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Abstract: There are few publications which bring up the subject of the ropeway cable under moving in-

service load. Our main goal is to establish the so-called differential equation of a moving load on the 

ropeway cable of a zip line entertainment facility. The unknown is its movement speed as a function of time, 

but the direct integration of this equation is not possible. This impediment is bypassed by changing the 

variable “time”, with the variable “angle” swept by the radius vector.  

However, the new first order constant coefficient differential nonlinear equation can be easily solved. The 

solution obtained was applied in a real case study and a comparative study is presented plotting speed 

variation and acceleration of mobile load.  
Key words: mobile load, steel wier rope, wind action, nonlinear differential equation, study case 

 
1. INTRODUCTION  
 
 The "catenary" is the curve assumed of a 
flexible inextensible wire or chain with uniform 
density hanging freely from two fix points, acted 
on by gravity. Finding out the equation of this 
"chain-curve" is related to the beginning of 
calculus. This problem has been launched by 
Jacob Bernoulli in 1690, first to Gottfried 
Leibniz, then to the scientific community. The 
equation was obtained by Leibniz, Christiaan 
Huygens and Johann Bernoulli in 1691, in Acta 
Eruditorum [1].  
 Nowadays, the emergence of high-strength 
materials, along with the expansion of cable 
transport solutions, required increased need 
precision for design and exploitation, aimed at 
ensuring a high level of security. Geometric and 
material nonlinearity, dynamic behavior and 
environmental conditions in operation 
(temperature, wind) are permanent and ongoing 
topics for researchers. An example is a recent 
book that uses FEM in dynamic modeling, 
starting from the constitutive equations and 
taking into account the compressibility of the 
chains or cables [2]. It is well known that a 
stretched cable has an equilibrium shape that 

approximates a parabola. This model will be 
used and refined in this work.  

The purpose of the paper is to provide 
designers an advanced model for design work. 
 Cable transport systems are usually in rugged 
mountain areas in the form of funiculars for 
transporting materials, cableways and cable 
cranes. In contrast, for recreation, there are used 
installations commonly called "zip-line" or 
"Tyrolean traverse" where the moving load 
moves gravitationally based on the level 
difference between the departure and arrival 
stations. The zip lines openings are usually 
lower than the ones mentioned above, rarely 
exceeding one kilometer. 

Zip-line particular problem is posed by 
controlling and limiting the input speed of the 
mobile load in the downstream station 
(destination). If this speed exceeds a certain 
value, a braking system is required whose price, 
compared to the price of the whole plant, is more 
than significant. On the contrary, if the 
difference in level between the two stations is 
small, or if the cable is not stretched enough, the 
mobile load may not reach the arrival station, 
stopping on the way. The wind having the 
opposite travel direction increases this danger.  
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An approximate solution to the problem is 
considered the displacement of the load of the 
chord line corresponding to the carrier cable, to 
be identical to the movement on the incline 
plane. Taking into account the aerodynamic drag 
resistance, the problem is mathematically 
formalized by a Riccati differential equation, 
whose analytical solution could be found [3].  
 In relation to the inclined plane displacement 
having a constant base angle, the displacement 
on the curve of the carrier rope (approximated 
by a parabola) has a variable slope. This is the 
difficulty of the problem whose approach and 
solution are presented in this paper. 

 
2. DIFFERENTIAL EQUATION OF 

MOTION 
 

The differential equation of motion results 
from the dynamic equilibrium condition of the 
moving load on an infinitesimal element of its 
trajectory curve ds (Fig. 1). This is an equation 
of a parabola [4]: 
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where: q is the distributed load from the weight 
of the carrier cable; Q is the mobile load, H - the 
horizontal tension component of the cable, and 
fx it is his sag; the other notations result from the 
figure.  
Forces in dynamic equilibrium are: the load due 
to the mobile payload, G=Mg in which: M is the 
mass of the load, and g is the gravitational 
acceleration; the centrifugal force, FC=M·v2/ρ 
where: v is the instantenous speed of the 
displacement, and ρ - the radius of curvature of 
the trajectory  at  the  considered point; the nor- 

