

1 3 1 3 1 4 1

1 3 1 4 1 3 1

1 2 5 2
0

1

c s c s

s c c s

0

2

q q q l q l q

q q q l q

q

l

l l q
X

q

l

π

π

 ⋅ ⋅ ⋅
 
 

⋅ ⋅ ⋅ 
 
 

=  
 
 
 
 
 +

− + −

+ + +

+ − +

 

       (23) 

The expression (23) characterizes the 

Direct Geometric Modeling of the robot type 

RTT studied. Parameters included in (23) are 

expressing the position and orientation of the 

end effector minutiae to fixed reference system 

attached to the robot base. 

The parameters included in (23) are 

expressing the position and orientation of the 

end effector with respect to the fixed reference 

system, attached to the base of the robot. 

The study didn`t take into account the 

mechanical characteristics, and not imposed 

kinematic or dynamic restrictions. From the 

mathematical point of view, in the general case, 

the problem is reduced to solving a system of 

six algebraic linear equations with six 

unknowns. 

 

3.2 Kinematical Modeling  
 

In this paragraph will be established the 

operational kinematic parameters that express 

the movement of the end effector in Cartesian 

space. To define these parameters it is used the 

Iterative Algorithm. With this algorithm will be 

defined the kinematic parameters with respect 

to the fixed reference frame, attached to the 

base. The kinematic analysis take into account 

on one hand the position and orientation of 

each link necessary to describe the location of 

the end effector in the robot workspace, and on 

the other hand the speed variation of links 

throughout the working process. [5], [6]. 

In applying the iterative algorithm [3], in 

a first step, for the first joint, 1=i  it has to be 

assumes that absolute kinematic parameter 

values corresponding to the fixed base of the 

mechanical structure of the robot are: 

{ }0 0 0 0

0 0 0 00, 0, 0, 0ω ω= = = =& &v v . 

For 1= →i n , there are determined the 

angular and linear velocities which are defining 

the absolute motion of each kinetic link using 

the expressions : 

[ ]00 0

1ω ω −= + ∆ ⋅ ⋅ ⋅&
i

ii i i i iR q k                (24) 

( ) ( )0 0 0 0

1 1 1 1ω− − −= + × + − ∆ ⋅ ⋅&
i i i ii i i i

v v p q k ;   (25) 

Similarly, for each 1= →i n , kinetic link 

of the robot, the corresponding angular and 

linear accelerations projected on the fixed 

reference system are defined as follows: 

[ ] [ ]{ }0 00 0 0

1 1
ω ω ω− −= + ∆ ⋅ × ⋅ ⋅ + ⋅ ⋅& & & &&

i i
i ii i i i i i i i

q R k q R k  (26) 

( )
( ){ }

0 0 0 0 0

1 1 1 1 1 1

0 0 01 2

i i i ii i i ii

i i i i i i

v v p p

q k q k

ω ω ω

ω

− − − − − −= + × + × × +

+ − ∆ ⋅ × ⋅ + ⋅

&& &

& &&

; (27) 

In the second part of the iterative 

algorithm, are determined the kinematic 

parameters, which characterize the movement 

in each 1= →i n  kinetic link relative to the { }i  

mobile reference system, as: 

[ ] [ ]
0 0 1

11
ω ω ω−

−−
= ⋅ = ⋅ + ∆ ⋅ ⋅&

T ii i i

i i i i i ii i
R R q k ;  (28) 

[ ] [ ] { }
( )

0 0 1 1 1

1 1 11

1

T ii i i i

i i i i iii i

i

i i i

v R v R v p

q k

ω− − −
− − −−

= ⋅ = ⋅ +⋅ × +

+ − ∆ ⋅ ⋅&

.(29) 

The expressions of angular and linear 

accelerations projected on the mobile reference 

system { }i , that characterizing the relative 

movement of each 1= →i n  link are defined by 

the following expressions: 

[ ] [ ]

[ ]{ }

0 0 1
1 1

1
1 1

ii i
i ii i i

i i i i
ii i i i i i

R R

R q k q k

ω ω ω

ω

−
− −

−
− −

= ⋅ = ⋅ +

+∆ ⋅ ⋅ × ⋅ + ⋅

& & &

& &&

;      (30) 