 
 

Fig. 1. The forces acting on the mobile load 
mal reaction of the carrier cable, N; the 
aerodynamic drag resistance force, Fa=ka·v

2, ka 

is the aerodynamic drag coefficient; the rolling 
resistance, W= w·(Mg·cosα+Fc), w is the rolling 
resistance coefficient; the active weight of 
mobile load, M·g·sinα; the inertial force (or 
dynamic resistance), Fi=M·a. 
 The equilibrium equation of forces in the 
direction of the tangent to the trajectory, after the 
forces are replaced by their expressions takes the 
form 
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If we divide (2) by M and denote 

      a
k w

k
M ρ

= +      (3) 

then we get 

( )2 sin cosv k v w gα α+ ⋅ = − ⋅&        (4) 

The difficulty of approaching this equation is 
that it contains two unknown functions of time, 
namely v (load velocity), and α (angle of the 
tangent to the trajectory). It is possible to 
overcome this difficulty taking as the 
independent variable the radius vector angle φ to 
the horizontal, as shown in Figure 2. 
The two angles α and φ are complementary 

    0,5α π ϕ= −        (5) 
In what concerns the expression of the velocity 
depending on the angle φ, it is based on 
relationship 
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where ω represents instantaneous angular 
velocity. Thus (1) becomes 

 
 
Fig. 2. The geometric scheme of the carrier cable 
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If we use the notation 

2 k nρ ⋅ =   (7) 
we get the final form of the motion equation 
whose unknown is v(α) 
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3. SOLUTION OF THE EQUATION OF 

MOTION 
 
Based on the following substitution 

       2u v=       (9) 
Equation (8) is transformed into a first-order 
nonhomogeneous differential equation  

( )2 cos sin
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n u g w
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ρ ϕ ϕ
ϕ
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An analytical solution to this equation is 
probably impossible, or at least very difficult to 
find solution because the radius of curvature of 
the trajectory that is not constant, appears both 
in the expression of n (implicitly), and explicit 
in the right-hand member. Therefore, an 
approximate solution is proposed, assuming 

    ( ) ct Rρ α =�      (11) 

This equates to the approximation of the 
parabolic trajectory of the load with a circular 
one. This approximation results in a lower error 
as the carrier cable is stretched and therefore has 
a greater radius of curvature, which corresponds 
to the usual installations. The case study in the 
following paragraph offers more clarification on 
this point. 

The general solution of equation (10) is the 
sum of the general solution of the homogeneous 
equation and the particular solution of the whole 
nonhomogeneous equation. 
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The constant C is now determined by applying 
initial conditions: at the time t = 0, the initial 
velocity v(0) = 0 and the angle φ = φ0. Based on 
(9), results  

0
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By making appropriate calculations and 
grouping terms is obtained 
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and 

 ( ) ( )v uϕ ϕ=                     (13) 

The expression of acceleration results from the 
derivation of u(φ). Indeed: 
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Thus 
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The distance covered is obtained in the form 

1 0( )s R ϕ ϕ= −      (15) 

and it corresponds to the length of the circle arch 
that approximates the parabola. The real 
distance is the length of the parabolic arc, and it 
can be calculated by knowing the expression (1) 
of the trajectory of the moving load.  
Finally, the time for which the trajectory is 
traveled by the mobile load can be determined as 
follows: 
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4. EFFECTS OF WIND ACTION 

 
Wind action in the direction of movement 

increases the speed of the mobile load and 
reduces it, if it acts in the opposite direction. In 
this way it produces a transport movement at 
speed ±vv. 

At the same time, the aerodynamic drag 
resistance force is proportional to the square of 
the relative velocity, namely v±vv and the 
centrifugal force is proportional to the square of 
the absolute velocity v. 

Finally, if the wind speed vv is assumed to be 
constant, the acceleration is  
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 ( )vdv dt d v v v= = &m   

and does not depend on the wind.  
Therefore the second term of (2) must be 

replaced by  
 2( )a vk v v⋅ m   

By developing the square of relative velocity, 
it appears an additional term in v, as well as 
another term in 2

vν . 