[ ] [ ] {
}

( ) ( )

0 1 1 1

1 1 11 1

1 1 1

1 1 1

1 2

ω

ω ω

ω

− − −
− − −− −

− − −

− − −

= ⋅ = ⋅ + × +

+ × × +

+ −∆ ⋅ ⋅ × ⋅ + ⋅

&& & &

& &&

i ii i i i

i i i i iii i

i i i

i i ii

i i i

i i i i i i

v R v R v p

p

q k q k

(31) 
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In the last step of the iterative algorithm, 

the absolute motion of the final effector =i n  is 

defined, taking into account the situation 

equations, respectively the absolute linear and 

angular velocities and accelerations (operating 

velocities and accelerations). 

( ) ( ) ( )0 0 0
T

n n nT T

n n
X v ω =  
& ;                 (32) 

( ) ( ) ( )0 0 0
T

n n nT T

n n
X v ω =  
&& && .                (33) 

Hence, in keeping with , (12), according 

to (24)-(27), for i=1 there are determined: 

[ ]00 0 1
11 0 1 1 1

1

0
0ω ω

 
 = + ∆ ⋅ ⋅ ⋅ =
 
 

&

&

R q k
q

;         (34) 

( ) ( )0 0 0 0

1 0 0 10 1 1 11
0
0
0

ω= + × + − ∆ ⋅


⋅


 
 


=



&v v p q k (35) 

[ ]{
[ ] } ( )

00 0 0 1
11 0 1 0 1 1

0 1
11 1 10 0

T
q

q R k

q R k

ω ω ω= + ∆ ⋅ × ⋅ ⋅ +

+ ⋅ ⋅ =

& & &

&& &&

;      (36) 

( )

( ) [ ] [ ]{ }
( )

0 0 0 0 0

1 0 0 10 0 0 10

0 00 1 1
1 11 1 1 1 1 1

1 2

0 0 0
T

v v p p

q R k q R k

ω ω ω

ω

= + × + × × +

+ − ∆ ⋅ × ⋅ ⋅ + ⋅ ⋅ =

=

&& &

& && .(37) 

On the basis of the same (24)-(27) and 

(12) for i=2, there is obtained: 

[ ] ( )

0 0 0

2 1 2 2 2

00 2
22 2 2 12 0 0

T

q k

R k qq

ω ω

ω

= + ∆ ⋅ ⋅ =

= + ∆ ⋅ ⋅ ⋅ =

&

& &
;    (38) 

( ) ( )0 0 0 0

2 1 1 21 2 2

2

21
0
0ω

 
 = + × + −∆ ⋅ ⋅ =
 
 

&

&q
v v p q k      (39) 

[ ]{
[ ] } ( )

00 0 0 2
22 1 2 1 2 2

0 2
22 2 10 0

T
q

q R k

q R k

ω ω ω= + ∆ ⋅ × ⋅ ⋅ +

+ ⋅ ⋅ =

& & &

&& &&

;       (40) 

( )

( ) [ ] [ ]{ }
( )

0 0 0 0 0

2 1 1 21 1 1 21

0 00 2 2
2 22 2 2 2

2

2 21 2

0 0
T

q

v v p p

q R k q R k

ω ω ω

ω

= + × + × × +

+ −∆ ⋅ × ⋅ ⋅ + ⋅ ⋅ =

=

&& &

& &&

&&

   (41) 

The third link is characterized by:  

[ ] ( )

0 0 0

3 3 3 3 3

00 3
33 3 3 13 0 0

T

q k

R k qq

ω ω

ω

= + ∆ ⋅ ⋅ =

= + ∆ ⋅ ⋅ ⋅ =

&

& &
;     (42) 

( ) ( )

1 3 3 1 1 3 1 1

1

0 0 0 0

3 3 3 32 3 3 3

3 3 1 1 3 1 1

2

s s c

c c s

1

q q l q q q q q

q q l q q q q q

v v p

q

q kω= + × +

− − − ⋅ ⋅ 
 ⋅ + ⋅ − ⋅

−∆ ⋅ ⋅ =

⋅ ⋅ ⋅

⋅



⋅


=



&

& & &

& & &

&

;   (43) 