Appling substitution (9), the resulting 
differential equation is non-linear. The problem 
can be solved by neglecting the effect of 
centrifugal force because it is negligible 
compared to the normal component of the 
payload Mgcosα. In this case, (8) retains its 
shape (instead of v it will be v±vv). Also the 
solution (13) thereof are maintained.  
Thus:   

vv v u=m  wherefrom vv u v= ±  (18) 

which means that the wind provides the 
transport component of the absolute velocity. 
 
5. CASE STUDY 

 
The case study highlights the conclusions of 

using the mathematical formalism above, which 
led to the solution (13), compared to the solution 
deduced from the simplified model of moving 
the mobile load on the real trajectory [3]. We 
will use the data of the planned installation to be 
installed in the Buzau locality in the tourist 
traveling zone “Vulcanii Noroioşi” (translated: 
“Mud Volcaneous”) in Romania, for which: the 
opening of the carrier cable: L=391m; the drop: 
∆h=51m; the payload: Q=125kg; the linear mass 
of the cable: m=0,48kg/m; the cable sag 
(horizontal tension) at the ambient temperature 
of θ=8°C: H=42277N; the air density at the 
average altitude at wich the installation is 
located ρH=1,182kg/m3; the travel resistance 
coefficient w=0,025 N/N; the exposed aria of 
mobile load A=1,2m2 and the aerodynamic 
coefficient of the mobile load ca=1,1. 

The radius of the circle that approximates the 
trajectory of the moving load, and the 
coordinates of its center, were determined in the 
following conditions: 
(a) The circle passes through the start anchor 
and end anchor of the carrier cable. The two link 

points of the carrier cable have the coordinates 
A(0,0) and B(391m, 51m). 
(b) The tangent to the circle at the starting point 
of the mobile load has the same slope with the 
parabolic trajectory. We have obtained the 
results: R = 3966m, xC = 707,86m and yC = -
3903m.  

In order to highlight the influence of cable 
tension, it was also considered the situation H1 
≅H/2=21050N, the other data remaining 
unchanged. The results are presented as graphs 
of variation with the angle φ of velocity and 
acceleration of the mobile load.  

The following Figures 3 and 4 will be 
commented comparatively, considering the 
moving of the mobile load on the rectilinear 
trajectory (on the real parabola string). 
Studying the allure of the graphs in Figures 3a 
and 3b, we can observe: 

1. The speed of the mobile load increases up 
to a certain maximum value on the steeper 
portion of the trajectory, then decreases on the 
less steep portion. 

2. Reducing the tension of the carrier cable 
leads to an increase in its sag, and the maximum 
speed value increases (Fig. 3b). This is in 
agreement with the increase of the downward 
trajectory slope, but the final speed of the mobile 
load (the input speed thereof at the arrival 
station) is reduced. The reduction is from 
10,714m/s to 8,062m/s, i.e. around 20% when 
the horizontal component of tension in the cable 
is halved and its maximum sag doubles. This 
second observation also indicates the path of 
reducing the input speed of the mobile load at 
the arrival station: relaxing the initial tension of 
the carrier cable. 

 

 
Fig. 3a: Graph of variation of mobile load speed in the 

assumption H=42277N  
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Fig. 3b. Graph of variation of mobile load speed in the 

assumption H=21050N 

 

In the real case, the speed goes through a 
maximum, but the movement is not stabilize at 
this value; the speed decreases as the trajectory 
slope decreases as the mobile load approaches 
the arrival station (Fig. 3a). 

In what concerns the acceleration graph (Fig. 
4a), it shows a monotonic decrease in 
acceleration, and also highlights where it has 
been canceled and then becomes negative.  

 
Fig. 4a. Graph of variation of mobile load acceleration in 

the assumption H=42277N  

 
 

Fig. 4b. Graph of variation of mobile load acceleration in 
the assumption H=21050N 

 
In the simplified theory, the acceleration does 

not take negative values, but only tends to zero 
if the trajectory is long enough for the speed to 
reach the limit value. 

Fig. 5a. Graph of variation of mobile load speed in the 
simplified theory (movement of the mobile load on the 

string of the real trajectory). 
 

Fig. 5b. Graph of variation of mobile load acceleration 
in the simplified theory (movement of the mobile load on 
the string of the real trajectory). 
 
 The velocity graph in the simplified theory 
(movement of the mobile load on the real 
trajectory), reveals that mobile load speed 
increases continuously with time and tends to a 
limit determined by the aerodynamic drag 
(Fig. 5a). In what concerns the maximum speed 
it is found to be higher than in the case of 
movement on the arc of curve, than the 
movement on the chord. This can be explained 
by the fact that at the starting, the angle of the 
tangent to the trajectory is greater than the angle 
of the chord. 
 
6. CONCLUSIONS 
 

1. The change of variable (6) has solved the 
problem of determining the kinematic quantities 
of the gravitational displacement of the loads on 
carrier cables. This variable change was made 
according to the position on the trajectory, not 
by time. We believe this is the idea that this work 
is desirable. 
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2. The obtained solution (13) and (14) 
substantially improves the solution based on the 
consideration of the load displacement on the 
actual trajectory, both as an allure of varying 
aspect, as well as the resulting values.  

3. In addition, we can make a very useful 
comment for the designer. As long as it results: 
u(φ1) in a positive value, the input speed of the 
mobile load at the arrival station results in a real 
value; if u(φ1) = 0 it results that the mobile load 
stops by itself at the arrival station, and if 
u(φ1) < 0, an imaginary value is obtained for the 
input speed at the arrival station, meaning that 
the mobile load stops on the way, before it 
arrives at the station of arrival.  

Then, of course, the load will move back to 
the point where the trajectory has the minimum 
quota. Therefore, the solution is likely to signal 
the wrong design. 

4. The solution obtained is not accurate, at 
least in theory, as it assumes that the radius of 
curvature of the trajectory is constant, so that the 
trajectory of the load is a circle arc.  

However, given the large radius of curvature 
as well as the conditions considered in 
establishing this circle, the solution offers a high 
degree of accuracy, as can be seen from the 
qualitative interpretations and comments made 
on the case study.  

The deviation of the circle from the parabolic 
trajectory (1) can be evaluated by plotting the 
two curves on the same graph. In the case study 
considered this deviation is approx. 30mm, that 
it is 0.6% from the maximum sag equals 5m. 

5. It is expected that, due to the energy 
consumption to overcome the friction between 
the carrier cable due to its local bending under 
the load weight, the speeds and the acceleration 
of the displacement of the load will be somewhat 
computing tool that has been lacking so far, at 
least according to our knowledge. 

6. We think, therefore, that the designers of 
such cableway facilities, have been provided 
with the computing tool that has been lacking so 
far, at least according to our knowledge. 
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Studiul deplasării gravitaţionale a sarcinilor pe cabluri purtătoare 

 
În lucrare se stabileşte ecuaţia diferenţială a mişcării sub acţiunea gerutăţii proprii a sarcinilor pe cabluri purtătoare, 

având ca necunoscută viteza de deplasare a acesteia ca funcţie de timp. Integrarea directă a acestei ecuaţii nu este posibilă. 
Dificultatea a fost ocolită prin trecerea de la variabila timp la variabila unghi al razei vectoare. Astfel, prin considerarea 
în primă aproximaţie că raza de curbură a traiectoriei sarcinii nu variază, s-a reuşit reducerea  ecuaţiei la o ecuaţie 
diferenţială de ordinul întâi cu coeficienţi constanţi care a fost rezolvată cu uşurunţă. Soluţia a fost aplicată  într-un studiu 
de caz real al unei de instalații de agrement (tiroliene); au fost reprezentate grafic variaţiile vitezei şi a acceleraţiei sarcinii 
mobile, care au fost interpretate comparativ cu cazul simplificat a deplasării sarcinii pe coarda traectoriei reale, des utilizat 
în practica inginerească. Acest studiu a prilejuit unele comentarii, interpretări şi concluzii de interes practic. 
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