[ ]{
[ ] } ( )

00 0 0 3
33 2 3 2 3 3

0 3
33 3 20 0

T
q

q R k

q R k

ω ω ω= + ∆ ⋅ × ⋅ ⋅

+ ⋅ ⋅

+

=

& & &

&& &&

;   (44) 

( )

( ) [ ] [ ]{ }
1 1

1

1

3 1 3 1 3 1

3 1 3 1 1 3

3 1 3 1 1 3 1

3 1 3 1 1

0 0 0 0 0

3 2 2 32 2 2 32

0 00 3

1

3
3 33 3 3 3 3 3

2

2

( s c ) 2 c

( c s ) s

( c s 2 s

( s c ) c

1 2

)

q q l q q

v v p p

q R k q

q q q

q q l q q q q

q q l q q q q q

q q l

k

q

R

q q

ω ω ω

ω

= + × + × × +
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According to [1], the end-effector of the 

serial structure has the following kinematical 

parameters: 
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Thus, based on the RTT structure 

configuration, for 1 4= →i  the following 

kinematic parameters characterizing the 

movement in driving joint, relative to the 

mobile reference system { }i , are determined as: 
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The expressions (34)-(49), are defining 

the absolute motion of the end effector, taking 

into account the situating equations and 

absolute linear and angular accelerations and 

accelerations respectively. 

Taking into account the relations (32) and 

(33), there are obtained: 
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(67) 

The expressions previously determined are the 

Direct Kinematics Equations (DKM) that 

characterizing the absolute motion of the final 

effector and which will be used as input data in 

the dynamic modeling. The expressions (50)-

(65), are defining the motion of the joint with 

respect to own reference frame. Taking into 

account equations (32) and (33), there can be 

expressed the operational speeds and 

accelerations, compared to the own system as: 
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4. CONCLUSION  
   

The construction of capable robots in 

performing diverse tasks, with higher speed and 

precision is a global goal, thus being priority 

directions of research in robotics, in this 

context, it is obvious the complexity of the 

issues concerning the construction, the 

operation, and the control of robots.  

In the paper, has been considered a serial 

structure of R2T type, which should be 

implemented in a handling process of parts 

between two workplaces. Direct Geometric 

Modeling, regardless of the algorithm used, 

aims to determine the direct geometry 

equations that will serve to determine the direct 

kinematic model. The geometric study did not 

take into account mechanical characteristics, 

and did not impose kinematic or dynamic 

restrictions. From a mathematical point of 

view, in the general case, the problem is 

reduced to solving an algebraic, nonlinear six-

equation system with six unknowns. 

For the proposed mechanical structure, 

have been determined the operational kinematic 

parameters, by expressing the final effector 

movement in Cartesian space, by using the 

Iterative Algorithm. Hence, with this method, 

the kinematic parameters were defined both with 

respect to the fixed system { }0 and in relation 

to its own system{ }i , for each driving joint ( )i . 
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Modelare cinematică pentru structura serială R2T utilizată pentru transferul pieselor 

 între două posturi de lucru 
  

Rezumat: Plecând de la ideea de a aduce mai multă flexibilitate unui proces de lucru, lucrarea este dedicată 

prezentării ecuaţiilor de geometrie şi cinematică pentru o structură serială R2T, care poate fi utilizată pentru 

îndeplinirea sarcinilor legate de manipularea pieselor între două posturi de lucru. Astfel, se vor stabili în 

formă analitică, ecuaţiile directe pentru modelul geometric şi cinematic folosind algoritmi dedicaţi, cum ar fi 

Algoritmul Matricelor de Transfer şi Algoritmul Iterativ. Algoritmul Iterativ utilizează rezultatele studiului 

geometric pentru a realiza controlul cinematic, adică stabilirea vitezei/acceleraţiilor liniare şi unghiulare a 

fiecărei articulaţii cinematice a robotului R2T şi prin urmare, a punctului caracteristic al efectorului final. 
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